

The risk management approach to macroprudential policy

2020 Federal Reserve Stress Testing Conference

9/10/2020

Sulkhan Chavleishvili, Robert Engle, Stephan Fahr, Manfred Kremer, Simone Manganelli, Bernd Schwaab

The views expressed are my own and do not necessarily reflect those of the ECB

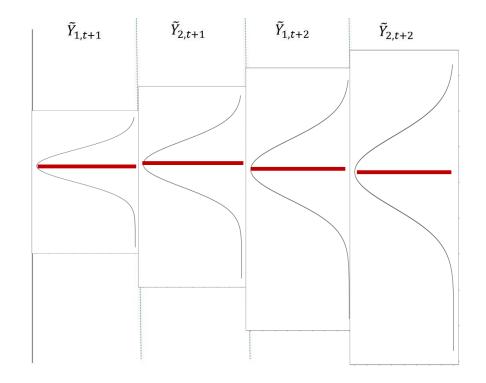
1. Macro-prudential policy as an exercise of risk management Trade-off between downside risks and upside potential

2. Quantify the stance of macro-prudential policy

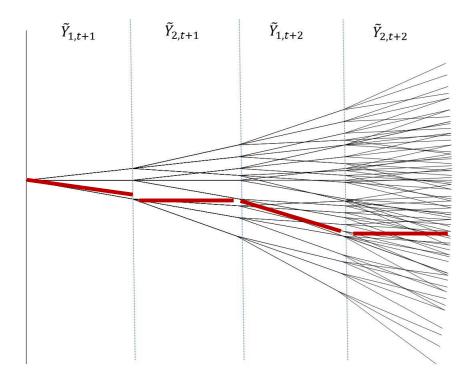
- Use a loss function
- Move from crisis prediction to stress scenario analysis

3. Need a macro-econometric model

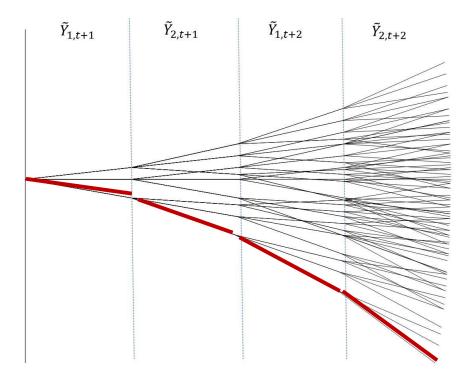
- Real and financial variables are endogenous
- Tail interactions matter, not only averages

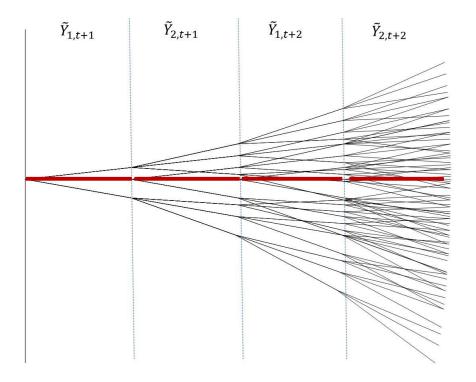

1 The QVAR model – Graphical econometrics...

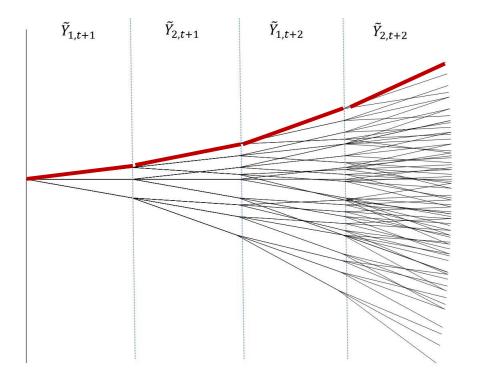
2 Implementing the macro-prudential risk management approach

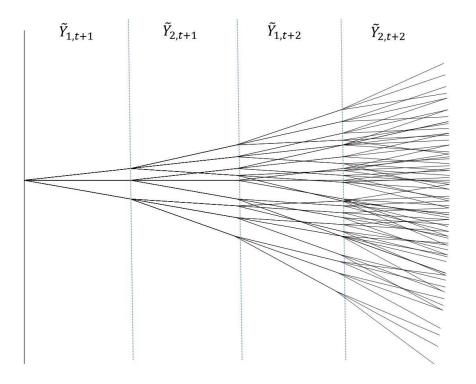

VAR vs QVAR

- If homoscedastic, the two are (asymptotically) equivalent
- Strong evidence of asymmetric macro-financial linkages
 - \rightarrow VAR under-estimates downside risks
 - \rightarrow VAR over-estimates upside potential


The VAR model


The Quantile VAR model


The QVAR model – Or...


The QVAR model – Or...

The QVAR model – Or...

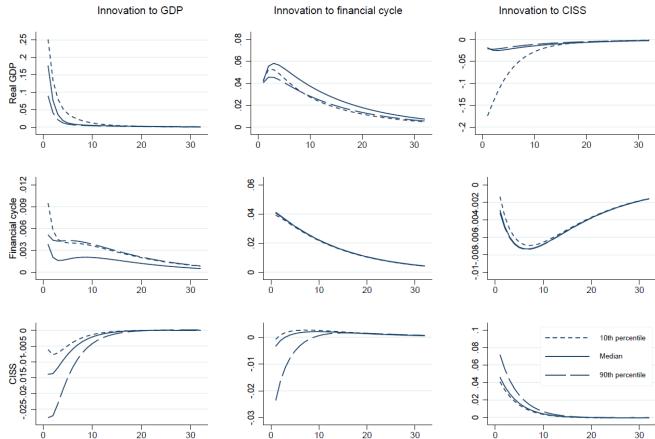
The QVAR model – Or any other path

1 The QVAR model – Graphical econometrics...

2 Implementing the macro-prudential risk management approach

2. Implementing the macro-prudential risk management approach

- a. Estimates of QVAR
- b. Towards a macro-prudential stance


The QVAR model

$$x_{t+1} = \omega + A_0 x_{t+1} + A_1 x_t + \epsilon_{t+1}$$

 x_{t+1} = [GDP, Financial Cycle, CISS]'

Euro area: 1988Q3 - 2018Q4

Asymmetries in the quantile IRFs

www.ecb.europa.eu©

2. Implementing the macro-prudential risk management approach

- a. Estimates of QVAR
- **b.** Towards a macro-prudential stance

A thought experiment

		Normal times	Crisis times
		t+1 t+6	t+7 t+12
Passive policy	GDP		
	Financial cycle		
	CISS		90%
Active policy	GDP		
	Financial cycle		
	CISS		90%

A thought experiment

		Normal times	Crisis times
		t+1 t+6	t+7 t+12
Passive policy	GDP		
	Financial cycle	60%	10%
	CISS		90%
	GDP		
Active policy	Financial cycle		
	CISS		90%

A thought experiment

		Normal times	Crisis times
		t+1 t+6	t+7 t+12
Passive policy	GDP		
	Financial cycle	60%	10%
	CISS		90%
Active policy	GDP		
	Financial cycle	50%	20%
	CISS		90%

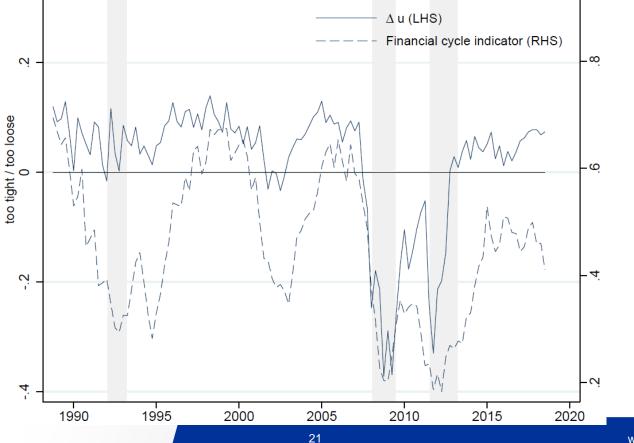
Towards a macro-prudential policy stance

Each policy is evaluated as:

$$u = \sum_{t} E_t(GDP) + 0.5 \int_{-\infty}^{0} GDP dF_t(GDP)$$

Towards a macro-prudential policy stance

Each policy is evaluated as:


$$u = \sum_{t} E_t(GDP) + 0.5 \int_{-\infty}^{0} GDP dF_t(GDP)$$

Report:

 $\Delta u = u(active) - u(passive)$

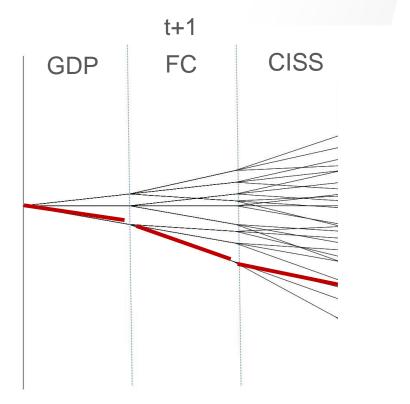
- If $\Delta u > 0$ active policy is preferred to passive
- If Δu<0 passive policy is preferred to active

Benefits from active macro-prudential policy

www.ecb.europa.eu©

Conclusion

- 1. Macro-prudential policy as an exercise of risk management Trade-off between downside risks and upside potential
- 2. Need for econometric models Macro-financial asymmetries
- 3. Move away from predicting crisis, towards stress scenario
- 4. Use decision function to quantify the benefits of policy


5. Implementing the macro-prudential risk management approach

- a. Estimates of QVAR
- b. Growth shortfall and longrise
- c. Stress testing the euro area economy
- d. Towards a macro-prudential stance

Model-based stress testing

Forecast of GDP, subject to a sequence of tail shocks.

GFC stress scenario

t+2 t+3 t+4

- Choose the quantile probabilities to match 2009 Q2 GDP contraction four quarters ahead
- Apply these quantile probabilities at each point in time

Vulnerability to GFC-sized shocks

