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Abstract

I study the information design on a financial network to maximize its stability, where banks’
default outcomes are determined by a fixed point payment problem that accounts for both
fundamentals and interbank contagion. In addition to the cross-state risk sharing in single-bank
stress test models, the system-level design highlights the novel cross-bank risk sharing: passing
banks together reduces the counterparty risks among them, but at a cost of reporting the same
information despite their independent fundamentals. When the expected bank profitability is
high, or interbank exposure is large, the optimal policy is less discriminatory across banks. For
specific network structures, I find: 1) in a ring network, banks at least a specific distance away
from the nearest shock may pass, at states where shocks are connected on adjacent banks; 2)
an interconnected structure is not necessarily more stable under the optimal policy; 3) typically
more connected banks receive preferred treatment.
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1 Introduction

Disclosing information about bank qualities is crucial in resolving a banking crisis. Consequent to
the Great Recession, bank supervisors around the world conduct periodic stress tests to ensure the
banking system’s resilience to economic uncertainty. Importantly, the test results are disclosed so
as to restore market confidence, which is a distinguishing feature from policies that provide direct
financial support. As a result, a growing literature studies how a cash constrained regulator designs
the informativeness of stress tests to improve financial stability via affecting market participants’
beliefs.1

However, this literature thus far examines single bank stress tests where banks are stand-alone,
and hence remains essentially micro-prudential.2 This contrasts with the 2007-09 financial crisis,
which vividly demonstrated the significance of interbank contagion among systematically important
financial institutions (SIFIs). In addition, despite significant heterogeneity across banks, the reg-
ulator seems to be reluctant to treat banks differently. For instance, during the recent COVID-19
pandemic, U.S. stress test restricted the payout policies of all banks who were tested.3 Hence, it
is critical to take a holistic perspetive regarding the broader macroprudential stress test design on
the banking system. The network theory is well accepted to characterize the structure of interde-
pendence among banks, and thus a natural framework to examine system-level stress testing.

I study the optimal stress test in given financial network structures that maximizes the expected
system stability. A cash-constrained regulator commits to a disclosure rule that communicates each
bank’s quality via its test result, taking into account the implied counterparty risks on other banks.
As in the stress test disclosure literature, a passing result that signals good quality is not perfectly
informative, to allow for risk sharing across states. However, in stark contrast with single bank
stress tests, in my model with an interconnected banking network, the disclosure about one bank
is informative about its payments to the other banks. Therefore, disclosure about individual banks
are interdependent due to the endogenous counterparty risk.

To the best of my knowledge, this is the first paper to account for interbank contagion in stress
test design. It is of direct policy relevance: for instance, in 2017 the Federal Reserve added the
“Counterparty Default Component” which assesses the bank’s financial health assuming that its
largest counterparty defaults.4 Yet the largest counterparty assumption may underestimate risk,
while the exogenous counterparty failure for each single bank may exaggerate risk. By designing
stress test on the financial network as a whole, this paper provides a complete characterization of

1See Goldstein and Leitner (2018); Faria-e Castro et al. (2016); Leitner and Williams (2017); Orlov et al. (2018);
Inostroza and Pavan (2018); Inostroza (2019); and others.

2Orlov et al. (2018) discuss macro-prudential recapitalization of banks, in which bad banks are separated to
liquidate their assets first.

3In 2020, besides the annual stress test in June, the Federal Reserve conducted a second round of stress test in
December. In the June stress test, the Federal Reserve suspended the share repurchases and limited the dividends
payout for all the 34 banks; in the December stress test, the Federal Reserve extended the earlier restrictions on
distributions, with modifications that dividends and share repurchases will be limited based on income.

4Eight financial institutions are subject to this component: Bank of America Corporation; The Bank of New York
Mellon Corporation; Citigroup Inc.; The Goldman Sachs Group, Inc.; JPMorgan Chase & Co.; Morgan Stanley; State
Street Corporation; and Wells Fargo & Co.
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interbank spillovers and endogenizes the effects of disclosure on counterparty risk. Further, my
paper is of theoretical interest to the information design literature. For instance, prior consistency
in this literature requires disclosure to be on average correct; in this study, this average quality
depends on the counterparty risk that is affected by the disclosure about other banks.

In the single bank stress testing literature (e.g., Goldstein and Leitner, 2018), the policy high-
lights cross-state risk sharing: a passing signal is not perfectly informative but pools some bad
states, as long as it represents acceptable quality on average. The cross-state risk sharing is still
at work in this paper. However, my analysis highlights the novel cross-bank risk sharing: passing
a particular set of banks together helps them deliver to each other as counterparties, and hence
improve their average quality in a collective way.5 In general, if bank profitability is high, or com-
plementarity among banks is high, the optimal policy tends to be less discriminatory and report
the same signal across banks, despite the independence of the banks’ stand-alone assets.

I introduce uncertainty to the financial network framework of Eisenberg and Noe (2001) by
applying the information design approach (Bergemann and Morris, 2016a,b), where the regulator
maximizes system stability via affecting the beliefs about shocks to banks. To be more specific,
Eisenberg and Noe (2001) characterize the interbank payments at contingent states in a given
network structure. In my paper, before bank qualities (state) are revealed, each bank has an
option to exchange its risky asset side for cash, with which to settle liabilities later. As the key
part of the model, the value of this refinancing opportunity is affected by disclosure: before state
realization, the regulator commits to a disclosure rule that specifies how likely different signals
are observed at each state, based on which market participants learn about the underlying bank
qualities.

In my model, there are three dates 0, 1, 2. Bank balance sheet are exogenously given, and the
positions are fixed except for possible refinancing at t = 1. Banks are connected by interbank
liabilities, the collection of which corresponds to the network structure which is exogenously given.
Each bank also has a risky loan project that realizes at t = 1; this is the source of external shocks
in the system. Project shocks are independent across banks, and the state corresponds to the
collection of project realizations. A bank also has external liabilities senior to interbank debts. The
state is reavealed at t = 2, when all liabilities are due. These outside-of-network cash flows, i.e.,
loan projects and senior liabilities, ensure that interbank payments are a well defined set of fixed
points—what banks pay creditor banks depend on what they receive from borrower banks.

The regulator maximizes the weighted number of banks that are solvent, by influencing the
interim (t = 1) beliefs about banks and their refinacing opportunities. Specifically, at t = 0 the
regulator commits to a disclosure policy that specifies how likely each bank is reported with h or l
at each state. At t = 1 when the state realizes but is not revealed, a public signal of all banks’ test
results (h or l) is released. The market hence updates beliefs about banks, which influences the

5This point is related to endogenous risk sharing between agents in a connected structure. For instance, Ambrus
et al. (2014) show in social networks that connections enforce informal insurance payments, and result in strong
comovement in consumption of insured individuals. Here, risk sharing is enabled by information design, and a public
signal that passes banks together results in reduced counterparty risks and comovement in these banks’ qualities.
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amount that a bank could raise if it exchanges its risky asset side—both the loans and interbank
receivables—for cash. The default penalty is sufficiently large, so a bank refinances if and only if
the amount to be raised exceeds liabilities; otherwise, the bank stays put at t = 1 low market value
in hope for resurrection tomorrow.

The regulator’s problem could be represented in Bergemann and Morris (2016a,b)’s framework:
a signal recommends actions to banks, h for refinancing and l for waiting; at the same time, the
disclosure policy should satisfy obedience constraints, which ensure that banks would indeed take the
recommended actions. Hence, h should convey good bank quality, upon which the bank refinances
at t = 1 with enough cash and never defaults at t = 2; l induces low interim market value at t = 1,
and the eventual bank outcome at t = 2 still depends on the underlying state.

A lenient test that is not perfectly informative allows banks to share risk across states. Specifi-
cally, a bank may also be reported with h at states where it would otherwise default. Via refinancing
upon h, the bank essentially borrows liquidity with itself from good states to bad states, which
improves its chance of survival. In addition, there is no counterparty risk from a bank that is
reported with h. Cross-bank risk sharing arises when the public signal reports h on multiple banks
at the same time. On one hand, reduced counterparty risk improves bank quality and facilitates
refinancing. On the other hand, the same signal h is reported on banks with different underlying
cash flows from independent projects, and the regulator needs to convince the market that the
weaker banks are also on average healthy.

In solving the optimal stress test design, I derive an index which characterizes the efficiency
of any particular way of risk sharing, the collection of which makes up a feasible policy. This is
one of the major contribution of the paper. In general, the efficiency is a function of some general
distribution of the signal across states.6 I first show that the relevant obedience constraints are
those of h to ensure high interim market value. More importantly, under very general conditions
of low priors and idiosyncratic shocks to banks, all obedience constraints of h are binding without
loss of generality. The binding constraints allow me to compute the index directly.

There are two aspects of the efficiency index, the maximum attainable payoff and the marginal
value of risk sharing. Intuitively, if bank profitability is high and thus cross-state borrowing is
less constrained, a less discriminatory signal that reports h on many banks naturally results in
higher system stability. The marginal value, on the other hand, becomes important when cross-
state borrowing is constrained. It equals the ratio of the improvement in system stability due to
refinancing, over the underlying liquidity shortage at states that borrow liquidity. The liquidity
shortage captures how sensitive investors adjust their beliefs about h downward and hence restricts
the extent of cross-state risk sharing. For a signal that reports only one bank as h and the rest
as l, the ratio reduces to the gain-to-cost ratio in the single-bank stress test by Goldstein and
Leitner (2018). For relatively large interbank exposure, counterparty risk becomes important;

6The linear programming problem itself is finite, and the optimal solution lies on one of the vertices. The problem
with this approach is that we only know which constraints are binding when we have the solution, so it does not allow
for comparative statics and policy predictions. Here, we argue that an economically meaningful index is a function
of the signal distribution, which has infinite dimension.
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despite independent project fundamentals, a less discriminatory signal is preferred so as to reduce
counterparty risk and liquidity shortage.

Then I use this efficiency index as a powerful tool to study the properties of the optimal pol-
icy for different primitive parameters and network structures. In general connected networks, the
optimal policy is less discriminatory across banks when 1) the expected bank profitability is high,
or 2) counterparty exposure is large.7 Under some conditions, all banks can always refinance and
perfect risk sharing is achieved. If banks have balanced interbank claims and liabilities, and outside
investors demand zero rent, perfect risk sharing is achieved, and decentralized refinancing imple-
ments the same outcome as centralized clearing. Conditional on a small number of fundamental
shocks, perfect risk sharing could also be achieved.

Consistent with my model implications, stress test in practice exhibits reluctance to separate
banks. For example, in years after the Great Recession, the Federal Reserve separated several banks
and restricted their payout plans. In recent years of good economic growth, almost all banks pass
their stress tests. During the recent COVID-19 pandemic, bank stress tests again did not separate,
and restricted payouts of all tested banks. Taking an international perspective, as banks involved
in the European-wide stress test are more heterogeneous and less connected banks, the European
stress test results are more discriminatory compared with the U.S. practice.

Then I study the implications of network structures on the optimal disclosure. First, I examine
the effects of interconnectedness in symmetric networks. In the complete network where banks are
all connected to each other, the optimal policy is mainly driven by the potential improvement in
system stability. Liquidity is borrowed to the critical states where the network transitions from
stable to fragile. As a result, information design increases the threshold number of shocks that
results in system failure. In the ring network where a bank is only connected to the neighboring
lender and borrower, the optimal policy is mainly driven by minimizing the liquidity shortage of
refinancing banks (reported with h). It features a distance-based signal and “quarantine” effect.
Specifically, the signal allows risk sharing if banks are over a specific distance away from the
nearest impaired bank; the underlying project shocks are on adjacent banks, which is similar to a
“quarantine” practice.

Connecting back to the network literature on connectivity, Acemoglu et al. (2015) find that
interconnectedness may be “robust” or “fragile” depending on shock size, while the ring network
is always the least stable. I find that under the optimal information structure, the ring network
may be more more stable. In my paper, as the contagion at bad times may be reduced via
cross state risk sharing, shock size is not consequential. Instead, the mechanism highlights the
economic trade-off of cross-state risk sharing that concerns outside liquidity premium and bank
profitability, among others. When cross-state risk sharing is constrained, the debt overhang problem
in a connected network—the raised liquidity easily spreads to counterparties’ senior creditors—
becomes more expensive. In a less connected structure, shocks may be quarantined locally to

7We emphasize that the all-l signal does not necessarily lead to system failure, but instead all banks are denied
the opportunity of cross-state risk sharing and wait in hope for the best. One example of this signal is that in the
worst time of 2008, the Federal Reserve required all key banks to participate in TARP instead of self saving.
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be absorbed by senior creditors. When cross-state risk sharing is constrained, interconnectedness
becomes favorable for easier coordination in banks’ refinancing to reduce contagion.

Next, I examine the core-periphery network, which is a widely studied empirically relevant
structure(see Hojman and Szeidl, 2008; Craig and Von Peter, 2014; Farboodi, 2017, among others).
Typically the core banks receive preferred treatment, because core banks have large spillovers to
periphery banks and better risk sharing with more counterparties. As the outcome of optimal risk
sharing, the preferred treatment should qualify relatively small cost of cross-state borrowing as
compared with the complementarity between the core bank and its connected peripheries. As a
counter example, when cross-state borrowing is extremely expensive, only some periphery banks
may refinance; this is because compared with their connected core bank, they are one distance
further from distant project shocks.

Finally, I compare the Counterparty Default Component (CDC) used in practice with the
optimal policy. The CDC assumes that each bank’s largest counterparty fails, and so is essentially
a single-bank stress test conducted independently on individual banks with exogenous counterparty
contagion. Compared with the system-level optimal policy, due to a bank’s dependence on the
largest counterparty, the CDC practice is more lenient in interconnected structures and harsher in
sparse structures, as a result of the importance of the neglected counterparty risks. In addition,
without coordination in the system-level, the CDC practice is more discriminatory both in good
times and bad times.

Related Literature

My paper is related to several strands of literature. The first strand is the literature on bank stress
test. Goldstein and Sapra (2014) and Leitner (2014) give overall discussions on the benefits and
costs of regulatory disclosure on banks. Several papers study stress test disclosure as applications
of Bayesian persuasion (Kamenica and Gentzkow (2011)) and information design (Bergemann and
Morris, 2016a, 2019). In Goldstein and Leitner (2018), the optimal disclosure reports some bad
banks to prevent market breakdown, and pools as many bad banks with good banks for cross-state
risk sharing. Faria-e Castro et al. (2016) argue that fiscal capacity affects the optimal disclosure
policy because of the costly backstops that ensue. Williams (2017) examines the effects of disclosure
on a bank’s ex ante asset choice. Leitner and Williams (2017) discuss whether to disclose stress
test models to banks as a tradeoff between bank’s gaming under model disclosure and socially
undesirable investments under model secrecy. Orlov et al. (2018) consider the design of macro-
prudential stress tests with capital requirements on banks to avoid future default. A dynamic
disclosure which forces weak banks to raise capital first leads to efficient recapitalization of stronger
banks. Inostroza and Pavan (2018) study the information design with multiple receivers in the
global games framework of regime change.8 The optimal policy removes strategic uncertainty,
whereas the structural uncertainty of disagreement on fundamentals persists. Inostroza (2019)
incorporates rollover risks, and the optimal policy first discloses the banks with good assets, and

8 Goldstein and Huang (2016) also consider a global game model of regime change.
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additionally test the banks with bad assets on liquidity positions with contingent recapitalization
requirements. All these papers examine single bank stress test where banks are stand-alone. To
the best of our best knowledge, this is the first stress test paper to account for interbank contagion.

My paper is also related to the more general literature of information disclosure on financial in-
stitutions. The classic concern about perfect disclosure is the Hirshleifer effect (Hirshleifer (1971))
that reduces risk sharing opportunities. Dang et al. (2017) explain why banks should be opaque,
which is consistent with our implication of coordinating regulatory disclosures across banks. Bou-
vard et al. (2015) study how regulatory disclosure affects the possibility of bank runs. Other related
contributions include Bouvard et al. (2015), Shapiro and Skeie (2015).

My paper is an application of Bayesian persuasion with multiple receivers, and adopts the
framework of information design. This literature traces to Myerson (1986) who argues that the
designer can restrict to action recommendations to the agents, in a general class of multi-stage
games of incomplete information. Kamenica and Gentzkow (2011) study the optimal persuasion
between a sender and a single receiver. Other contributions on the single-sender, single receiver
persuasion include Brocas and Carrillo (2007), Rayo and Segal (2010), Gentzkow and Kamenica
(2014). Dworczak and Martini (2019) present a price-theoretic approach to Bayesian persuasion,
and characterize the conditions for monotone partitional signaling, when payoffs depend only on
the mean of posterior. Ely et al. (2015), Ely (2017), Xandri (2016) and Doval and Ely (2016) study
persuasions in dynamic settings, and Gentzkow and Kamenica (2016) allow for multiple senders.
Bergemann and Morris (2016a), Bergemann and Morris (2016b) and Bergemann and Morris (2019)
present the information design framework with multiple receivers that unifies communication in
games and Bayesian persuasion. I build on the notion of Bayes-correlated equilibrium (BCE)
in Bergemann and Morris (2016a), Bergemann and Morris (2016b), who argue that the set of
Bayes-Nash equlibria that can arise correspond to the BCEs that are obedient—the agents take
the recommended actions under the resulting posteriors. Taneva (2019), Mathevet et al. (2020),
Alonso and Camara (2016a), Alonso and Camara (2016b), Bergemann et al. (2015) and Bardhi and
Guo (2018) also study the information design with multiple receivers. Galperti and Perego (2018)
formalize the dual problem of the Bergemann and Morris (2016a) information design framework.

The micro-foundation of the payoffs in this paper relates to the financial network literature.9

In the seminal work of Allen and Gale (2000), interbank lending networks allow banks in differ-
ent regions to share liquidity risk (a la Diamond and Dybvig (1983)), and a complete network
provides the most efficient risk sharing. Eisenberg and Noe (2001) introduce a basic framework
to study financial contagion in exogenous networks determined by interbank liabilities, and show
that the set of fixed points of interbank repayments exists and is generically unique. Acemoglu
et al. (2015) study the extent of financial contagion under different network structures. We intro-
duce uncertainty, and study the information design that influences the distribution of interbank
payment equilibrium across contingent states so as to maximize expected system stability. Other

9For surveys of the financial network literature, see Allen and Babus (2009), Glasserman and Young (2016) and
Summer (2013).
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contributions on financial contagion and system stability in exogenous network structures include
Dasgupta (2004), Caballero and Simsek (2013), Elliott et al. (2014), Glasserman and Young (2015)
and Gârleanu et al. (2015). Recent work on network interventions include Alvarez and Barlevy
(2015), Galeotti et al. (2017), Kanik (2018), Bernard et al. (2017), Erol (2018) and Bernard et al.
(2019). The closest to our paper is Alvarez and Barlevy (2015), who discuss whether mandatory
disclosure can improve welfare as opposed to voluntary disclosures by banks who have strategic
substitutability or complementarity in equity levels due to contagion. Other papers that study
the role of network structures in strategic behaviors include Ballester et al. (2006), Galeotti et al.
(2010), Bramoullé et al. (2014), Choi et al. (2017), Babus and Kondor (2018). Babus and Kondor
(2018) micro-found a Kyle (1989) model in connected intermediaries and analyze how decentral-
ization affect information diffusion. There is also a growing literature that considers endogenous
interbank linkages: Goyal and Vega-Redondo (2005), Farboodi (2017), Erol and Ordoñez (2017),
Wang (2016) and others. Galperti and Perego (2019) and Egorov and Sonin (2020) study persua-
sion on social networks. Galperti and Perego (2019) assume that the designer can communicate
with only a limited number of agents, who then share the information with neighbors. In Egorov
and Sonin (2020), agents can either directly buy information from the sender, or rely on social
network with diminishing communication.

The rest of the paper is organized as follows. Model setting is presented in Section 2. Section
3 solves the problem and provides general properties of the optimal policy. Section 4.1 discusses
symmetric networks and the effect of connectivity. Section 4.2 discusses asymmetric networks.
Section 5 concludes.

2 The Model

After presenting the model, this section provides some preliminary analysis after formulating the
regulator’s problem in the approach of Bergemann and Morris (2016a).

2.1 Model Setup

The economy lasts for three dates t = 0, 1, 2, and is populated by three types of risk-neutral agents:
banks, a regulator and investors. At t = 0 the regulator commits to a disclosure policy before
the state is realized. At t = 1, the state realizes, and a public signal is released according to
the disclosure policy. The signal influences a bank’s refinancing opportunity which may help with
clearing debts later at t = 2. The key difference from single-bank stress test is that disclosure is
informative about interbank payments. I provide a notation table for all variables in Appendix A.

Banks and Financial Network I introduce uncertainty and information design to the financial
network model of Eisenberg and Noe (2001) and Acemoglu et al. (2015), who focus on the payment
equilibrium at contingent states. Bank balance sheet is exogenously given at t = 0, and the positions
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Bank i’s Balance Sheet (Book Value)

Assets: Liabilities:

Loan project Ãi
Interbank claims yini ≡

∑
j 6=i yij

Senior Liabilities vi
Interbank debts youti ≡

∑
j 6=i yji

Equity

Figure 1: Bank Balance Sheet

remain unchanged except for possible refinancing at t = 1. A typical bank i’s balance sheet is as
follows,

On the asset side, each bank has a risky loan project that at t = 1 delivers binary payoff
g : Ãi = Ai > 0 or b : Ãi = 0, where g and b are labels about the bank’s project shock. Ãi realizes
independently across banks, with common prior P

(
Ãi = Ai

)
= pi ∈

[
1
2 , 1
]
. The state of nature

θ ∈ Θ is the collection of project realizations:

θ ≡ Ã1 × Ã2 × · · · × Ãn ∈ Θ. (1)

For the network with n banks, there are 2n possible states. Bank i also has interbank claims of
yini ≡

∑
j 6=i yij to collect at t = 2, where yij is the face value that borrower bank j owes to lender

bank i (thus incoming for bank i). Throughout this paper, I refer to “asset” as the collection of
project and interbank claims. This differs from the studies of single-bank stress test, where typically
“asset” means the loan project alone.

On the liability side, each bank i has senior liabilities of face value vi, and junior interbank
liabilities of yini ≡

∑
j 6=i yji; both take the form of standard debt contracts.10 The residual value is

bank equity. All liability obligations must be cleared at t = 2. Senior liabilities must be paid fully
before any payments to interbank liabilities, and interbank liabilities are pari passu across creditor
banks.

The collection of interbank liabilities {yij} corresponds to the network structure. As a bank’s
outgoing payments depend on the payments that it receives from the other banks, interbank pay-
ments are a set of fixed points which I will formally characterize later in Subsection 2.2.

A bank i is solvent if it repays all liabilities vi + youti in full at t = 2, and otherwise it defaults.
Let xij ∈ [0, yij ] be the actual repayments that bank i receives from bank j at t = 2. In a model

10The interbank liabilities include both on-balance-sheet interbank lending and off-balance-sheet derivative expo-
sures, and hence are a significant proportion for the large banks who are subject to stress tests.
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without information design, a bank is solvent if and only if

Ãi +
∑
j 6=i

xij ≥ vi + youti .

Information Design and Refinance Desicions At t = 0, the regulator commits to an in-
formation structure

{
Ŝ,π

}
which consists of the signal space Ŝ and distribution of signals π. A

typical signal s = s1 × · · · × sn is an n-element vector that reports on all banks. The signal space
Ŝ ≡ Ŝ1 × · · · × Ŝn is the collection of available signals, where Ŝi is the set of available signals for
bank i and is finite. Distribution of signals π : Θ→4Ŝ specifies the conditional probability of any
signal s ∈ Ŝ at any contingent state θ ∈ Θ. Thus π is a |Ŝ| × |Θ| matrix, with a typical element

π (s |θ ) ≡ P (s |θ ) ∈ [0, 1] ,

and
∑
s∈Ŝ π (s |θ ) = 1 for all θ. The information structure summarizes stress test rules in terms of

the informativeness about the underlying bank conditions. For example, the most stringent test
rule reports the true state exactly, while the most lenient test rule is uninformative and babbles
the same signal.

The disclosure policy affects the default or solvency outcomes via banks’ interim refinancing
opportunities at t = 1. At the beginning of t = 1, banks’ risky projects

{
Ãi
}

(state θ) realize,
which nobody observes.11 Given θ, a public signal s is released according to pre-specified conditional
distribution π. Then each bank i chooses an action ai from a binary set. Bank i could “raises
funds”, or ai = 1, by pledging its total assets—project with random payoff Ãi and repayments from
borrower banks

∑
j 6=i xij—to outside investors,12 and use the newly raised cash to repay liabilities

at t = 2; in this case, outside investors’ claim becomes the most senior, and at t = 2 they seize bank
i’s incoming cash flows from its total assets.13 Or, bank i could also “wait” till t = 2, or ai = 0,
and clear debts with project payoff Ãi and whatever other banks repay

∑
j 6=i xij .

Let mi be the amount of cash that could be raised from risk neutral investors at t = 1 against
bank i’s total assets. As a standard assumption in asset market with frictions, these investors
are specialized and hence earn some rent.(e.g., DeMarzo and Duffie, 1999; He and Krishnamurthy,
2013) I assume that investors apply an exogenous discount factor δ ∈ (0, 1] on any t = 2 cash flows.
Throughout the paper, I refer to δ as capturing outside liquidity premium. Given signal realization
s ≡ s1×· · ·×sn and equilibrium bank actions a ≡ a1×· · ·×an, investors value the bank’s incoming

11Under the parameter assumptions that will be introduced in Subsection 2.4, my analysis is robust if Ãi is observed
by bank i itself, because counterparty uncertainty makes it unfavorable to signal via refinancing choices. In Goldstein
and Leitner (2018), when the bank’s reservation value on asset is private information, selling assets has signaling
effects. As an application of Bergemann and Morris (2016a)’s framework, my model is a special case where the
obedience constraints are degenerate in agent types.

12For simplicity I assume that banks, if they decide to raise funds, pledge the entire portfolio of assets to outside
investors. In the market equilibrium under the optimal information design, it is indeed in the interest of banks to do
so, as opposed to pledging a proportion of total assets. See discussion in footnote 20.

13This could be interpreted as derivative contracts that create super-seniority for the investors, or directly selling
all the assets as in Goldstein and Leitner (2018).
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cash flows at the Bayes’ posterior. Hence, the bank can raise the following amount of cash when
refinancing:

mi (s, a) ≡ E

δ
Ãi +

∑
j 6=i

xij

∣∣∣∣∣∣ s, a
 . (2)

To summarize, essentially, before meeting its obligations at t = 2, a bank has the option at
t = 1 to exchange its risky asset for an mi amount of riskless cash, whose value is determined by
disclosure and bank actions.14

Let ei (s, a, θ) be bank i’s cash flows at t = 2,

ei (s, a, θ) ≡ aimi︸ ︷︷ ︸
refinance

+ (1− ai)

Ãi (θ) +
∑
j 6=i

xij


︸ ︷︷ ︸

wait

. (3)

I assume that the bank is subjective to an exogenous default punishment λi > 0 if it defaults on
any liabilities. Bank i’s utility at t = 2 is

ui (s, a, θ) =
[
ei (s, a, θ)− vi − youti

]+
︸ ︷︷ ︸

residual cash flow

− λi · 1{ei<vi+youti }︸ ︷︷ ︸
punishment if default

. (4)

I also assume that the default penalty λi is sufficiently large (relative to the residual cash flows),
so that a bank’s objective is to minimize the chance of default. This gives rise to a simple strategy
on the bank’s refinancing decision, which allows me to focus on the interbank spillovers in the
information design problem. The bank will seize the opportunity to refinance whenever the interim
market valuation of its total assets mi is enough to repay its liabilities, and hence ensures no default
at t = 2. This is to say,

ai =

1 (raise funds), if mi ≥ vi + youti ,

0 (wait), if mi < vi + youti .
(5)

As it will be clear when I characterize interbank payments in Subsection 2.2, a bank that waits
does not necessarily default. Despite a low interim market value, its underlying incoming cash flows
may turn out to be sufficient.

Therefore, the financial market allows for risk sharing at a pooling price, a role similar to that in
Goldstein and Leitner (2018) where risk sharing incentives result from ex post idiosyncratic project
shocks. The major difference here is the spillover effects of full payments to counterparties. In
contrast, in Orlov et al. (2018), banks sell projects in the financial market to build up cash buffers
against future loss as required by the regulator.

Timeline The model timeline is summarized as follows:
14I do not allow netting of interbank liabilities on the part of investors. See Donaldson and Piacentino (2017) for

why banks do not net gross liabilities.
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t = 0 t = 1 t = 2

Regulator commits to
information structure
{S,π}

State θ
(project payoffs)
realizes

Public signal s
is released

Banks make
refinancing
decisions a

Liabilities
are due

Figure 2: Model Timeline

2.2 Formulating the Information Design Problem

I argue that because a typical bank’s action ai is binary, without loss of generality, I can use the
following signal space S where the signal for each individual bank si is binary—h or l,

S ≡ {s = s1 × · · · × sn |si ∈ {h, l} , ∀i} . (6)

The simplification to binary signal is natural when there is only one agent with binary action. For
the multiple banks in this paper, I also need to verify that possible coordinations among banks are
not excluded from the signal space S. As will be shown in the next paragraph, in the Bergemann
and Morris (2016a) framework that I apply, any coordination among banks could be implemented
by some s ∈ S.

Obedience Constraints I use the Bergemann and Morris (2016a) framework that reformulates
signals as action recommendations and adds obedience constraints which ensure that each bank
does follow the recommended action. Specifically, si = h recommends bank i to “raise funds,” and
si = l recommends to “wait.” Then the obedience constraints of s say, for each bank i, given that
other banks follow the recommendations of s−i, the cash that it could raise against assets is enough
to clear debts if and only if si = h. Put it in a more succinct way, for all i,si = h, s−i : mi ≥ vi + youti ,

si = l, s−i : mi < vi + youti ;
(7)

given (5), the bank i would refinance if and only if si = h. If the prior profitability of banks is low,
an example of violating the obedience constraints is always reporting all banks are h. As obedience
constraints assume bank coordination (other banks follow s−i), this framework focuses on the best
equilibrium from the designer’s perspective. Because I am studying a social planner’s problem, the
assumption is reasonable here. 15

As bank actions a are implied by the signal realization s in the Bergemann and Morris (2016a)
framework, the notation a could be discarded hereafter. In addition, as banks that choose to

15Bergemann and Morris (2016a) focuses on the Bayes Nash Equilibrium that is “obedient.” In general information
design problem with multiple receivers, equilibrium multiplicity arises from agents’ action choices.
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refinance must be solvent ex post, henceforth I interchangeably use “reported as h”, “passing”,
“allow refinancing” and “allow risk sharing across states” to refer to some bank i with si = h.

Interbank Payments At t = 2, the state is revealed, and liabilities are due. Recall that xij ∈
[0, yij ] is the actual payment from bank j to bank i. I follow Eisenberg and Noe (2001) to determine
interbank payments {xij}, taking into account banks’ refinancing choices at t = 1. Recall in (3)
that ei (s, a, θ) is bank i’s cash flows at t = 2 as a function of refinancing choices a, and then

xij (s, θ) =
{

min
[
yij ,

yij
youtj

(ei (s, a, θ)− vj)
]}+

.

As shown in the “min” operator, bank j repays bank i up to the face value yij . If bank j cannot make
full payments and defaults, it pays out whatever is left after senior liability payments, ei (s, a, θ)−vj ,
to junior creditors in proportion of the face values owed (pari passu interbank liabilities). The
superscript “plus” sign on the outer bracket says payments are subject to limited liabilities.

Recall that a bank refinances if and only if it could raise enough cash to be solvent (see (5)), and
the obedience constraints (7) guarantee that banks follow the recommendation of signal s. Hence,

xij (s, θ) =


yij , sj = h,{

min
[
yij ,

yij
youtj

(
Ãj (θ) +

∑
k 6=j xjk (s, θ)− vj

)]}+
, sj = l.

(8)

If sj = h, under (7), bank j would have raised enough cash at t = 1, and makes full payment
xij = yij at t = 2. If instead sj = l, it stays put at t = 1. Depending on the realization of the
risky incoming cash flows Ãj (θ) +

∑
k 6=j xjk (s, θ), bank j may be solvent or default. Therefore,

reporting h enables a bank to share risk across states via refinancing, while reporting l leaves the
bank’s payments risky.

As a bank’s outgoing payments depend on the incoming payments from borrower banks, in-
terbank payments {xij (s, θ)} are a set of fixed points such that the above payment rule (8) is
simultaneously satisfied for every interbank liability.

Regulator’s Payoff Let w (s, θ) be the weighted number of banks that survive at t = 2, where
default penalty λi serves as the exogenous weight on bank i; i.e.,

w (s, θ) ≡
∑
i

λi1{∑
j 6=i xji(s,θ)=y

out
i

}, (9)

where
∑
j 6=i xji (s, θ) = youti indicates that bank i is solvent (as it pays junior liabilities in full). The

solvent banks include those reported with h, and some that have high realizations of risky incoming
cash flows but reported with l (see 8).

I show in Lemma 5 in Appendix B.1 that the total welfare at t = 2 is affine in w (s, θ). As a
result, I use w (s, θ) as the contingent payoff to the regulator at t = 2. Then the regulator’s payoff

12



at t = 0 is the expected weighted number of banks that survive, i.e.,

W (π) ≡ E [w (s, θ)] =
∑
θ

P (θ)
∑
s∈S

π (s |θ )w (s, θ) . (10)

In the general analysis, the weights {λi} are given exogenously without any restrictions. How-
ever, weights become important in specific applications, where I make reasonable assumptions on
λi. For example, in Section 4, when studying symmetric networks, I assume equal weights; when
studying asymmetric networks, I weight banks by their sizes.

Regulator’s Problem

Definition 1. Given an information structure {S,π} that satisfies the obedience constraints (7),
the market equilibrium is the collection of refinancing decisions a (s) = a1 (s) × · · · × an (s) and
interbank payments {xij (s, θ)}, such that

1. at t = 1, for any signal s, banks’ refinancing decisions a (s) follow signal recommendations;
and

2. at t = 2, for any (s, θ), interbank payments {xij (s, θ)} satisfy the payment rule (8) for every
interbank liability.

For notational convenience, I introduce Li (s, θ) as bank i’s state-contingent incoming cash flows
at t = 2,

Li (s, θ) ≡ Ãi (θ) +
∑
j 6=i

xij (s, θ) . (11)

I refer to Li (s, θ) as underlying liquidity throughout the paper. Given the market equilibrium
induced by (s, θ), the regulator’s problem P̂ at t = 0 is

(
P̂
)

W ∗ = max
π

∑
θ

P (θ)
∑
s∈S

π (s |θ )
∑
i

λi1{∑
j 6=i xji=y

out
i }

(12)

(Obedience: h ) s.t.
∑
θ

[ P(θ)π (s |θ )∑
θ P(θ)π (s |θ ) · δLi (s, θ)

]
≥ vi + youti , (∀s, ∀i with si = h) (13)

(Obedience: l )
∑
θ

[ P(θ)π (s |θ )∑
θ P(θ)π (s |θ ) · δLi (s, θ)

]
< vi + youti , (∀s, ∀i with si = l) (14)

(Prior Consistency)
∑
s

π (s |θ ) = 1, (∀θ) (15)

(Probability) 0 ≤ π (s |θ ) ≤ 1. (∀θ, s) (16)

At t = 0, the regulator commits to the optimal information structure that maximizes W (π),
subject to the obedience constraints for both si = h and si = l, the prior consistency constraints
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that at each state the conditional probabilities of reporting all possible signals add up to 1, and
the constraints of π (s |θ ) being a probability measure.

The obedience constraints (13) and (14) are derived from (2) and (7). For example, (13) says,
for any bank i reported as si = h under some signal s, when all other banks follow their action
recommendation s−i, the posterior expectation of bank i’s incoming cash flows is enough to repay
liabilities, so bank i would indeed raise funds. Similarly, (14) says that any bank reported with
si = l strictly prefers to “wait.”

In the left hand side of (13) and (14), the discount rate of outside investors δ ≤ 1 says outside
capital is expensive.16 Under (13), riskless cash injection from outside of the network to replace
the risky in-network cash flow of interbank payments increases the expected value of the latter,
which is reminiscent of valuable liquidity injection into the distressed banking system during 2007-
09 financial crisis. As a result, refinancing, which is essentially a risk sharing scheme, may increase
bank value even if δ < 1 in my model. The information design problem explores the optimal way
to share risk (report which banks with favorable signal h) given the network structure {yij} and
the cost of outside liquidity δ.

2.3 Autarky

I introduce the market outcome absent information design as the autarky benchmark. As will be
shown later in Section 3, it is convenient to characterize the incremental payoff from the outcome
at prior as the incentive of influencing beliefs. In the autarky benchmark, bank i’s refinancing
decision ai is determined by other banks’ refinancing decisions a−i, and the investors’ prior about
the project Ãi. Depending on the refinancing choices, interbank payments at contingent states{
x0
ij (a, θ)

}
are defined similarly as in (8), where superscript “0” represents autarky. Let w0 (θ) and

W0 denote respectively the contingent state and ex ante expected number of banks that survive in
autarky:

w0 (θ) ≡
∑
i

λi1{∑
j 6=i x

0
ij(a,θ)=y

out
i

},
W0 ≡ E [w0 (θ)] =

∑
θ

P (θ)w0 (θ) .

Market equilibria in autarky could be implemented by null information structures that always
reports the same signal. In general, the exact signal that is babbled does not matter. In the
Bergemann and Morris (2016a) framework, however, the babbled signal additionally serves to
coordinate bank actions, so null information structures with different signals lead to different market
equilibria. Hence, the set of feasible null information structures corresponds to all the autarky
equilibria, where each signal implements one equilibrium.

16As explained, it can be justified as the premium or rent earned by specialized intermediary investors such as
hedge funds.
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Under the low prior parameter assumption that will be introduced in Subsection 2.4, there is
a unique equilibrium in autarky where no bank refinances. Then autarky could be represented by
a policy that always reports all banks with l; i.e., for all θ ∈ Θ, we have π (sl |θ ) = 1, where sl ≡
(l, · · · , l). Therefore, in this paper, sl could be viewed as some default signal. Any reported signal
s 6= sl involves refinancing for some banks and improves the autarky outcome.

2.4 Preliminary Analysis

Now I show some regularity results on the solution to the information design problem over the
financial network.

Proposition 1. The solution to the regulator’s problem P̂ in (12) exists and is generically unique.

First, Eisenberg and Noe (2001) and Acemoglu et al. (2015) show that the set of interbank
payments exists and is generically unique. The key is that the out-of-network cash flows (loan
projects and senior liabilities) pin down the fixed points of payments.17 I argue that the result
extends to my payment rule (8) that incorporates interim refinancing. Refinancing is similar to
altering the network structure such that a bank that refinanced becomes some “source” node to
provide riskless cash to other banks. Second, in the Bergemann and Morris (2016a)’s framework,
given the interbank payments that may result, the refinancing equilibrium is specified by signal s
and hence also unique. Last, in the information design problem, the regulator essentially chooses
a distribution of market equilibrium {a (s) , {xij(s, θ)}} via influencing beliefs. Generically, the
solution to the linear programming problem is unique. When for example, banks are symmetric,
multiple optimal policies exist and deliver the same payoff. In that case, without loss of generality,
I focus on the symmetric policy.

Lemma 1. The following relaxed problem P without the obedience constraints of si = l (14) has
the same solution as the original problem P̂:

(P) W ∗ = max
π

∑
θ

P (θ)
∑
s∈S

π (s |θ )
∑
i

λi1{∑
j 6=i xji=y

out
i }

(17)

(Obedience: h ) s.t.
∑
θ

[ P(θ)π (s |θ )∑
θ P(θ)π (s |θ ) · δLi (s, θ)

]
≥ vi + youti , (∀s, ∀i with si = h) (18)

(Prior Consistency)
∑
s

π (s |θ ) = 1, (∀θ) (19)

(Probability) 0 ≤ π (s |θ ) ≤ 1. (∀θ, s) (20)

Lemma 1 says that I can instead solve the relaxed problem P. Intuitively, refinancing not only
guarantees the bank’s own survival, but also improves the other banks’ incoming cash flows. Hence,

17I take senior liabilities as an example for illustration. Suppose the network consists of two symmetric banks with
y12 = y21 = y and v1 = v2 = 0. If Ã1 = Ã2 = 0 realizes, then any set of payments with x12 = x21 ∈ [0, y] is an
equilibrium. If instead v1 > 0, then x12 = x21 > 0 cannot be an equilibrium because any payments of x12 received
should be paid to senior debt first. Hence, the out-of-network flows pinns down the unique set of payments.
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the regulator prefers a bank’s refinancing to waiting, and would let a bank refinance whenever
possible. So the optimal solution to the relaxed problem P satisfies the obedience constraints of
si = l (14) in the original problem P̂. Henceforth, whenever I mention obedience constraints, I
refer to those associated with h (13).

Throughout this paper, I impose the following parameter assumptions.

Assumption 1. The network’s total net cash flow is positive in expectation, i.e.,

∑
i

piAi ≥
∑
i

vi.

Assumption 1 says that the financial network as a collection has positive NPV. The inequality
involves only the outside-of-network cash flows

{
Ãi
}

and {vi}, simply because by definition the
aggregate interbank claims and interbank liabilities are balanced,

∑
i y
in
i =

∑
i y
out
i .

Lemma 2. Suppose δ = 1. If for each bank, interbank liabilities and claims are balanced yini = youti ,
and NPV is positive piAi ≥ vi, then the optimal policy π∗ always reports all banks h, i.e., for all
θ ∈ Θ, π∗ (sh |θ ) = 1.

In the class of networks that satisfy the conditions in Lemma 2, when all other banks are
reported with s−i = (h, · · · , h), bank i receives full payments yini and is solvent in expectation.
Hence, it is optimal to report si = h as well. Therefore, the optimal policy implements centralized
clearing on the interbank liabilities, with the participation of decentralized investors.

The illustrative examples in Section 4 satisfy the conditions in Lemma 2. To rule out the
uninteresting centralized clearing result, I assume that the outside liquidity premium is sufficiently
high, as specified in the following assumption.

Assumption 2. For every i ∈ {1, · · · , n},

δ
(
pAi + yini

)
< vi + youti . (21)

Under this condition, banks do not refinance in autarky.

(21) is a sufficient condition for no refinancing in autarky,18 which is satisfied when prior is
low or the outside liquidity premium is high. Focusing on the distress scenario greatly simplifies
the analysis. Under Assumption 2, autarky is implemented by the null information structure that
always reports sl ≡ (l, · · · , l), i.e.,

∀θ ∈ Θ, π (sl |θ ) = 1, where sl ≡ (l, · · · , l) .

Therefore, any reported signal s 6= sl leads to some risk sharing and improves the autarky outcome,
whereas sl could be viewed as a default signal.

18A sufficient and necessary condition should be that there is only one feasible null information structure, with
sl ≡ (l, · · · , l).
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3 General Solution Properties

In this part, I first discuss the spillover effects of disclosure on counterparty banks. Then I introduce
an index that summarizes the value of any particular way of risk sharing, based on which I introduce
some general properties of the optimal disclosure policy.

3.1 Cross-state and Cross-bank Risk Sharing

In this paper’s context, an example of single-bank stress test is a class of restricted policies in which
the regulator designs the disclosure on only one bank i (the signal space for any other bank is a
singleton, say {l}). Another example is the Counterparty Default Component in practice. Disclo-
sure on each bank is separately determined, assuming that only the bank’s largest counterparty
defaults. I evaluate this policy in Section 4.3.

In the single-bank stress test literature, the optimal (restricted) policy features the cross-state
risk sharing: the passing signal h is not fully informative, but instead “pools” good states—where
the bank is solvent—with bad states, to the extent that h means being solvent on average. As
explained in Section 2.1, the “pooling” is via refinancing, i.e., exchanging the risky asset payoffs
that are contingent on the underlying states for riskless cash. In contrast, reporting l induces
waiting and hence does not involve any cross-state borrowing.

Contingent on a bad state where bank i would otherwise default in autarky, if si = h realizes,
the bank raises enough cash to make full payments, which improves the system solvency. However,
investors discount their beliefs about si = h, knowing that it may be reported at this bad state.
Goldstein and Leitner (2018) summarize the efficiency of reporting h at each state by a gain-
over-cost ratio. The optimal policy reports h at all states with ratios above a threshold that is
determined by the prior consistency condition.19

Missing in single-bank stress tests is that disclosure about one bank is informative about the
counterparty risks faced by other banks, which further affects the disclosure policy about them.
Novel in this paper, I study the disclosure policy on the system as a whole. This leads to a cross-
bank risk sharing effect that is new to the literature. Specifically, when the public signal reports h
on multiple banks, these banks refinance and deliver to each other as counterparties. Their asset
qualities (project and interbank claims) improve in a collective way, as compared with the case
where some of these banks are reported with l and make risky counterparty payments.

On one hand, the regulator would like to pass as many banks at the same time as possible to
minimize counterparty risk. On the other hand, there is cost to report the same signal si = h

across banks whose cash flows are not completely aligned (due to independent project returns), as
the regulator has to convince investors that the weakest bank in the group is on average solvent.
In the Subsection 3.3, I introduce an index that summarizes the efficiency of both cross-state and
cross-bank risk sharing.

19For more general persuation problems where only the posterior mean matters, Dworczak and Martini (2019)
characterize the conditions for monotone partitional signaling.

17



3.2 Dual Problem and Binding Obedience Constraints

The regulator’s relaxed problem P in (17) is linear programming with finite vertices. One can
always calculate and compare the value at each vertex. This brute-force search method has two
apparent drawbacks. First, for relatively large n, the dimensionality could be prohibitively high.
Second, it is difficult to draw economic implications or conduct comparative statics, because I only
know which constraints are binding when the optimal policy is found.

Instead, I introduce an index to characterize the efficiency for any particular way of risk sharing.
The index summarizes the tradeoffs of cross-state and cross bank risk sharing, and implies some
general properties of the optimal policy. The difficulty comes from the multiple obedience con-
straints (13) imposed on the banks whomever the signal reports with h, which essentially say that
the posterior asset quality of these banks is above liabilities so that they refinance. Which subset of
these obedience constraints bind depends on both the collection of states where s is reported, and
the distributions of the other signals on these states. As a result, unlike in single-bank stress tests
a la Goldstein and Leitner (2018), here the value of risk sharing under a specific signal is generally
not separable across states but depends on the exact distribution.

To deal with this difficulty, I show that all obedience constraints regarding h, i.e., (13), must
bind for banks that are reported as h with positive probabilities in the optimal policy. This allows
me to calculate the efficiency index directly. As a preparation, I first introduce the dual problem
of P (17) to connect the optimal policy with the shadow values.

Dual Problem For notational convenience, let

Ih (s) ≡ {i ∈ {1, 2, · · · , n} |si = h} (22)

denote the collection of banks that signal s reports with si = h. Let µi (s) denote the multiplier
of the obedience constraint (13) for bank i ∈ Ih(s) under signal s, and q (θ) denote the multiplier
of the prior consistency constraint (15) at state θ. Intuitively, µ reflects the value of risk sharing
across states, and q reflects the value of influencing belief at a particular state. I show in Appendix
B.4 that strong duality holds, and solving P in (17) is equivalent to solving the following dual
problem D:

(D) W ∗ = min
∀s: µs∈RIh(s)

q∈RΘ

∑
θ

P (θ) q (θ) (23)

s.t q (θ) ≥ w (s, θ) +
∑

i∈Ih(s)
µi (s)

(
δLi (s, θ)− vi − youti

)
, (∀θ,∀s) (24)

µi (s) ≥ 0, (∀si = h in ∀s)

where µs and q are the vector-form of multipliers, and the layout of condition (24) follows Galperti
and Perego (2018) for better economic interpretations.

As stated in the dual problem D in (23), the optimal information structure minimizes the
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expected cost of influencing beliefs across states,
∑
θ P (θ) q (θ). According to Condition (24), the

marginal cost at a particular state q (θ), or the shadow value of reporting signals, is no less than the
marginal value of reporting any signal s. Specifically, as shown in the right hand side of (24), the
value of reporting a particular signal s consists of two parts: the resulting system stability w (s, θ),
and the value of cross-state borrowing of banks whoever reported with h,

∑
i∈Ih(s)

µi (s)︸ ︷︷ ︸
price

(
δLi (s, θ)− vi − youti

)
︸ ︷︷ ︸

quantity

.

Intuitively, the shadow value of (13) µi (s) is the price of cross-state borrowing; depending on its
sign, δLi (s, θ)− vi− youti is the contingent state surplus or shortfall compared with total liabilities,
and thus measures the quantity lent or borrowed at θ.

For signals that are reported at θ with positive probability, i.e. π (s |θ ) > 0, the marginal
cost equals marginal value and therefore (24) takes equality; for signals that are not reported,
i.e. π (s |θ ) = 0, their associated values must be smaller than the marginal cost q (θ), so the
inequality in (24) is strict generically. These are summarized by the following complementary-
slackness condition, where under strong duality, the shadow value of (24) is P (θ)π (s |θ ):

P (θ)π (s |θ )︸ ︷︷ ︸
multiplier of (24)

·

q (θ)−

w (s, θ) +
∑

i∈Ih(s)
µi (s)

(
δLi (s, θ)− vi − youti

) = 0.

Therefore, (24) says that the regulator influences belief at state θ using the signal s with the highest
value.

Recall that the autarky case absent information design could be implemented by always report-
ing sl ≡ (l, · · · , l). sl does not involve any cross-state borrowing, and thus the value of reporting
sl at some state is w0 (θ). Then as long as the optimal policy specifies some banks to refinance at
certain state θ, the value at that state exceeds autarky, q (θ) > w0 (θ).

Binding Obedience Constraints Recall in Lemma 1 that it is without loss of generality to
solve the relaxed problem P in (17) without the obedience constraints of l (14), and henceforth the
obedience constraints refer to those of h, i.e., (13).

Proposition 2, which is one of the key results in the paper, shows formally that under Assumption
2 (which guarantees no bank refinances at prior), (13) are binding for all banks that are reported
with si = h. Economically, the binding obedience constraints of hmeans that the regulator exhausts
all resources when designing information to allow for risk sharing.20 This is a non-trivial result as
the signal s may report h on multiple banks: if the obedience constraint for some bank is slack, a
simple replication argument that increases the signal’s probability at bad states might violate the

20This also implies that the equilibrium under the optimal information design policy is robust to the possibility
of partial refinancing by banks, i.e., a bank raises funds against a proportion of its total assets. Under the optimal
policy, banks who refinance under h has no residual cash flow. Hence, in face of large default penalty, these banks
have no incentive to deviate to pledge only a proportion of their assets (which leads to default for sure).
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obedience constraints of other banks that this signal reports as h.

Proposition 2. In the optimal solution π∗ to the problem P in (17), the obedience constraints
(13) must bind for every bank i that s reports with si = h on the support, i.e., the multiplier of
(13) satisfies µi (s) > 0 for all i ∈ Ih (s) generically.

Proposition 2 only depends on banks’ idiosyncratic shocks and low priors (more specifically,
Assumption 2), and hence extends to a very general class of information design problems. Here
is the sketch of the proof (by contradition); for details, see Appendix B.5. For the illustration
purpose here, say there exists only one violation to Proposition 2: µi′ (s) = 0 for some signal s that
reports si′ = h on bank i′. First, I show that s will be reported disproportionately more at states
where bank i has a bad project Ãi′ = 0. Second, this disproportionate reporting of s contradicts
with Assumption 2 of relatively low prior and/or relatively high premium (of outside liquidity),
completing the proof.

While the second claim is more transparent, the first claim, whose formal proof relies on the
dual problem formulated above, is helpful in understanding the model mechanism. To see this, I
show that at any pair of mirror image states that have the same project realizations for all banks
except i′ (same Ã−i′), the value of reporting s is the same. Intuitively, this is because the additional
project shock Ãi′ = 0 at the worse state is absorbed by outside investors and thus has no effect on
the network. In addition, s is preferred at such worse states with Ãi′ = 0, because for other signals
s′, either it is costly for bank i′ to refinance (i.e., µi′ (s′) > 0), or absent refinancing bank i′ defaults
(i.e., s′i′ = l).

3.3 Risk Sharing Strategies

The binding obedience constraints established in Proposition 2 allow me to define the smallest
elements—I call risk sharing strategies—that make up a feasible disclosure policy π. In addition,
they allow me to directly characterize the value of any particular risk sharing strategy by an index,
which sheds light on the properties of the optimal solution.

Let θsg denote a “good” state for signal s 6= sl ≡ (l, · · · , l), where banks whomever are reported
with h—Ih (s) ≡ {i |si = h} have excess net inflows, i.e.,

θsg ∈
{
θ ∈ Θ

∣∣∣∀i ∈ Ih (s) , ∆Li
(
s, θsg

)
≡ δLi

(
s, θsg

)
− vi − youti ≥ 0

}
≡ Θs

g. (25)

Let Θ̃s denote a collection of other states, such that Θ̃s∩Θs
g = ∅ and

∣∣∣Θ̃s
∣∣∣ = |Ih (s)|, i.e., the number

of states
∣∣∣Θ̃s

∣∣∣ is the same as that of banks in Ih (s).

Definition 2. I call the tuple
(
s, Θ̃s; θsg

)
a risk sharing strategy: reporting s at both a “good” state

θsg and some “bad” states Θ̃, under which banks in Ih (s) borrow liquidity from θsg to Θ̃s via interim
refinancing, such that each bank is just solvent at the posterior, i.e., binding obedience constraints
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in Eq. (18). The probability weights over Θ̃s is proportional to some
∣∣∣Θ̃s

∣∣∣× 1 vector21

(
κs,Θ̃

s;θsg
)
|Θ̃s|×1

≡
(
−∆Ls,Θ̃s

)−1

|Ih(s)|×|Θ̃s|︸ ︷︷ ︸
shortage

(
∆Ls,θsg

)
|Ih(s)|×1︸ ︷︷ ︸

excess net inflows

. (26)

I denote each element of κs,Θ̃s;θsg by κ
(
s, θ

(
Θ̃s
)

; θsg
)
.

For example, consider a three-bank complete network where all banks are symmetric and each
borrows equally from the other banks. One risk sharing strategy is (hhh, {bgg, gbg, ggb} ; ggg), in
which hhh is reported both at ggg and across Θ̃ = {bgg, gbg, ggb} with structure κ ∝ (1, 1, 1)> by
symmetry. With respect to this strategy, when observing hhh, investors know that there may be
one bad project equally likely in one of the banks, such that all banks are just solvent at posterior.

The risk sharing strategy ensures the number of bad states
∣∣∣Θ̃s

∣∣∣ to be the same as the number
of banks Ih (s) that refinance (generically), so that I can invert the binding obedience constraints in
Eq. (18). In Equation (26), ∆Ls,θsg is the amount of excess liquidity accumulated when the regulator
increases the probability of s at θsg marginally, and −∆Ls,Θ̃—the shortage from liabilities—is the
marginal amount borrowed when reporting s at Θ̃s. Hence, κs,Θ̃s,θsg is the induced probability
distribution of s across Θ̃s when the regulator increases the probability of s at θsg marginally.

The following Proposition 3 shows that I can focus on the strategies with κs,Θ̃s,θsg ≥ 0 or κs,Θ̃s,θsg ≤
0. Then the probability measure constraints of s on θsg and Θ̃s imply that strategy

(
s, Θ̃s; θsg

)
has

the maximum probability

η
(
s, Θ̃s; θsg

)
≡ max

P
(
θsg

)
,max
θ∈Θ̃s

∣∣∣∣∣∣ P (θ)
κ
(
s, θ; θsg

)
∣∣∣∣∣∣
 .

The next definition characterizes the value of risk sharing strategies.

Definition 3. The value of a risk sharing strategy
(
s, Θ̃s; θsg

)
, denoted by ξ

(
s, Θ̃s; θsg

)
∈ R, is

defined as

ξ
(
s, Θ̃s; θsg

)
≡ η

(
s, Θ̃s; θsg

)
︸ ︷︷ ︸

maximum probability

(
∆ws,Θ̃

)>
︸ ︷︷ ︸

incremental stability

(
−∆Ls,Θ̃

)−1

︸ ︷︷ ︸
shortage

(
∆Ls,θsg

)
︸ ︷︷ ︸

excess net inflows︸ ︷︷ ︸
=κs,Θ̃

s,θsg

, (27)

where ∆Ls,θsg and ∆Ls,Θ̃ are the vector or matrix form of ∆Li (s, θ) for banks in Ih (s) at states
θsg and Θ̃ respectively, and ∆ws,Θ̃ is the vector-form incremental system stability w (s, θ)− w0 (θ)
given signal s across states Θ̃.

21Generally κ is not necessarily non-negative. If for some θ
(
Θ̃s
)
∈ Θ̃s we have κ

(
s, θ
(
Θ̃s
)

; θsg
)
< 0, then banks

Ih (s) accumulate liquidity at θ
(
Θ̃s
)
. If κs,Θ̃

s;θs
g ≤ 0, then there exists some probability weights over Θ̃s with which

Θ̃s as a collection resembles a good state, where banks Ih (s) accumulate liquidity. Proposition 3 shows that the
optimal solution could be decomposed as a weighted sum of strategies with κ ≤ 0 or κ ≥ 0.
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In (27),
(
∆ws,Θ̃

)>
κs,Θ̃

s,θsg measures the strategy’s marginal value. To see this, recall that
κs,Θ̃

s,θsg is the induced probability of refinancing across Θ̃s if the regulator increases the probability
of s at θsg marginally: ∆Ls,θsg—the amount of excess liquidity—is the marginal amount lent, and
−∆Ls,Θ̃—the shortage from liabilities—is the marginal amount borrowed. The other part ∆ws,Θ̃

is the improvement in system stability when banks reported as h (Ih (s)) refinance at Θ̃s. Hence,(
∆ws,Θ̃

)>
κs,Θ̃

s,θsg is the improvement in system stability when the regulator marginally increases

the probability of the risk sharing strategy
(
s, Θ̃s; θsg

)
. When s reports only one bank being h and

all other banks being l,
(
∆ws,Θ̃

)>
κs,Θ̃

s,θsg is the gain-to-cost ratio in Goldstein and Leitner (2018).

Eq. (27) additionally incorporates the strategy’s maximum probability η
(
s, Θ̃s; θsg

)
≤ P

(
θsg

)
.

Therefore, ξ
(
s, Θ̃s; θsg

)
measures a strategy’s maximum payoff. When bank profitability is high

and there is ample liquidity to borrow, η
(
s, Θ̃s; θsg

)
= P(θ)

κ(s,θ̃;θsg) for some θ̃ ∈ Θ̃s, so banks reported

as h could fully refinance at θ̃ by borrowing only a fraction η(s,Θ̃s;θsg)
P(θsg) < 1 of liquidity from the

good state θsg; in this case, ξ is constrained by how much s improves stability. Intuitively, a signal
that reports more banks as h results in higher improvement. In contrast, when bank profitability
is low and cross-state borrowing is constrained, η

(
s, Θ̃s; θsg

)
= P

(
θsg

)
and the strategy exhausts

the liquidity the good state θsg before banks Ih (s) could fully refinance at any state in Θ̃; in this
case, ξ is additionally constrained by the probability of refinancing κ.

These two cases can be illustrated by the following example where Θ̃s =
{
θ̃
}

is a singleton
(therefore both ∆Ls,θsg and ∆Ls,θ̃ are scalars):

ξ
(
s,
{
θ̃
}

; θsg
)

=


∆Ls,θ

s
g

−∆Ls,θ̃
P
(
θsg

) [
w
(
s, θ̃
)
− w0

(
θ̃
)]
, η

(
s,
{
θ̃
}

; θsg
)

= P
(
θsg

)
,

w
(
s, θ̃
)
− w0

(
θ̃
)
, η

(
s,
{
θ̃
}

; θsg
)
< P

(
θsg

)
.

(28)

Intuitively, when cross-state risk sharing is unconstrained, a signal that passes more banks is pre-
ferred due to large improvement in outcome; otherwise, such a signal may be unfavorable if the
underlying liquidities across passing banks

(
−∆Ls,Θ̃

)
are misaligned, so the worse banks that are

reported as h restrict the refinancing probability.
The next proposition shows that the optimal policy is a weighted sum of risk sharing strategies,

so one can view the risk sharing strategy
(
s, Θ̃s; θsg

)
to be the smallest building block of the optimal

solution.

Proposition 3. Let R ≡
{(
s, Θ̃s; θsg

) ∣∣∣κs,Θ̃s,θsg ≥ 0 or κs,Θ̃s,θsg ≤ 0
}

where κs,Θ̃s,θsg is defined in
(26).
1) The optimal policy π∗ is the solution to the following problem that finds weights

{
η
(
s, Θ̃s; θsg

)}
for strategies

(
s, Θ̃s; θsg

)
∈ R:
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max
η

∑
(s,Θ̃s;θsg)∈R

η
(
s, Θ̃s; θsg

)
η
(
s, Θ̃s; θsg

)ξ (s, Θ̃s; θsg
)

s.t. (PC1)∀θ :
∑

s 6=sl:θ∈Θsg

∑
Θ̃s

η
(
s, Θ̃s; θsg

)
+

∑
s 6=sl:θ/∈Θsg

∑
Θ̃s:θ∈Θ̃s

η
(
s, Θ̃s; θsg

)
κ
(
s, θ; θsg

)
≤ P (θ) , (29)

η
(
s, Θ̃s; θsg

)
κ
(
s, Θ̃s; θsg

)
≥ 0; (30)

2) Suppose δ < δ for some δ < 1 such that there is no strategy with κ ≤ 0. In the optimal policy
π∗, the number of states where sl ≡ (l, · · · , l) is not reported ((29) binds) equals the number of
strategies that make up π∗.

The proposition connects the index ξ with the optimal policy π∗. Intuitively, as the objective is
linear, the optimal policy in general will “prioritizes” the most valuable risk sharing strategies until
some prior consistency constraint (29) binds. Hence, the number of strategies equals the number
of binding (29).

3.4 Illustrating Examples

While it is difficult to characterize the exact decomposition of π∗ in general,22 in the next subsec-
tions I present a three-bank complete network example to illustrate the connection between the
relative efficiencies of strategies and the properties of the solution structure. Then I the extend
these properties to more general networks.

Example 1. Banks are ex ate identical, and each bank borrows equally from all other banks, i.e.,
Ai = A, vi = v and yji = youti

n−1 = y
n−1 . Suppose that whenever there is a bad project, all banks

default in autarky, i.e., w0 (θ) = 0 for any θ 6= θ ≡ ggg. This also implies that θ is the only
“good” state to lend liquidity. I examine two sets of parameters—interbank exposure y < y, and
the probability of a good project p < p which affects bank profitability.

First, I present the reported signals at each state in the optimal policy π∗ in Figure 3, to show
that π∗is a weighted sum of the risk sharing strategies introduced in Definition 2.

As an illustration of Proposition 3 to decompose the optimal policy into risk sharing strategies,
I elaborate the case of p in the third subfigure of Figure 3 as an example (the decomposition when
p = p is straightforward and involves only one strategy, or symmetric strategies that are equivalent).
With high profitability p, π∗ involves essentially two states where π∗ (lll |θ ) = 0 and constraint (29)
binds, i.e., ggg and the symmetric states {ggb, gbg, bgg}. Consistent with Proposition 3, π∗ is a
weighted sum of two risk sharing strategies (hhh, {ggb, gbg, bgg} ; ggg), (hhh, {gbb, bgb, bbg} ; ggg),
and signal sl = lll which does not involve any risk sharing.

22Generally it is challenging to analytically characterize the solution. Specifically, the value of reporting some signal
depends on the distribution of other signals across the same states. Hence, it is difficult to cleanly summarize the
effects of a positive weight of one risk sharing strategy on the potential payoffs from other strategies. This concern
is similar to that in the knapsack problem.
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Small Exposure, Low Profitability (y, p)

0 1 2 3
States:∑

i
1{Ãi=0}

Signals:
hhl

hlh

lhh

ggb : hhl, lll

gbg : hlh, lll

bgg : lhh, lll lll lll

Large Exposure, Low Profitability (y, p)

0 1 2 3
States:∑

i
1{Ãi=0}

Signals: hhh hhh, lll lll lll

High Profitability p

0 1 2 3
States:∑

i
1{Ãi=0}

Signals: hhh hhh hhh, lll lll

Figure 3: Optimal Policy Structure

Now I illustrate the efficiency of the strategies as summarized by ξ, and show its relation to
π∗. For expositional convenience, in this example I use some θ ∈ Θ̃s to represent Θ̃s. The most
relevant indices are

ξ
(
lhh, bgg; θ

)
= η

(
lhh, bgg; θ

)
︸ ︷︷ ︸

maximum probability

· [δA− v − (1− δ) y]︸ ︷︷ ︸
excess net inflowsLlhh,θ

·w (lhh, bgg)− w0 (bgg)
v + y − δ (2A− v)︸ ︷︷ ︸

shortage−Llhh,bgg

, (31)

ξ
(
hhh, bgg; θ

)
= η

(
hhh, bgg; θ

)
︸ ︷︷ ︸

maximum probability

· [δA− v − (1− δ) y]︸ ︷︷ ︸
excess net inflowsLhhh,θ

·w (hhh, bgg)− w0 (bgg)

v + (1− δ) y − 2δA
3︸ ︷︷ ︸

shortage−Lhhh,bgg

. (32)

Recall that η is determined by the probability constraints on θ and Θ̃. η = P
(
θsg

)
implies that the

liquidity at the good state θ is scarce and exhausts before Θ̃ could be insured fully by borrowing from
θ. Otherwise, η < P

(
θsg

)
implies the cross-state risk sharing via this strategy is not constrained,

as banks could fully refinance at Θ̃ by borrowing a fraction of liquidity at θ. In this example,

ξ
(
s, θ; θ

)
P (θ) =


P(θ)
P(θ)

∆Ls,θ
−∆Ls,θ [w (s, θ)− w0 (θ)] , η

(
lhh, bgg; θ

)
= P

(
θ
)
,

w (s, θ)− w0 (θ) , η
(
lhh, bgg; θ

)
< P

(
θ
)
.

(33)

where I scale by P (θ)−1 to denote the maximum conditional probability of refinancing at bad states.
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Figure 4 plots ξ(s,θ;θ)
P(θ) as a function of the good project probability p. The examples with scarce

Figure 4: Index Comparison

Both panels plot ξ(s,θ;θ)
P(θ) against the good project probability p which affects η. The left panel

illustrates a relatively small interbank exposure y, and the right panel illustrates a relatively large

y. When p is relatively large, Θ̃ is insured fully, and the value of the horizontal line is ξ(s,θ;θ)
P(θ) =

w (s, θ)− w0 (θ).

liquidity p fall on the increasing part of ξ(s,θ;θ)
P(θ) where η = P

(
θ
)
. The regulator prioritizes the

strategy with the highest marginal value, which corresponds to the slopes. In the left panel with
small interbank exposure y, ξ

(
hhh, bgg; θ

)
< ξ

(
lhh, bgg; θ

)
at p, because passing the bank with

project shock together is costly when interbank spillovers, or the counterparty risk that could be
reduced, is small. In contrast, in the right panel with large y, the marginal value of

(
hhh, bgg; θ

)
is higher than

(
lhh, bgg; θ

)
from reducing high counterparty risk. In examples with p, cross-state

risk sharing is not constrainted, so the regulator always prefers passing more banks regardless of
interbank spillover.

3.5 Comparative Statics

In this subsection, I show that the key insights in the illustrating example extend to more general
networks. I focus on the networks that satisfy the following two assumptions.

Assumption 3. For every bank i,
1) zero repayments from borrower banks result in default,

Ai < vi + youti ;
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2) bad project results in senior default,

yini < vi.

The first part says interbank contagion is relevant, as a bank cannot meet liabilities without any
repayments from counterparty banks. The second part is mainly for simplification: a bank with
bad project defaults on senior debts and thus repays zero on junior liabilities, even if it receives full
payments on interbank claims.

Assumption 4. There exist constants r1, rin2 , rout2 > 0 such that for every bank i,

vi = rvAi, yini = riny Ai, youti = routy Ai.

Assumption 4 says that banks share the same leverage ratios. Note that since the total interbank
claims and interbank liabilities are balanced by construction, i.e.,

∑
i y
in
i =

∑
i y
out
i , Assumption

4 implies that every bank has balanced interbank claims and liabilities, i.e., yi ≡ yini = youti and
ry = riny = routy .

A non-discriminatory policy reports the same signal for all banks, i.e., either reports sh ≡
(h, · · · , h) or sl ≡ (l, · · · , l). On the other hand, a discriminatory policy separates only a subset of
banks with h from the rest of banks that are reported with l, given the underlying liquidity levels
at each state. The next proposition shows that rv and ry determine how discriminatory the optimal
policy is.

Proposition 4. For any number of banks k ≤ n, there exists a sequence of thresholds
{
rk
}
and{

rky

}
such that

1). when rv + ry ≤ rk, any s 6= sl that is reported with positive probability ∑θ P (θ)π∗ (s |θ ) > 0
reports si = h on at least k banks;
2). when ry ≥ rky, signals that are reported at θ ≡ (A1, · · · , An) reports si = h on at least k banks.

Proposition 4 extends the key results of the illustrating example to a very general class of
network structures. The first part says, if the payoff of good project is high relative to liabilities
(small rv + ry), cross-state borrowing is less constrained. Then the maximum payoff at bad states
∆w (s, θ) becomes more important, and regulator prefers a less discriminatory signal that reports
h on more banks.

Instead, when liquidity is scarce (large rv + ry) and cross-state borrowing is constrained, the
second part of the proposition provides a sufficient condition for a less discriminatory policy. The
probability of refinancing becomes important, which is negatively related to the underlying liquid-
ity shortage from liabilities

(
−∆Ls,Θ̃

)
. A less discriminatory signal has two effects on

(
−∆Ls,Θ̃

)
.

On the one hand, it reduces the counterparty risk among the banks that refinance, which de-
creases

(
−∆Ls,Θ̃

)
; on the other hand, it allows weaker banks to refinance, which increases shortage(

−∆Ls,Θ̃
)
. When interbank exposure is large (large ry), the first effect dominates and the optimal

policy is less discriminatory.
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Intuitively, under a discriminatory policy, signals report h on the subset of banks who have
better underlying cash flows, and strong complementarity among themselves. However, without
detailed network structures, it is difficult to give prediction on what these banks are. In the
next section, I present three representative network structures to illustrate how the optimal policy
depends on the interbank complementarity shaped by the structure.

Before specific network structures, I present a general observation that simplifies the optimal
policy characterization. Let B (θ) be the number of project shocks at state θ:

B (θ) ≡
∑
i

1{Ãi(θ)=0}. (34)

Conditional on the states with a small B (θ), if the regulator does not identify the banks with
project shocks, the inferred probability of project risk in a typical bank is small. If in addition
there is no counterparty risk, conditional on the states with B (θ) project shocks, a typical bank is
perceived to be solvent if

B (θ) ≤ BNCP ≡ n [δ (A+ y)− v − y]
δA

. (35)

Note that the argument takes into account that conditional on sh, the states with the same number
of project shocks are symmetric.

Lemma 3. There exists some p < 1, such that if p ≥ p, we have π∗ (sh |θ ) = 1 for any states with
1 ≤ B (θ) ≤ BNCP .

At states with only a few project shocks, it is a dominate strategy to report sh, which results
in the maximum payoff ∆w (sh, θ) at these states. One can check that the obedience constraints
for sh are satisfied: first, conditional on sh, there is no counterparty risk as other banks are
insured with outside liquidity under sh; second, conditional on a small number of project shocks
1 ≤ B (θ) ≤ B

NCP which are not identified under sh, the risk of a bad project for an individual
bank is low enough. Actually, conditional on sh, banks have excess net inflows under sh at states
with 1 ≤ B (θ) ≤ BNCP , i.e.,

{
θ : 1 ≤ B (θ) ≤ BNCP

}
⊂ Θsh

g .

In the Appendix, I show that when the shock probability is within
[
p, p

]
, the optimal information

structure π∗ could be simply constructed from the strategy associated of the highest index ξ∗. Under
this simplification, the key tradeoffs of cross-bank risk sharing shaped by the network structures
still remain. Hence, in Section 4, when characterizing the optimal solution, I apply this result for
clean exposition.

4 Network Structure Implications

Now I impose some stylized network structures to study the implications of optimal stress tests and
their mechanisms. In this section, I first present three representative networks to illustrate how
the optimal policy depends on the interbank complementarity. I examine the effects of connectivity
in both symmetric structures that vary in the number of a typical bank’s counterparties (Section
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4.1), and one asymmetric structure where within the same network banks vary in the number of
counterparties (Section 4.2). Last, in Section 4.3, I evaluate the counterparty default component
in practice as compared with the optimal policy.

4.1 Connectivity in Symmetric Networks

This subsection examines the effect of interconnectedness under symmetric networks. Specifically,
I study the complete network with the highest connectivity and the ring network with the lowest
connectivity. Naturally, in this subsection I set equal bank weights λi = 1.

I connect with the results in Acemoglu et al. (2015) which feature these two structures at
contingent states absent refinancing and thus correspond to my autarky case. They show that when
the interbank exposure is sufficiently large, the ring network is always the least stable structure,
while the complete network is “robust-yet-fragile”—the most stable structure under small shocks
but the least stable structure under large shocks; in later discussions I call this “phase transition.”

First I show that the optimal disclosure policies echo these key insights in Acemoglu et al.
(2015). In the complete network, phase transition at the critical states creates incentive (captured
by ∆w) for the regulator to allow refinancing at these critical states. In the ring network, the
policy minimizes the belief discount on passing banks (mainly captured by shortage −∆L). Next
I highlight that although the complete network is more stable in autarky as in Acemoglu et al.
(2015), under information design, the ring network may be more stable due to the flexibility to
quarantine shocks and let senior creditors absorb the losses.

Complete Network Similar to the illustrating example in subsection 3.4, a symmetric complete
network corresponds to

Ai = A, vi = v, yini = youti = y, for all i; yij = y

n− 1 for all i 6= j.

As any project shock is equally transmitted to other banks, the state-contingent liquidity levels
Li (s, θ) are relatively aligned across banks, despite their independent projects.

Under symmetry, I summarize the states by their number of negative project shocks

B (θ) ≡
∑
i

1{Ãi(θ)=0},

which serves as the uni-dimensional state. Let θB ∈ {θ |B (θ) = B } denote a typical state with B
project shocks. In the complete network, there is a threshold number of project shocks BC , such
that when B (θ) ≤BC , only banks with bad projects default in the autarky case absent information
design; while when B (θ) >BC , all banks default in autarky due to contagion. Following Acemoglu
et al. (2015), one can show that

B
C = (n− 1) (A− v)

y
.

Without loss of generality, I focus on symmetric information structures. Loosely speaking,
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symmetry requires that the conditional probability π (s |θ ) is the same when the regulator passes
the same number of banks with good projects and the same number of banks with bad projects, at
states with the same number of project shocks. Hence, I evaluate a typical passing bank’s excess
cash flows ∆L using its average value across the symmetric states. Note that letting a bank with
Ãi = A refinance both improves system stability w and reduces a passing bank’s average shortage
across symmetric states −∆L. So in the optimal policy, any signal s 6= sl reports h on all banks
with good projects. I introduce

H ≡
∑
i

1{si=h}

as the number of banks that signal s reports as h. Therefore, a typical risk sharing strategy could
be represented as

(
s (H) , θB; θsg

)
, in which H banks refinance by borrowing from θsg to a subset of

states with B shocks. In this risk sharing strategy, n−B banks that are passed have good projects
and H − (n−B) banks are with bad projects.23

I calculate a typical passing bank’s average excess cash flows across symmetric states ∆Ls(H),θB

to be

∆Ls(H),θB = δLi (s (H) , θB)− v − y = δ

(
n−B
H

A+ H − 1
n− 1 y

)
− v − y.

Here, Li (s (H) , θB) denote a representative passing bank’s average liquidity across the symmetric
signal-state pairs that satisfy

(
s (H) , θB

)
. In expectation, at n−B

H fraction of states the bank has
a good project that generates additional cash flows A. Furthermore, the bank receives H − 1
counterparties’ full payments of y

n−1 , hence the second term H−1
n−1 y. One can also see that the

underlying cash flows are relatively aligned across banks: the contagion from n−H default banks
is equally born by the rest of banks, causing a shortage of (n−H) · y

n−1 to each. Recall that
θ ≡ (A, · · · , A) denote the state where all banks have good projects. According to Definition 3, the
efficiency of the strategy

(
s (H) , θB; θ

)
is

ξ
(
s (H) , θB; θ

)
= η

(
s (H) , θB; θ

)
·
[
H − (n−B) 1

B≤BC
]

︸ ︷︷ ︸
∆w(s(H),θB)

·

δ (A+ y)− v − y︸ ︷︷ ︸
∆Lθ

v + y − δ
(
H − 1
n− 1 y + n−B

H
A

)
︸ ︷︷ ︸

−∆Ls(H),θB

, (36)

where the improvement at a bad state from autarky, ∆w
(
s (H) , θB

)
, depends on BC—the thresh-

old number of shocks above which the complete network becomes fragile.
In (36), the second term ∆w

(
s (H) , θB

)
reflects the robust-yet-fragile nature of the complete

network: the gain of insuring one project shock is much larger if it is the critical shock that causes
all banks to default. If the regulator allows one additional bank with bad project to refinance

23In an example with three banks,
(
s (2) , θ2; θ

)
says that at the states with two shocks that borrow liquidity, the

signal passes the bank with good project and one of the bank with bad project; hence it summarizes the symmetric
strategies (hhl, {bgb, gbb} ; ggg), (hlh, {bbg, gbb} ; ggg) and (lhh, {bgb, bbg} ; ggg) under the original definition.
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(increasing H), there are two effects on the shortage from liabilities −∆Ls(H),θB : the counterparty
risk is reduced but there is a higher chance that a passing bank has bad project. Hence, the policy
will be less discriminatory if y is relatively large or A is relatively small, an insight to be confirmed
in the next proposition.

To simplify the exposition of the optimal policy π∗, I focus on certain parametrization as
detailed in Proposition5. Especially, I require the outside liquidity to be sufficiently expensive, so
that the optimal policy prioritizes the risk sharing strategies with large ξ. The following proposition
highlights the key features in the optimal policy of the complete network.

Proposition 5. Suppose δ ≤ δc, p ≤ p < 1 and y
A ≥ r

c
y for some constants δc < 1 and 0 < p < 1.

1). The optimal policy π∗ is nondiscriminatory and only reports sh = (h, · · · , h) and sl = (l, · · · , l);
2). if the critical number of project shocks that causes system failure is relatively large BC

> B
NCP ,

refinancing is prioritized at these critical states; i.e., the reported signals at each states are:

{s |π∗ (s |θ ) > 0} =



sh, 1 ≤ B (θ) ≤ bBNCP c,

sl, bBNCP c+ 1 ≤ B (θ) < bBCc+ 1,

sh, sl B (θ) = bBCc+ 1,

sl B (θ) > bBCc+ 1;

otherwise, when BC ≤ BNCP , refinancing is prioritized at states with fewer project shocks:

{s |π∗ (s |θ ) > 0} =


sh, 1 ≤ B (θ) ≤ bBNCP c,

sh, sl B (θ) = bBNCP c+ 1,

sl B (θ) > bBNCP c+ 1.

When y
A ≥ r

c
y, counterparty risk becomes more important and idiosyncratic project risk becomes

less important. Hence, the optimal policy is nondiscriminatory. The distribution of sh across
states is consistent with Lemma 3, which shows that at states with only a few project shocks
1 ≤ B (θ) ≤ B

NCP , it is optimal to report sh so that all banks refinance thanks no counterparty
risk and a low potential project risk.

Reporting sh at states with more shocks, however, reduces the posterior mean about passing
banks. The regulator weighs the improvement in system stability ∆w from refinacing, against the
bank liquidity shortage −∆L which captures how sensititive investors reduce their beliefs about
passing. As shown in the efficiency index (36), the variation in a typical passing bank’s shortage
−∆L is small under different risk sharing strategies, because it burdens only a small fraction of
the risk. In contrast, whether banks refinance at the critical states with bBCc+ 1 shocks makes a
significant difference in the improvement of system stability ∆w. Therefore, when B

C
> B

NCP ,
the optimal policy prioritizes risk sharing at the critical states.

As a result, banks are solvent when the number of shocks is smaller than the phase transition
threshold BC , but at these critical states the system may still survive due to cross-state risk sharing
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under the optimal information design. In general, when outside liquidity is less expensive, banks
could refinance at states with even more shocks. Therefore, under the optimal disclosure policy,
the complete network is still “robust-yet-fragile”, but the threshold at which stability changes is
higher.

Ring Network In a symmetric ring network, banks are symmetric, and bank i+ 1 (1) is the sole
lender bank of i (n):24

Ai = A, vi = v, yini = youti = y, for all i; yi+1,i = y1n = y for all i ≥ 1.

In contrast to the complete network where any shock is shared equally among all other banks, here
the shock is transmitted one-to-one from the borrower bank to the lender bank. Hence, banks of
different distance to the nearest project shock suffers from different levels of counterparty contagion.
I introduce d ∈ {0, 1, 2, · · · , n− 1} to denote this distance.

For a given state θ, suppose a typical bank i is d̂ ≥ 1 distance from the nearest borrower bank
with bad project; i.e., the

(
i− d̂

)
th

bank suffers a negative project shock but not for banks in

between, so that Ãi−d̂ (θ) = 0 and Ãj (θ) = A for j ∈
{
i− d̂+ 1, · · · , i− 1

}
. Recall the second

part of Assumption 3 that banks with bad projects make zero counterparty payments. Then bank
i’s net cash flows at a contingent state is

∆Li (s, θ) = δ


Ãi (θ) +

i−1∏
j=i−d̂

1sj=l ·min {(d− 2) (A− v) , y}

︸ ︷︷ ︸
no bank b/w i− d̂ and i− 1 refinance

+

1−
i−1∏
j=i−d̂

1sj=l

 y
︸ ︷︷ ︸

some bank b/w i-d̂ and i− 1 refinances


−v−y.

(37)
If there is no refinancing for banks between the bank with the source of shock (i − d̂) and bank
i’s neighboring borrower bank i − 1, the counterparty risk faced by bank i that starts from bank
i− d̂’s project shock diminishes as the borrower banks between i− d̂+ 1 and i−1 each accumulates
A−v cash flows in the payment to the next lender bank, until some bank is solvent; this scenario is
characterized by the indicator function

∏i−1
j=i−d̂ 1sj=l that all of these borrower banks are reported

with l. On the other hand, if some bank j ∈
{
i− d̂, · · · , i− 1

}
is reported with h and refinances,

bank i’s counterparty risk is eliminated.
We learn two things from Eq. (37). First, compared to the complete network studied above,

in the ring network liquidity is much less aligned across banks because distance d causes a greater
heterogeneity in counterparty risks. Second, more importantly, information design significantly
changes the effective distance to shock as shown in the indicator function

(
1−

∏i−1
j=i−d̂ 1sj=l

)
. As

24In the rest of this subsection, because banks could be renumbered under symmetry, I assume that any bank
indicator is between 1 and n.
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long as one of i’s borrowing banks refinances, the banks in the downstream will be free from
contagion.

The intuition illustrated in the individual bank’s excess liquidity in (37) carries over to the
liquidity shortage matrix −∆L when multiple banks refinance at the same time. In contrast to the
complete network where the shortage does not change much across signals and states (each bank
burdens only a small fraction of counterparty risks), here the effective distance to shocks—and
hence counterparty risks—crucially depends on the signal and state.

I highlight that the optimal policy has a structure that increases the effective distance to shock of
passing banks whenever possible, thereby reducing the shortage−∆L and increasing the probability
of cross-state risk sharing. As will be shown in the following proposition, first, the regulator uses a
distance-based signal that reports si = h on banks no less than a threshold distance d away from
an impaired bank. Hence, except for the first passing banks with the exact distance d, passing
banks in the downstream are not subject to counterparty risks, whose effective distance could be
normalized as n. Second, the signal is reported at a state where project shocks are on adjacent
banks, which maximizes the effective distance of the first passing bank all else equal.25

For simplicity, I assume interbank exposure to be sufficiently large to rule out the case of “safe”
distance, in which a bank is free of counterparty risk in autarky if its distance from the nearest
impaired borrower bank exceeds some “safe” distance:

y >
(
n−BNCP − 1

)
(A− v) . (38)

Given Lemma 3, for states with 1 ≤ B (θ) ≤ BNCP , it is a dominant strategy to report sh. Hence,
(38) says, at the relevant states with more than BNCP project shocks, in the ring network all banks
default in autarky.

Without loss of generality, I focus on the symmetric equilibrium and normalize the numbering
of banks for expositional convenience. Let θBConn denote the state with B project shocks on adjacent
banks 1, 2, · · · , B, i.e.,

θBConn : Ãi (θ) =

0, 1 ≤ i ≤ B,

A, B + 1 ≤ i ≤ n.

I call s (d,B) distance-based signals for d ∈ {0, 1, · · · , n−B}, which satisfy

s (d,B) : si (d,B) =

h, if B + d ≤ i ≤ n,

l, otherwise.

Hence, when s (d,B) is reported at θBConn, it is a distance-based signal that passes banks that are
at least d banks away from the nearest bank with asset impairment, which is bank B. Figure 5
illustrates an example with n = 6, B = 2, d = 2.

25Conditional on signals that pass the same number of banks at states with the same number of project shocks.
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B = 2, d = 2

1
l

2
l

3
l

4

h

5
h

6
h

Figure 5: Distance-based Signal with Adjacent Shocks
The figure illustrates a ring network of six banks, where the arrow illustrates the direction of interbank
payments. The colors illustrates a contingent state where the red color represents the two project shocks on
adjacent banks 1 and 2. The pink color of different shades correspond to the fact that the other four banks
default in aurtarky under Condition (38) but banks have higher underlying inflows as they become far away
from shocks. The signal then corresponds to reporting only on banks that are at least two distance from the
nearest shock at bank 2, i.e., bank 4, 5, and 6. Note the graph corresponds to a sequence of six symmetric
signals of threshold distance reported at states with shocks, where we normalize the numbering of banks for
illustration.

The following proposition summarizes the structure of the optimal policy:

Proposition 6. There exist constants 0 < p < pr < 1, such that if p ∈
[
p, pr

]
and (38), the optimal

policy π∗ reports the following signals across states:

{s |π (s |θ ) > 0} =



s
(
d∗, bBNCP c+ 1

)
θ = θ,

sh, θ : 1 ≤ B (θ) ≤ BNCP
,

s
(
d∗, bBNCP c+ 1

)
, sh, sl, θ ∈ Θ̃∗s

(
θ
bBNCP c+1
Conn

)
,

sl, Otherwise.

(39)

where θb1+1
Conn ∈ Θ̃∗s

(
θb1+1
Conn

)
, and Θ̃∗s is a collection of states with b1 +1 shocks specified in Appendix

B.10. The threshold distance d∗ decreases in counterparty exposure y.

As in Lemma 3, the regulator always reports sh at states with a small number of project shocks
1 ≤ B (θ) ≤ B

NCP : conditinal on these states and sh, a typical bank has excess net cash flows on
average, thanks to a low risk of bad project and no counterparty risk. Hence, sh is further reported
at states with bBNCP c+ 1 project shocks to lend liquidity to those states.

For other states, the optimal poliy prioritizes the class of symmetric risk sharing strategies with
the highest efficiency as captured by index ξ∗

(
s, Θ̃s; θ

)
, because liquidity is relatively scarce under

condition p ≤ pr. First, as shown in (37), lender banks with good projects are solvent if some
borrower bank refinances. The signal s

(
d∗, bBNCP c+ 1

)
when reported at θbB

NCP c+1
Conn exploits this

spillover effect by reporting whether banks are d∗ distance away from the nearest bank with asset
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impairment. Second, conditional on the number of project shocks B, the contagion effects on the
rest of the network are minimized at states where these shocks are on adjacent banks, i.e., θBConn.

By reporting s
(
d∗, bBNCP c+ 1

)
at θbB

NCP c+1
Conn , project shocks are “quarantined” locally, and the

losses in banks
{

1, 2, · · · , bBNCP c
}
are only burdened by their senior creditors.

The optimal threshold distance d∗ depends on the counterparty exposure y. As the counterparty
exposure y increases, the benefit of cross-bank risk sharing—the spillover effects on lender banks—
becomes larger. Consequently, d∗ decreases, leading to a less discriminatory disclosure policy.

Connectivity and Stability Outcomes Once we understand how the two (stylized) network
structures determine the properties of the optimal policy, I now examine the role of information
design on the network stability.

As no bank refinances in autarky, I have the following key take-away by borrowing results
from Acemoglu et al. (2015) that study contingent-state stability. When interbank exposure is
sufficiently high, with a small number of project shocks, the complete network is the most stable
structure while the ring network is the least stable structure; with a large number of project shocks,
both networks are the least stable structures. Therefore, absent information design, the complete
network is more stable than the ring network in expectation.

In contrast, I highlight that under the optimal disclosure policy, the ring network may be more
stable than the complete network, suggesting a greater value brought on by information design
under the ring network structure. On one hand, in the complete network shocks are burdened
equally among banks and liquidity is more aligned across banks, which increases the efficiency of
cross-bank risk sharing. On the other hand, as shown in Proposition 6, in the ring network the
optimal policy has a “quarantine” effect to allow refinancing at states where shocks are connected
on adjacent banks. As a result, the senior creditors who are outside of the network absorb a larger
proportion of the losses, and banks that are far way from the project shocks may have higher
liquidity levels than banks in the complete network.

Proposition 7. There exists a non-empty set of parameters, under which absent information de-
sign, the complete network is more stable than the ring network, WC

0 ≥WR
0 ; while with information

design, the ring network is more stable than the complete network, WR
(
πR∗

)
> WC

(
πC∗

)
.

The proposition highlights the flexibility of designing beliefs about shocks in a less connected
structure, in which the shocks could be quarantined locally and absorbed by senior creditors. This
“bail-in” effect alleviates debt overhang greatly and persuade outside investors to inject liquidity
to the more distant healthier banks. In contrast, in a connected structrure, any injected cash flow
first guarantees payments to senior creditors (senior creditors of both the refinancing bank and the
other banks who receive payments from the refinancing bank). Consistent with my emphasis on
separating healthier banks when cross-state borrowing is constrained, the flexibility to quarantine
may dominate the more efficient cross-bank risk sharing under interconnectedness. The following
numerical example illustrates the proposition.
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Example 2. Consider parameters n = 4, A = 1, v = 0.75, y = 0.54, p = 0.2, δ = 1. In
autarky, the complete structure is more stable, WC

0 > WR
0 . Under the optimal information design,

WR
(
πR∗

)
> WC

(
πC∗

)
. Under this parameterization, the improvement from information design

depends critically on states with two shocks, where the quarantine effect shows up and dominates.
To see this, first, note that BNCP = 1, so conditional on states with one project shock B (θ) = 1,
sh is always reported in both networks. Second, one can verify that in the ring network, pooling
θ and θ2

Conn = bbgg under signal s
(
d = 2, θ2

Conn

)
= lllh, results in a higher WR (π) in the ring

network than that achieved under any policy in the complete network.

Connecting back to Acemoglu et al. (2015), the two counterforces of connectivity under informa-
tion design relates to the “robust-yet-fragile” result of interconnectedness in the network literature,
but the underlying mechanisms are quite different. Previous studies focus on contagion cascades
under ex post shocks, and a connected network enjoys better risk sharing in good times but is
subject to worse contagion in bad times. In this paper, banks can share risk across states, and
counterparty risk is reduced if banks are coordinated to borrow from good times to bad times
together. Instead, my result highlights the economic trade-off of cross-state risk sharing—for ex-
ample, outside liquidity premium, bank profitability, and etc: when cross-state risk sharing is less
constrained, connectivity becomes favorable under which it is easier to coordinate banks’ refinanc-
ing to reduce contagion; when cross-state risk sharing is more constrained, however, the injected
liquidity absorbed by senior creditors becomes costlier and it is more favorable to quarantine the
shocks locally and separate healthier banks to allow for refinancing.

4.2 Asymmetric Networks and Preferred Treatment

This subsection discusses how the optimal policy treats banks with different number of counter-
parties in an asymmetric network. The network intervention literature shows that capital should
be injected to banks with a greater centrality, for the larger the spillovers to other banks. The key
difference in my paper is that banks borrow from themselves across states. I show that the more
connected banks receive preferred treatment with some qualifications.

Core-periphery networks are the most empirically relevant structure, where there are a few
highly interconnected core banks and many sparsely connected periphery banks. I study a class of
symmetric core-periphery networks where a typical periphery bank is only connected to some core
bank, and banks within the core or periphery group are ex ante symmetric.26

Specifically, suppose there are nc core banks and np periphery banks. Each core bank is con-
nected to the same number of periphery banks, which is np

nc
, and each periphery bank is connected

to one core. One example is the star network where nc = 1; another example is a symmetric
complete network as the core part, and each core bank is connected to np

nc
additional periphery

banks via double-sided interbank debt contracts. The same leverage ratio across banks as stated in
26The rich state space and cross-bank risk sharing greatly complicates the exposition. For clean exposition of

centrality in more general networks, I need restrictions on the state space or signal structure. Nevertheless, the
analysis here highlights the key tradeoffs regarding asymmetric connectivity across banks within the same network.
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Assumption 4 allows me to focus on the effect of bank connectivity. As a result, the core banks with
more counterparties effectively have larger sizes. Hence, I weight a bank’s by its size by assuming

λi
λj

= Ai
Aj
, ∀i,∀j 6= i.

Proposition 8. There exists constants ry and r, such that if yi
Ai
≥ ry or yi+vi

Ai
≤ r, core banks

receive preferred treatment; i.e., they are more likely to refinance than the periphery banks.

Because a core bank is connected to multiple counterparties who have independent projects, it
is subject to a smaller contagion risk. Hence, a core bank is on average healthier than a periphery
bank which has only one counterparty. In addition, given the large spillover effect from core to
periphery, if some periphery banks are reported as h, the regulator might as well report h on their
connected core bank provided it has good project. Nevertheless, it is possible that at some states the
periphery banks are healthier than their connected core bank: if the contagion risk originates from
some distant bank, a periphery bank will be one distance away than its connected core bank. The
parameter restriction in Proposition 8 guarantees that cross-state borrowing is not too constrained
such that the strong complementarity between the connected core and peripheries dominates the
the benefit of separating healthier peripheries at a few states.

4.3 Counterparty Default Component

In 2017, the Federal Reserve added the Counterparty Default Component to bank stress test, which
examines the bank’s status assuming that its largest counterparty default. In this subsection, I
formalize the information structure that corresponds to this policy in practice, and compare with
the optimal policy π∗.

To model the counterparty default component, I conduct single-bank stress test for each bank
separately. For a typical bank i, the regulator assumes that its largest counterparty i′ defaults and
repays xii′ = 0, while bank i’s other counterparties make full payments

∑
j 6=i xij =

∑
j 6=i,i′ yij . For

simplicity, I assume that all participants naively take such interbank payments as given. Hence,
the information design is only about bank i’s project shock, and the distribution of each bank’s
signal si are independent. Specifically, the information structure consists of signal space

SCDC = S ≡ {s = (s1, s2, · · · , sn) |si = h or l} ,

and a typical signal’s conditional distribution is

πCDC (s |θ ) =
n∏
i=1

P
(
si
∣∣∣Ãi) .

Remark 1. Let πCDCi (h |g ) ≡ P
(
si = h

∣∣∣Ãi = Ai
)
and πCDCi (h |b) ≡ P

(
si = h

∣∣∣Ãi = 0
)
. Then in

the Counterparty Default Component practice, the optimal information structure is summarized
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by

πCDCi (h |g ) = 1, πCDCi (h |b) = pi
1− pi

[
δ
(
Ai + yini − yii′

)
− vi − youti

vi + youti − δ
(
yini − yii′

) ]+

,

where bank i′is bank i’s largest counterparty i′ ≡ arg maxj 6=i yij .

The disclosure about each bank is independent, and directly follows from the result of binary-
state persuasion problem. The l signal is informative about the bank’s bad project. In contrast,
the h signal pools the bad state with good state such that h implies decent quality on average,
under which outside investors enable the bank to refinance and share risk across states.

Hence, the extent of the cross-state risk sharing of each bank is determined by on its depen-
dence on the largest counterparty. In addition, the regulator cannot directly coordinate banks to
refinance, and cross-bank risk sharing is absent. In light of these observations, the following remark
summarizes the comparison between πCDC and π∗.

Remark 2. Compared with the system-level optimal information structure π∗, the Counterparty
Default Component practice πCDC

1) is more lenient on banks that are more connected, and harsher on banks that have few counter-
parties;
2) is more discriminatory both at good times with a few shocks and at bad times with a lot of
shocks.

The first point results from the consequences of neglecting counterparty risks in different network
structures. Intuitively, in a very connected structure such as the complete network, banks are passed
with a high probability under πCDC , because the default of the largest counterparty affects little
of the overall healthiness of the bank. In a very sparse structure such as the ring network, however,
contagion from the largest counterparty is decisive. Under Assumption 3, πCDCi (h |b) = 0 in the
ring network and the disclosure is perfectly informative. The second point highlights the importance
of coordination and cross-bank risk sharing. As the disclosure on banks are independent, si is only
informative about the bank’s project quality, regardless of contagion risks from counterparties.
This is in sharp contrast with π∗: when the number of shocks is small, as shown in Lemma 3, the
regulator passes all banks thanks to no counterparty risk and low project risk; when there are a lot
of shocks, all banks are reported as l, because risk sharing is prioritized at states with fewer shocks
where banks have smaller shortfall from liabilities.

5 Conclusion

I study the optimal stress test disclosure that maximizes the total solvency rate in financial net-
works. The network structure is exogenous, and characterizes how banks are connected via inter-
bank liabilities. A passing stress test result that signals good quality but not perfectly informative
enables the bank to share risk across states, by raising enough outside liquidity to clear liabilities.
As the key feature in the model, disclosure has spillover effects among banks: a passing result on
one bank reduces the counterparty risk faced by the other banks. I hence highlight that in addition
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to cross-state risk sharing studied in single-bank stress test, the system-level stress test involves the
novel cross-bank risk sharing: banks who are passed together become healthier as they deliver to
each other as counterparties. Hence, cross-bank risk sharing resembles netting counterparty risk.

On the other hand, when passing banks together, the regulator needs to convince that the
weaker banks in the group are on average healthy. When bank profitability is high, cross-state risk
sharing is less constrained, the optimal policy is less discriminatory and passes more banks together.
The optimal policy is also less discriminatory when interbank exposure is large, so that the cash
flows across banks are relatively aligned despite independent fundamental risks. Otherwise, the
optimal policy separates the healthier banks and let them refinance.

Network structures determine the complementarity between banks and thus the efficiency of
cross-bank risk sharing. In the complete network, the optimal policy is less discriminatory and
let banks refinance when the system transitions from a stable structure to a fragile structure. In
the ring network, the optimal policy passes banks that are far from the impaired banks, at states
where project shocks are quarantined locally on adjacent banks. In asymmetric networks, the
more connected banks with more counterparties receive preferred treatment. Under the optimal
information structure, mre connected structures have a “robust-yet-fragile” feature that arises from
the trade-off of cross-state risk sharing, which is different from that in the network literature.
Although it is more efficient to reduce counterparty risk in a more connected network by passing
banks together, in a less connected network, there is the flexibility to design the beliefs about shocks
to be concentrated locally, such that senior creditors absorb the losses.

In this paper, I highlight the importance of coordination in the system-level stress test design.
Single-bank stress test that takes counterparty contagion as given—for example the counterparty
default component in practice, may be too harsh because coordination could reduce counterparty
risk.
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A Summary of Variables

Notation Definition and Meaning Characterization

n Number of banks

Ãi Loan project payoff of bank i Ãi ∈ {Ai > 0, 0}

g, b Label for project realization g : Ãi = Ai; b : Ãi = 0

pi Probability of good project for bank i pi ≡ P
(
Ãi = Ai

)
≥ 1

2

θ State of nature θ ≡ Ã1 × · · · × Ãn ∈ Θ

vi Face value of senior debts owed by bank i

yij Face value of interbank debts borrowed by bank j from bank i

yini , y
out
i Total interbank claims (incoming), liabilities (outgoing) of bank i yini ≡

∑
j 6=i yij , y

out
i ≡

∑
j 6=i yji

S Signal space S = S1 × · · · × Sn, Si = {h, l}

s A typical signal s ≡ s1 × · · · × sn ∈ S, si ∈ {h, l}

π Signal distribution π : Θ→4S, π (s |θ ) ≡ P (s|θ)

ai Bank i’s action given signal realization ai ∈ {raise funds, wait}

λi Default punishment −λi < 0 for bank i; bank weights

δ Discount factor of outside liquidity

mi Investors’ valuation of bank i’s total assets mi : S× π ×X → R

xij (s, θ) Actual interbank payment from j to i See (8)

w (s, θ) Total weighted number of banks that are solvent at contingent state See (9)

W (π) Expected weighted number of banks that are solvent See (10)

y0
ij(θ) Actual interbank payment from j to i in autarky

w0 (θ) , W0 Contingent state and expected number of solvent banks in autarky

Li (s, θ) Bank i’s inflows at contingent state See (11)

∆Li (s, θ) Bank i’s excess inflows at contingent state

µi (s) Shadow value of bank i’s obedience constraint under si = h

q (θ) Shadow value of the prior consistency constraint

Ih (s) Banks that are reported with si = h under s See (??)(
s, Θ̃s; θsg

)
A risk sharing strategy See Definition 2

ξ
(
s, Θ̃s; θsg

)
Efficiency of strategy See Definition 3

η
(
s, Θ̃s; θsg

)
Weight of risk sharing strategy

B (θ) Number of project shocks

H (s) Number of banks reported as si = h under s
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B Mathematical Appendix

B.1 Preliminary Lemmas

Lemma 4. If all banks default on junior liabilities, generically some banks default on senior lia-
bility.

Proof. Let Ti ≤ vi be bank i’s payments to its senior creditor. A default bank pays out all cash
flows to creditors and does not hold excess cash flows. As a result, if all banks default, the aggregate
outside-of-network incoming cash flows, i.e., total project payoffs

∑
i Ãi, must equal the aggregate

outside-of-network outgoing cash flows, i.e., total payments to senior creditors
∑
i Ti.

To see this, for a typical default bank i,

∑
j 6=i

xji = Ãi +
∑
j 6=i

xij − Ti.

Take sum over all banks, and then

∑
i

∑
j 6=i

xji =
∑
i

Ãi −
∑
i

Ti +
∑
i

∑
j 6=i

xij ,

which says
∑
i Ãi =

∑
i Ti.

As generically
∑
i Ãi 6=

∑
i vi, then at least some bank defaults on senior liability, Ti < vi.

Lemma 5. The contingent state social welfare ŵ (s, θ) is affine in the weighted number of banks
that are solvent.

Proof. Total welfare includes bank utilities {ui}, investors’ profits and payments received by banks’
senior creditors {Ti} (notation introduced in the proof of Lemma 4). Conditional on (s, θ) realiza-
tion, among the banks that are reported with si = l, I use Ils, Ild, Ilf to denote respectively the
sets of banks that are solvent, that default on junior liabilities but fully repay senior creditors, and
that default on senior creditors. Recall in (22) that Ih (s) denote the banks that signal s reports
as si = h. Then at t = 2,

ŵ (s, θ) =
∑
i

ui︸ ︷︷ ︸
bank

+
∑
i∈Ih

Ãi +
∑
j 6=i

xij −mi


︸ ︷︷ ︸

investors

+
∑
i

Ti︸ ︷︷ ︸
senior creditors

=
∑

i∈Ih,Ils

Ãi +
∑
j 6=i

xij − youti

+
∑
i∈Ild

Ãi +
∑
j 6=i

xij −
∑
j 6=i

xji︸ ︷︷ ︸
=vi

−λi

+
∑
i∈Ilf

Ãi +
∑
j 6=i

xij︸ ︷︷ ︸
=Ti<vi

−λi


=
∑
i

Ãi −
∑

i∈Ild,Ilf

λi.
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The second equality aggregates the surplus across different types of agents. The surplus generated
by an individual bank is its net cash flows subtracting the default punishment if it defaults. The
third equality follows from

∑
i

∑
j xij =

∑
i

∑
j xji. Hence, the expected total welfare is

Ŵ ≡ E [ŵ (s, θ)] =
∑
i

piAi + E

 ∑
i∈Ih,Ils

λi


︸ ︷︷ ︸

=W

−
∑
i

λi.

Ŵ is linear in expected number of banks that survive W , where banks are weighted by the size of
their default penalties.

B.2 Proof of Lemma 1

Proof. Suppose in the optimal information structure π∗ of the relaxed problem P in (17), for some
signal s′ that is reported with positive probability, the obedience constraint of l (14) in the original
problem P̂ in (12) is violated for bank ĩ with s′

ĩ
= l, i.e.,

∑
θ

P (θ)π∗
(
s′ |θ

) [
δLĩ

(
s′, θ

)
− vĩ − y

out
ĩ

]
≥ 0. (40)

Consider another information structure π̃ that replaces s′ in π∗ with s′′ ≡
(
sĩ = h, s′−ĩ

)
—-a mirror

image signal that replaces s′
ĩ
with h. Specifically,

π̃ (s |θ ) =


0, if s = s′,

π∗ (s |θ ) + π∗ (s′ |θ ) , if s = s′′,

π∗ (s |θ ) , if s 6= s′, s′′.

One can verify that π̃ is feasible in the relaxed problem P, and delivers higher expected payoff.
For feasibility, it is sufficient to check the h obedience constraints (18) associated with signal s′′.
For s′′

ĩ
= h,

∑
θ

P (θ) π̃
(
s′′ |θ

) [
δLĩ

(
s′′, θ

)
− vĩ − y

out
ĩ

]
≥
∑
θ

P (θ)π∗
(
s′ |θ

) [
δLĩ

(
s′, θ

)
− vĩ − y

out
ĩ

]
︸ ︷︷ ︸

(40):≥0

+
∑
θ

P (θ)π∗
(
s′′ |θ

) [
δLĩ

(
s′′, θ

)
− vĩ − y

out
ĩ

]
︸ ︷︷ ︸

(13) for s′′
ĩ

=h:≥0

≥0,

where the first inequality follows from Lĩ (s′′, θ) ≥ Lĩ (s′, θ). For the other banks that s′′ reports
with h, the obedience constraints are satisfied as Li (s′′, θ) ≥ Li (s′, θ). For system stability, notice
that w (s′′, θ) ≥ w (s′, θ) as bank ĩ refinances and makes full payments. Hence, from the construction
of π̃, I have W (π̃) ≥W (π∗).
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B.3 Proof of Proposition 1

Proof. I first show that for any (s, θ), the set of interbank payments {xij (s, θ)} exists and is generi-
cally unique. I show that for any signal s, the interbank payments {xij (s, θ)} with refinancing could
be implemented by interbank payments {x̂ij (θ)} without refinancing in a new network structure.
Then I can apply the results from Acemoglu et al. (2015) that {x̂ij (θ)} exist and are generically
unique.

Given s, I redefine the network by incorporating the interbank liabilities of the banks that
refinance into their creditor banks’ project payoffs:

ˆ̃Ai =

Ãi +
∑
j∈Ih(s) yij , ∀i /∈ Ih (s)

Ãi, ∀i ∈ Ih (s)
, ŷji =

yji, ∀i /∈ Ih (s)

0, ∀i ∈ Ih (s)
,

where Ih (s) is the set of banks that signal s reports with h. The interbank payments {x̂ij (θ)} in
the new structure are such that the following holds simultaneously for every i and j:

x̂ij = min

ŷij , ŷij∑
k 6=j ŷkj

 ˆ̃Aj +
∑
j 6=i

x̂ji − vj

+ ,
where I normalize ŷij∑

k 6=j ŷkj
to 1

n−1 for any
∑
k 6=j ŷkj = 0. From Proposition 1 in Acemoglu et al.

(2015), the set of {x̂ij (θ)} exists and is generically unique. Then the property also holds for
{xij (s, θ)}, which satisfy xij (s, θ) = 1j∈Ih(s) · yij + 1j /∈Ih(s) · x̂ij (θ).

Hence, the feasible set of the relaxed problem P in (17) is well defined. One feasible information
structure is to always “truthfully report”. At each state θ, the regulator always allows a bank to
refinance if and only if enough cash could be raised against its underlying cash flows; i.e.,

si (θ) =

h, if δ
[
Ãi (θ) +

∑
j 6=i x

0
ij (s (θ) , θ)

]
≥ vi + youti ,

l, otherwise,

and π (s (θ) |θ ) = 1 for all θ. Therefore, by standard extreme value theorem, the optimal solution
π∗ exists.

For uniqueness, the optimal solution to the linear programming problem lies on the vertex of
the feasible set. If there exists multiple optimal solutions, then the projection of the object function
is parallel to some constraint, or some constraints are identical, which do not hold under a generic
set of parameters.

B.4 Dual Approach

Let χ (s, θ) ≡ P (θ)π (s |θ ) be the joint probability. For notational convenience, I introduce the
following vector and matrix representations, where the involved banks are those reported as h
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under the signal s, or i ∈ Ih (s):

(χs)|Θ|×1 ≡
[
· · · χ (s, θ) · · ·

]>
, (χ)|Θ||S|×1 =

[
· · · (χs)> · · ·

]>
,

(ws)|Θ|×1 ≡
[
· · · w (s, θ) · · ·

]>
|Θ|×1

, (w)|Θ||S|×1 =
[
· · · (ws)> · · ·

]>
,

(ys)|Ih(s)|×|Θ| ≡
[
· · · ,

(
youti 1|Θ|×1

)
, · · ·

]>
,

(vs)|Ih(s)|×|Θ| ≡
[
· · · ,

(
vi1|Θ|×1

)
, · · ·

]>
,(

Lsi
)
|Θ|×1 ≡

[
· · · Li (s, θ) · · ·

]>
, (Ls)|Ih(s)|×|Θ| ≡

[
· · ·

(
Lsi
)> · · ·

]
,

∆Ls ≡ δLs − vs − ys,

(P )|Θ|×1 ≡
[
· · · P (θ) · · ·

]>
,

b ≡
[

01×(
∑

s
|Ih(s)|), P T ,−P T

]>
.

Proposition 9. The dual problem D of the regulator’s problem P is

D∗ = min
∀s, i∈Ih(s): µ(s)∈RIh(s)

q∈RΘ

∑
θ

P (θ) q (θ)

s.t q (θ) ≥ w (s, θ) +
∑

i∈Ih(s)
µi (s)

(
δLi (s, θ)− vi − youti

)
, (∀θ,∀s) (41)

µi (s) ≥ 0. (∀si = h in ∀s)

1. (Strong Duality)W (χ∗) = D∗ (µ∗, q∗), where µ∗, q∗ (χ∗) are the multipliers of the constraints
of the primal (dual) problem.

2. (Complementary Slackness) As an implication of strong duality, if π (s′ |θ ) > 0 (= 0) for some
signal s′, condition (41) evaluated at θ takes equality (is strict) for s′.

Proof. First, I rewrite the primal problem P in vector and maxtrix form:

W ∗ = max
χ∈RS×Θ

w>χ

s.t.Aχ ≤ b,

χ ≥ 0,

where

A ≡



· · ·
∆Ls′

∆Ls′′

· · ·
· · · I |Θ| I |Θ| · · · I |Θ|

· · · −I |Θ| −I |Θ| · · · −I |Θ|


47



is a (
∑
s |Ih (s)|+ 2 |Θ|) by |Θ| |S| matrix, where s′, s′′ are two examples of signals. Note that

the prior consistency constraints
∑
θ χ (s, θ) = P (θ) are rewritten as

∑
θ χ (s, θ) ≤ P (θ) and

−
∑
θ χ (s, θ) ≤ −P (θ) in the standardized form.
Let µi (s), q1 (θ) and q2 (θ) denote respectively the Lagrangian multiplier of the obedience

constraint (13) of si = h for some s, and the multipliers the rewritten prior consistency constraints.
Rewriting the dual problem in vector and matrix form,

D∗ ≡ min b>z

s.t.A>z ≥ w,

z ≥ 0,

where z ≡
[
µT

(
q1)> (

q2)> ]
, and µs ≡

[
· · · µi (s) · · ·

]>
|Ih(s)|×1

, µ ≡
[
· · · (µs)> · · ·

]>
(
∑
|Ih(s)|)×1

,

q1 ≡
[
· · · q1 (θ) · · ·

]>
|Θ|×1

and q2 ≡
[
· · · q1 (θ) · · ·

]>
|Θ|×1

are the vector representations. In
scalar form, the first set of constraints says,

∑
i∈Ih(s)

µi (s)
(
vi + youti − δLi (s, θ)

)
+ q1 (θ)− q2 (θ) ≥ w (s, θ) ,

for each (s, θ) combination. Introduce q (θ) ≡ q1(θ) − q2 (θ), and thus z ≥ 0 is equivalent to
µi (s) ≥ 0 and unrestricted q (θ) ∈ R.

As both the primal and the dual are bounded, strong duality holds: W (χ∗) = D∗ (µ∗, q∗). χ∗

are the multipliers of the first set of constraints in the dual problem. Hence, the complementary-
slackness condition of the dual is

χ (s, θ)

q (θ)− w (s, θ)−
∑

i∈Ih(s)
µi (s)

(
δLi (s, θ)− vi − youti

) = 0. (42)

B.5 Proof of Proposition 2

Lemma 6. Under the optimal disclosure policy π∗, suppose for some signal s′ that is reported with
positive probability, the obedience constraint of some bank i that s′ reports as s′i = h is slack. Let S̃
denote the collection of signals with such slack obedience constraint for bank i,

S̃ ≡
{
s|
∑
θ

P (θ)π∗ (s |θ ) > 0, si = h, µi (s) = 0
}
. (43)

For any signal s′ ∈ S̃, and any state θ′ with Ãi > 0 where s′ is reported—π∗ (s′ |θ′ ) > 0, let θ′′ be
the mirror-image state of θ′ such that Ãi (θ′) > 0, Ãi (θ′′) = 0 and Ã−i (θ′′) = Ã−i (θ′′). Then
1. π∗ (s′ |θ′′ ) > 0;
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2. If π∗ (ŝ |θ′′ ) > 0 for some signal ŝ, then ŝ ∈ S̃.

Proof. Recall that ∆Li (s, θ) is bank i’s contingent-state net cash flows,

∆Li (s, θ) ≡ δLi (s, θ)− vi − youtj

For the first result, suppose for some s′ ∈ S̃ and π∗ (s′ |θ′ ) > 0, I have π∗ (s′ |θ′′ ) = 0. Let s′′ 6= s′

denote some signal that is reported at θ′′, i.e., π∗ (s′′ |θ′′ ) > 0. The complementary-slackness
condition of the dual problem (42) at θ′′ implies,

q
(
θ′′
)

= w
(
s′′, θ′′

)
+

∑
j∈Ih(s′′)

µj
(
s′′
)

∆Lj
(
s′′, θ′′

)
, (44)

q
(
θ′′
)
> w

(
s′, θ′′

)
+

∑
j∈Ih(s′)

µj
(
s′
)

∆Lj
(
s′, θ′′

)
, (45)

Similarly, at θ′, π∗ (s′ |θ′ ) > 0 implies

q
(
θ′
)

= w
(
s′, θ′

)
+

∑
j∈Ih(s′)

µj
(
s′
)

∆Lj
(
s′, θ′

)
, (46)

q
(
θ′
)
≥ w

(
s′′, θ′

)
+

∑
j∈Ih(s′′)

µj
(
s′′
)

∆Lj
(
s′′, θ′

)
. (47)

The two states θ′, θ′′ differ in only bank i’s project realization. Contingent on signal s′ which
reports s′i = h, bank i refinances and makes full payments. Then except for bank i’s underlying
inflows that satisfy Li (s′, θ′) > Li (s′, θ′′), the outcome at t = 2 at the two states are identical. i.e.,
interbank payments xij (s′, θ′) = xij (s′, θ′′) for any i, j, other banks’ inflows Lj (s′, θ′) = Lj (s′, θ′′)
for j 6= i, and system stability w (s′, θ′) = w (s′, θ′′). As µi (s′) = 0, there is no cost for bank i to
borrow across states under s′, so Li (s′, θ′) > Li (s′, θ′′) does not matter. Then

w
(
s′, θ′

)
+

∑
j∈Ih(s′)

µj
(
s′
)

∆Lj
(
s′, θ′

)
= w

(
s′, θ′′

)
+

∑
j∈Ih(s′)

µj
(
s′
)

∆Lj
(
s′, θ′′

)
. (48)

From equations (44)-(47) and (48), I have

w
(
s′′, θ′

)
+

∑
j∈Ih(s′′)

µj
(
s′′
)

∆Lj
(
s′′, θ′

)
< w

(
s′′, θ′′

)
+

∑
j∈Ih(s′′)

µj
(
s′′
)

∆Lj
(
s′′, θ′′

)
. (49)

The inequality says that the value of reporting s′′ is strictly higher at the worse state θ′′. However,
the additional project shock of bank i decreases any bank’s inflows Lj (s, θ′) ≥ Lj (s, θ′′) and hurts
system stability w (s′′, θ′) ≥ w (s′′, θ′). Contradiction. Hence, π∗ (s′ |θ′′ ) > 0.

If π∗ (s′ |θ′′ ) = 1, the second result holds. If π∗ (s′ |θ′′ ) < 1, let ŝ denote some signal that
is reported at θ′′, i.e., π∗ (ŝ |θ′′ ) > 0. Now I show that ŝ ∈ S̃. Apply (42) to π∗ (ŝ |θ′ ) > 0,
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π∗ (s′ |θ′ ) > 0 and π∗ (s′ |θ′′ ) > 0, and I have

q
(
θ′
)

= w
(
s′, θ′

)
+

∑
j∈Ih(s′)

µj
(
s′
)

∆Lj
(
s′, θ′

)
≥ w

(
ŝ, θ′

)
+

∑
j∈Ih(ŝ)

µj (ŝ) ∆Lj
(
ŝ, θ′

)
,

q
(
θ′′
)

= w
(
s′, θ′′

)
+

∑
j∈Ih(s)

µj
(
s′
)

∆Lj
(
s′, θ′′

)
= w

(
ŝ, θ′′

)
+

∑
j∈Ih(ŝ)

µj (ŝ) ∆Lj
(
ŝ, θ′′

)
.

(46) and (48) imply q (θ′) = q (θ′′), and hence

w
(
ŝ, θ′

)
+

∑
j∈Ih(ŝ)

µj (ŝ) ∆Lj
(
ŝ, θ′

)
≤ w

(
ŝ, θ′′

)
+

∑
j∈Ih(ŝ)

µj (ŝ) ∆Lj
(
ŝ, θ′′

)
. (50)

I discuss by different cases of ŝi. If ŝi = l, bank i pays
∑
j 6=i xji = 0 to creditor banks at θ′′, but

pays some amount
∑
j 6=i xji > 0 at θ′. Hence Lj (ŝ, θ′) > Lj (ŝ, θ′′) for all banks, and w (ŝ, θ′) ≥

w (ŝ, θ′′). Then (50) fails. If ŝi = h, bank i makes full payments
∑
j 6=i xji = youti regardless of Ãi,

and thus Lj (ŝ, θ′) = Lj (ŝ, θ′′) for bank j 6= i, w (ŝ, θ′) = w (ŝ, θ′), but Li (ŝ, θ′) > Li (ŝ, θ′′). If
additionally µi (ŝ) > 0 (= 0), (50) fails (takes equality). Therefore, (50) implies ŝ ∈ S̃.

Proof of Proposition 2

Proof. Recall in (43) that S̃ denotes the collection of reported signals with slack (h) obedience
constraint for bank i. Let µi (s′) = 0 denote such a violation, for some s′ ∈ S̃ that reports s′i = h.

First, I apply Lemma 6 to argue the following: for any mirror-image signal pair θ′, θ′′ with
Ã−i (θ′) = Ã−i (θ′′) and Ãi (θ′) > 0, Ãi (θ′′) = 0, if π∗ (s′ |θ′ ) > 0, then

∑
s∈S̃

π∗
(
s, θ′

)
≤
∑
s∈S̃

π∗
(
s, θ′′

)
= 1. (51)

Then for the slack obedience constraints to hold in the first place, s ∈ S̃ being reported dis-
proportionately at states with Ãi = 0 (see Equation (51)) implies that bank i has a level of high
profitability, which contradicts 2.

To see this, for any signal s ∈ S̃ (s is reported with positive probability but µi (s) = 0 for some
bank with si = h), bank i’s obedience constraint says,

∑
θ

P (θ)π∗ (s, θ) ∆Li (s, θ)

=
∑
Ã−i

P
(
Ã−i

)
{P
(
Ãi > 0

)
π∗
(
s
∣∣∣Ãi > 0, Ã−i

)
∆Li

(
s, Ãi > 0, Ã−i

)
+ P

(
Ãi = 0

)
π∗
(
s
∣∣∣Ãi = 0, Ã−i

)
∆Li

(
s, Ãi = 0, Ã−i

)
}

>0
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As
∑
j 6=i xij (s, θ) ≤ yini , the obedience constraint implies

∑
Ã−i

P
(
Ã−i

){
piπ
∗
(
s
∣∣∣Ãi > 0, Ã−i

)
δ
(
Ai + yini

)
+ (1− pi)π∗

(
s
∣∣∣Ãi = 0, Ã−i

)
δyini − vi − youti

}
> 0.

Sum over s ∈ S̃ and use (51),

0 <
∑
s∈S̃

∑
Ã−i

P
(
Ã−i

){
piπ
∗
(
s
∣∣∣Ãi > 0, Ã−i

)
δ
(
Ai + yini

)
+ (1− pi)π∗

(
s
∣∣∣Ãi = 0, Ã−i

)
δyini − vi − youti

}

≤
∑
Ã−i

P
(
Ã−i

)pi∑
s∈S̃

π∗
(
s
∣∣∣Ãi = 0, Ã−i

)
δ
(
Ai + yini

)
+ (1− pi)

∑
s∈S̃

π∗
(
s
∣∣∣Ãi = 0, Ã−i

)
δyini − vi − youti


=
∑
Ã−i

P
(
Ã−i

)∑
s∈S̃

π∗
(
s
∣∣∣Ãi = 0, Ã−i

) (
piδAi + δyini − vi − youti

)
,

which contradicts with Assumption 2.

B.6 Proof of Proposition 3

Proof. Step 1.
I argue that the optimal policy π∗ is a weighted sum of risk sharing strategies. Recall κ

(
s, Θ̃s; θsg

)
|Θ̃s|×1

in (26) characterizes the signal distribution over Θ̃s for a given strategy, and η
(
s, Θ̃s; θsg

)
is the

strategy’s probability. Then there exists a set of
{
η
(
s, Θ̃s; θsg

)}
such that

P (θ)π
(
s′ |θ

)
=


∑

Θ̃s′ η
(
s′, Θ̃s′ ; θs′g

)
, θ = θs

′
g ,∑

θs′g

∑
Θ̃:θ∈Θ̃ η

(
s′, Θ̃s′ ; θs′g

)
κ
(
s, θ

(
Θ̃s′
)

; θsg
)
, θ /∈ Θs′

g .
(52)

To see this, (52) corresponds to {θ |π∗ (s′ |θ ) > 0} − |Ih (s′)| linear equations of
∣∣∣Θs′

g

∣∣∣ · (k−
∣∣∣Θs′g ∣∣∣

|Ih(s′)|

)
variables,

Let z (s′) ≡ |{θ |π∗ (s′ |θ ) > 0}| denote the number of states where s′ is reported. Then there

are
∣∣∣Θs′

g

∣∣∣︸ ︷︷ ︸
num of θs′g

·
(
z (s′)−

∣∣∣Θs′
g

∣∣∣
|Ih (s′)|

)
︸ ︷︷ ︸

num of Θ̃s′

variables to satisfy z (s′)− |Ih (s′)| linear equations as in (52), where

− |Ih (s′)| corresponds to the binding obedience constraints as restrictions on {π∗ (· |s′ )}. As z (s′) ≥∣∣∣Θs′
g

∣∣∣+ |Ih (s′)|, such
{
η
(
s, Θ̃s; θsg

)}
exist.

Step 2.
I argue that the decompsition is “well behaved”: I can focus on strategies with κ ≥ 0 or

κ ≤ 0, and the corresponding weights satisfy
{
η
(
s, Θ̃s (θ) ; θsg

)
κ
(
s, Θ̃s (θ) ; θsg

)
≥ 0

}
. The idea

is, if there exists some η
(
s, Θ̃s (θ) ; θsg

)
κ
(
s, Θ̃s (θ) ; θsg

)
< 0, there must exist some other strategy

with η
(
s′, Θ̃s′ (θ) ; θs′g

)
κ
(
s′, Θ̃s′ (θ) ; θs′g

)
> 0 at the same state θ. Then I redefine a strategy by
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combinding some parts of each.
For expositional convenience, I aggregate all the good states for a given signal, and introduce

the signal’s aggregate excess liquidity as cs ≡ ∆Ls,Θsgχ∗Θsg . It is without loss of generality to work
with strategy weights

{
η̂
(
s, Θ̃s

)}
and structures

{
κ̂
(
s, Θ̃s

)}
that satisfy

∑
η

η̂
(
s, Θ̃s

)
cs =

∑
η

η̂
(
s, Θ̃s

) (
−∆Ls,Θ̃

)
κ̂s,Θ̃.

Suppose for some
(
s′, Θ̃′s′

)
, I have η̂

(
s′, Θ̃s′

)
< 0. As the optimal policy satisfy π∗ (s′ |·) ≥ 0,

there exists a sequence of strategies with signal s′ and bad states Θ̃s′
1 , Θ̃s′

2 , · · · , Θ̃s′

k≤|Ih(s′)|, who have
positive weights η̂

(
s′, Θ̃s′

j

)
> 0, and Θ̃s′ ⊂ ∪j≤kΘ̃s′

j .

Then I redefine the strategies to eliminate η̂
(
s′, Θ̃s′

)
< 0. First, I construct a strategy that

lends liquidity to states Θ̃′s′ via signal s′, with structure κ̂s′,Θ̃′ ∝ χ∗s′,Θ̃′s
′
, where χ∗ (s, θ) is the joint

probability in the optimal policy. It is easy to show that there exists some Θ̂ with Θ̂∩Θ̃′s′ = ∅, which
lends liquidity in the constructed strategy. Specifically, there exists some ∆χ̂s′,Θsg∪Θ̂ ≤ χ̂∗s′,Θsg∪Θ̂

that provides ∆Ls′,Θsg∪Θ̂∆χ̂s′,Θsg∪Θ̂ =
(
−∆Ls′,Θ̃′s

′
)
χ∗s

′,Θ̃′s′ liquidity. Hence, I have constructed a
strategy and it has a positive weight η̂.

Second, I decompose π∗ conditional on the constructed strategy and weight being included in
the decomposition. Specifically, let χ̂denote the joint distribution when χ∗s,Θ̃ and ∆χ̂s′,Θsg∪Θ̂ are
substracted from χ∗, under which s′ is reported at |Ih (s′)| less states. Then I find the new weights{
η̂
(
s, Θ̃s

)}
and structures

{
κ̂
(
s, Θ̃s

)}
given χ̂.

I repeat the previous two steps whenever some η̂ < 0, until for all Θ̃s′with
(
−∆Ls′,Θ̃

)
κ̂s
′,Θ̃ > 0,

I have
∣∣∣∪Θ̃s′

∣∣∣ ≤ |Ih (s′)|. Due to the binding obedience constraints, equality holds and non-negative
weight for the last strategy in the decomposition is ensured.

By a similar argument, I could focus on η̂
(
s, Θ̃s (θ)

)
κ̂
(
s, Θ̃s (θ)

)
≥ 0.

Step 3.
I prove the second part of the proposition. The idea is that π∗ prioritizes more efficient strategies

in a linear problem, so the number of risk sharing strategies should be reflected in the shadow
values of influencing beliefs at specific states, q (θ). Let Θ̂ (q∗) ≡ {θ ∈ Θ |q (θ) > w0 (θ)}, which
corresponds to the states where π∗ (sl |θ ) = 0 and so involve some risk sharing. I argue that

∣∣∣Θ̂∣∣∣ = k.

“k ≤
∣∣∣Θ̂∣∣∣”: let ΘG (π∗) ≡

{
θ
∣∣∣θ ∈ Θs

g and π∗
(
s
∣∣∣θsg ) > 0

}
denote the good states involved in

π∗. Suppose for θg ∈ ΘG (π∗), there are r (θg) ≥ 1 risk sharing strategies that borrow from
θg. Let

(
s′, Θ̃′; θg

)
denote a typical strategy that is involved. Its cross-state borrowing price(

µs
′
)>

= [· · · , µi (s′) , · · · ]>i∈Ih(s′) is implied by q (θ′) over θ′ ∈ Θ̃′ :

q
(
θ′
)

= w
(
s′, θ′

)
+

∑
i∈Ih(s′)

µi
(
s′
)

∆Li
(
s′, θ′

)
⇒
(
µs
′)> =

(
ws′,Θ̃′ − qΘ̃′

)> [(
−∆Ls′,Θ̃′

)>]−1
,
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which further implies

q (θg) = w
(
s′, θg

)
+
(
ws′,Θ̃′ − qΘ̃′

)> [(
−∆Ls′,Θ̃′

)>]−1

︸ ︷︷ ︸
=(µs′)>

(
∆Ls′,θg

)
. (53)

This holds for all r (θg) strategies, which corresponds to r (θg) restrictions on q (θg) and ∪qΘ̃′ .
“k ≥

∣∣∣Θ̂∣∣∣”: suppose k <
∣∣∣Θ̂∣∣∣. Note that sl ≡ (l, · · · , l) is not reported on Θ̂. From the dual

problem constraint (24), I have q (θ) ≥ w (sl, θ) = w0 (θ), where the multipliers of (14) are zero
as shown in Lemma 1, and sl implements the autarky market equilibrium under Assumption 2.
Hence, I have

∣∣∣Θ̂∣∣∣ constraints on k variables
{
η
(
s, Θ̃s; θsg

)}
, which contradicts with k <

∣∣∣Θ̂∣∣∣.
Therefore, k =

∣∣∣Θ̂∣∣∣.
B.7 Proof of Proposition 4

Proof. Step 1.
I represent interbank payments in vector and matrix form, and show that they are essentially

linear functions of the liabilities youti of solvent banks, and the out-of-network cash flows Ai − vi of
banks that default on junior liabilities (hence Ãi = Ai).

For any joint (s, θ), let Solv, Dflt and Fail respectively denote the subset of banks that are
solvent, default on junior liabilities and default on senior liabilities. Let C (s, θ) be a selection
matrix that selects the subset of banks as in the superscript; for example,

CSolv
ij ≡


1, if i = j and i ∈ Solv,

0, if i = j and i /∈ Solv,

0, if i 6= j.

Let K denote the interbank liability weight matrix, where Kij ≡ yij
youtj

for i 6= j denotes the
proportion of lender bank i’s claim on borrower bank j in borrower bank’s total interbank liabilities;
I normalize Kii ≡ 0.

Hence, according to (8), I have

CDfltx = CDflt
(
Ã− v

)
︸ ︷︷ ︸

out-of-network net inflow

+ KCDfltx︸ ︷︷ ︸
payments from Dflt

+ KCSolvy︸ ︷︷ ︸
full payments from Solv

, (54)

where x, y, Ã and v are all n × 1, and are respectively the vector forms of bank’s total actual
interbank payments xi ≡

∑
j 6=i xji, interbank liability yi, project payoff Ãi and senior liability vi.

Solving for CDfltx in (54), a bank’s underlying excess cash flow ∆Li (s, θ) satisfies

∆Li (s, θ) = δ
{
Ãi + (Ki)>CSolvy + (Ki)> (I −K)−1

[
CDflt

(
Ã− v

)
+ (Ki)>CSolvy

]}
−vi−yi.
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Step 2.
Suppose in the optimal information structure, s is reported at bad states Θ̃s. I argue that a

sufficient condition for replacing s with s′ which additionally reports s′i′ = h at Θ̃s is

∆Li′
(
s′, θ

)
≥ 0, or min

i∈Ih(s)

Ai′

Ai

∆Li (s, θ)
∆Li′ (s′, θ)

≥ ρ
(
i′, s

)
. (55)

First, I focus on risk sharing strategies with θsg = θ to prove the second part of the proposition.
For a given strategy

(
s, Θ̃s; θ

)
with positive weight η > 0 in π∗, the obedience constraint for

i ∈ Ih (s) says
∆Li

(
s, θ
)

+
∑
θ∈Θ̃s

κ
(
s, θ; θ

)
∆Li (s, θ) = 0.

Note that for any i′ 6= Ih (s), and a signal that additionally reports i′ with h, i.e., s′ ≡
(
s′i′ = h, s′−i′ = s−i′

)
,

the above condition is violated for i′ under s′. Instead there exists some

ρ
(
i′, s

)
≡ min

θ∈Θ̃s
min

1,

 ∆Li (s, θ)
∆Li

(
s, θ
)
 min
i∈Ih(s)

∆Li′ (s′, θ)
∆Li′

(
s′, θ

)
−1


+ ∈ (0, 1)

that scales down the probability of s′ such that

∆Li′
(
s, θ
)

+ ρ
(
i′, s

) ∑
θ∈Θ̃s

κ
(
s, θ; θ

)
∆Li′

(
s′, θ

)
≥ 0.

As for associated payoff, the optimality of the strategy implies that (ρκ)>ws′,Θ̃s < (κ)>ws,Θ̃s . Let
ρ (i′, s) be the threshold value such that the scaled down probability of s′ delivers the same payoff

as the original strategy with s, i.e.
(
ρκ
)>
ws′,Θ̃s = (κ)>ws,Θ̃s . Under the symmetric leverage

Assumption 4, I have ∆Li′(s′,θ)
∆Li(s,θ) = Ai′

Ai
and the sufficient condition boils down to (55).

Step 3.
I show that the sufficient condition (55) is related to ry and rv + ry as stated in the proposition.
Let ζi ≡ Ai

A = yi
y = vi

v characterize the size of bank i, and ζ the vector form. Let selection
matrix CG denote the set of banks with good projects Ãi > 0. Then the sufficient condition could
be written in matrix form as

min
i∈Ih(s)

v + y − δ
ζi

{
Ãi + (Ki)>CSolvζy + (Ki)> (I −K)−1

[
CDflt

(
CGζA− ζv

)
+ (Ki)>CSolvζy

]}
v + y − δ

ζi′

{
Ãi′ + (Ki′)>C ′Solvζy + (Ki′)> (I −K)−1

[
C ′Dflt

(
CGζA− ζv

)
+ (Ki′)>C ′Solvζy

]}
(56)

≥ ρ
(
i′, s

)
(57)

where C ′Solv and C ′Dflt refer to respectively the set of banks that are solvent and default on junior
liabilities under (s′, θ).
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From the construction of s′, I have C ′Solv ≥ CSolv, C ′Dflt ≤ CDflt and C ′Solv − CSolv ≥
CDflt − C ′Dflt; in addition, CSolv, C ′Solv decrease in y and CDflt, C ′Dflt increase in y. As a
result, ζi′

ζi

Li(s,θ)
Li′ (s,θ)

decreases in y. This implies that the left hand side of (56) increases in y, which
completes the second part of the proposition.

As for the first part of the proposition, note that with a relatively large A, some probability
constraint of the original risk sharing strategy

(
s, Θ̃s; θ

)
binds at θ ∈ Θ̃s, which leads to a smaller

ρ (i′, s) as determined in the condition for same payoff,
(
ρκ
)>
ws′,Θ̃s = (κ)>ws,Θ̃s . On the other

hand, with a relatively large A, the good states for s also becomes good states for s′ that additionally
reports s′i′ = h.

B.8 Simplification of Solution Structure

Proposition 10. There exists constants p and p, such that when p ∈
[
p, p

]
, the optimal policy π∗

has the following structure

{s |π (s |θ ) > 0} =



s∗ θ,

sh, θ : 1 < B (θ) ≤ BNCP
,

s∗, sh, sl θ ∈ Θ̃∗s,

sl Otherwise.

where
(
s∗, Θ̃∗s; θ

)
has the highest index ξ among all strategies that borrow to states with B (θ) >

B
NCP .

Proof. Suppose pi = p. I argue that there exists an p ∈ (0, 1) such that when p ≥ p, I can construct
π∗ by finding the maximum ξ∗

(
s, θ; θ

)
under θsg = θ. The idea is, cross-bank signal choice is only

relevant when banks have low profitability on average and belief updating is sensitive. Either all
excess inflows are exhausted (OB bind) at the maximum ξ∗, or they allow banks to refinance at
worse states with more shocks, where cross-state borrowing is much less expensive and sh dominates
when p is relatively large.

First, I argue that if some state θ̂ 6= θ has excess inflows for all banks, i.e., ∆Li
(
sh, θ̂

)
≥ youti

for all i, then π∗
(
sh
∣∣∣θ̂) = 1 and the optimal policy implements perfect cross-bank risk sharing at

these states. Suppose not, and π∗
(
s′
∣∣∣θ̂) > 0 for some signal s′ 6= sh and s′ is also reported at

Θ̂s′ . Let B (θ) ≡
∑
i 1{Ãi(θ)=0} denote the number of project shocks. Under Assumption 4, banks

are balanced yini = youti as
∑
i y
in
i =

∑
youti . It follows that sh implements complete netting of all

interbank liabilities. Thus for all states θ with B (θ) = B
(
θ̂
)
, I have ∆Li (sh, θ) ≥ 0 for all i, and

π (sh |θ ) = π
(
sh
∣∣∣θ̂) = 1 results in the maximum possible payoff

∑
θ:B(θ)=b(θ̂) P (θ) [

∑
i λi − w0 (θ)]

at theses states. For the reported signal s′, if s′ consumes liquidity at θ : B (θ) = B
(
θ̂
)
, the

associated payoff is striclty smaller. If s′accumulates liquidity, then s′ is reported at significantly
less states with B

(
θ̂
)
shocks each with P (θ) [

∑
i λi − w0 (θ)] less payoff than sh. When p is relatively
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large, this effect dominates any extra payoff of reporting s′ at states with more shocks B > B
(
θ̂
)
.

Second, I argue that for all other “good states”, θ and θs 6=shg , it is without loss of generality
to focus on θ. For any θsg 6= θ, π (s |θ ) for θ ∈ Θ̂s can be replicated by reporting s at θ, and the
resulting π

(
s
∣∣∣θ) ≤ π

(
s
∣∣∣θsg ). Hence, I consume the excess liquidity at θsg 6= θ when that of θ is

exhausted.
Last, when p is sufficiently large, either π

(
s∗
∣∣∣θ) = 1 for (s∗, θ∗) with the highest index, or

π
(
s∗
∣∣∣θ) < 1 and s is reported at θ to extend cross-state risk sharing for other states. If these

states have more project shocks than b (θ∗), where cross-state borrowing is much less expensive and
sh dominates.

B.9 Proof of Proposition 5

Proof. First, I formalize the symmetric equilibrium in the context of complete network. Recall that
H (s) ≡ |Ih (s)| and B (θ) ≡

∑
i 1{Ãi(θ)=0} denote respectively the number of banks that s reports

as h, and the number of underlying project shocks at θ. Let HB (s, θ) ≡
∑
i 1{Ãi=0,si=h} denote

the number of banks with bad projects that signal s reports as h. As ex post banks fall into four
categories depending on Ãi and si realizations, in a symmetric equilibrium, conditional probability
π (s |θ ) is the same for any pair of (s, θ) that share the same number of banks in each category.
Specifically,27

∀ (s, θ) ,
(
s′, θ′

)
with H(s)=H

(
s′
)
, B(θ)=B

(
θ′
)
, HB (s, θ) = HB

(
s′, θ′

)
: π (s |θ ) = π

(
s′
∣∣θ′ ) . (58)

Second, I argue that in the optimal solution π∗, any signal s 6= sl reports si = h on banks with
good project, i.e., HB (s, θ) = H (s)− (n−B (θ)). Taking into account the symmetric structure in
(58), a typical passing bank’s average total inflows across the symmetric states is

Li (s, θ) = H (s)−HB (s, θ)
H (s) A︸ ︷︷ ︸

project payoff

+ H (s)− 1
n− 1 y︸ ︷︷ ︸

payments from banks with h

+ (n−B (θ))− (H (s)−HB (s, θ))
n− 1 1{sj=l,Ãj>0}x·j︸ ︷︷ ︸

≤y︸ ︷︷ ︸
payments from banks with l

,

which increases in H (s). In addition, w (s, θ) increases in H (s). Hence, any signal s 6= sl re-
ports banks with good project as h. I summarize a class of symmetric risk sharing strategies as(
s (H) , θB; θsg

)
.

Next, I calculate the efficiency index ξ
(
s (H) , θB; θ

)
, based on which to solve for the optimal

policy when the simplification conditions hold as in Proposition 10. According to Lemma 3, for
states with 1 ≤ B (θ) ≤ BNCP , I have π∗ (sh |θ ) = 1. Hence, I focus on states with B (θ) > B

NCP

27Note that (s, θ) and (s′, θ′) may share the same signal s = s′ or the same state θ = θ′.
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that borrow liquidity from θ. I have

ξ
(
s (H) , θB; θ

)
= η

(
s (H) , θB; θ

)
·
[
H − (n−B) 1

B≤BC
]

︸ ︷︷ ︸
∆w(s(H),θB)

·

δ (A+ y)− v − y︸ ︷︷ ︸
∆Lθ

v + y − δ
(
H − 1
n− 1 y + n−B

H
A

)
︸ ︷︷ ︸

−∆Ls(H),θB

.

For any class of symmetric strategies that includes multiple (s, θ), the liquidity available to
borrow from θ is scarce when δ ≤ δ

c, and η
(
s (H) , θB; θ

)
= P

(
θ
)
. Then I solve for the (H,B)

that delivers the highest ξ. With some calculation, there exists a threshold Â such that when
A ≤ Â, I have ∂ξ(s(h),θB ;θ)

∂Bh
> 0. Hence, the optimal policy either reports sh or sl. Plugging in sh,

for B > B
NCP I have

ξ
(
sh, θ

B; θ
)

=


P
(
θ
)
n · δ(A+y)−v−y

v+(1−δ)y−n−B
n

δA
, B

NCP ≥ BC
,

P
(
θ
) [
B + (n−B) 1

B>B
C

]
· δ(A+y)−v−y
v+(1−δ)y−n−B

n
δA
, B

NCP
< B

C
.

If BNCP ≥ B
C , the index decreases in B. If BNCP

< B
C and A is relatively small say A ≤ Â′,

ξ
(
sh, θ

B; θ
)
has the largest value when B = bBCc+ 1. As both the optimality of sh and bBCc+ 1

rely on a relatively small A, I can find a threshold rcy with y
A ≥ r

c
y as stated in the proposition.

B.10 Proof of Proposition 6

Lemma 7. Suppose p ∈
[
p, pR

]
and (38) hold. Let

(
s∗, Θ̃∗s; θ

)
denote the strategy with the highest

index ξ
(
s, θ; θ

)
. Then the optimal policy π∗ reports the following signals across states:

{s |π (s |θ ) > 0} =



s∗ θ,

sh, θ : 1 < B (θ) ≤ BNCP
,

s∗, sh, sl θ ∈ Θ̃∗s,

sl Otherwise.

Proof. When p ≥ pR, Lemma 3 applies and P
(
sh
∣∣∣1 ≤ B (θ) ≤ BNCP

)
. For states with more

project shocks B (θ) > B
NCP , under condition (38), all banks default in autarky and w0 (θ) = 0.

There are two implications. First, for any signal s 6= sl, the relevant good state is θg = θ. Second,
since ∆w (sh, θ) = n when B (θ) > B

NCP , the regulator prefers to lend the liquidity accumulated
1 ≤ B (θ) ≤ BNCP to states with less shocks, so sh is reported at states with B (θ) = bBNCP c+ 1.

When p ≤ pR < 1, the cross-state risk sharing is constrained and η < P
(
θsg

)
. Note that

the symmetry in the ring structrure makes this circumstance more likely to arise. According
to Proposition 10, the optimal policy has the structure presented in the lemma. I argue that
θ ∈ Θ̃∗s have project shocks of BNCP + 1 because the states with more shocks are dominated. For
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expositional convenience, I assume that sh is also reported at θ ∈ Θ̃∗sinstead of other states with
B (θ) = B

NCP + 1, despite some violation of equilibrium symmetry.

Lemma 8. (Distance Strategy) Suppose (38) and
[
pR, pR

]
hold. Among the states with B project

shocks, strategies with the highest ξ is distance-based: there exists a θ̃ ∈ Θ̃s and distance d ≥ 1, such
that starting from any bank with negative project shock (included) till the next bank with project
shock (shock bank excluded), the signal reports l on the first d − 1 banks, and h on the rest of the
banks.

Proof. The idea is for any violation against the structure stated in the lemma, there is improvement
from switching the signal h downstream to lender banks and the project shocks upstream on
borrower banks.

First, I rule out cases where for a sequence of banks have good projects, a signal reports h on
some borrower banks (upstream) but l on some lender banks (downstream). Specifically, suppose
π (s′ |θ′ ) > 0 for

θ′ : Ãj > 0 for i ≤ j ≤ i+ d where d > 1, and Ãi+d+1 = 0;

s′ : s′j ≡


h, i ≤ j ≤ i+ d1 < i+ d,

l, i+ d1 < j ≤ i+ d,

unrestricted, otherwise.

I move the project shock of bank i+ d at θ′ one bank downstream, and call the resulting state θ′′,
i.e.,

θ′′ : Ãj
(
θ′′
)
≡

Ãj+1 (θ′) , j ∈ {j |i+ d ≤ j < i+ d2, sj = l, si+d2 = h}

Ãj (θ′) , otherwise.

Then I adjust the probability distribution by moving the probability of s′ on θ′ to θ′′:

π̂
(
s′ |θ

)
=


π (s′ |θ′ ) + π (s′ |θ ) , θ = θ′′,

0, θ = θ′,

π (s′ |θ ) , θ 6= θ′, θ′′.

One can verify that the new information structure is feasible (the obedience constraint for bank
i could be slack while those for other banks are equivalent) and delivers the same payoff to the
regulator.

Second, I rule out cases where for a sequence of banks have good projects, a signal reports h
on some borrower banks (upstream) and lender banks (downstream), but reports l on some banks
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in between. Specifically, suppose π (s′ |θ′ ) > 0 for

θ′ : Ãj > 0 for i < j ≤ i+ d where d > 1 and Ãi+d+1 = 0;

s′ : s′j ≡


h, j = i, i+ d1 + 1, · · · , i+ d,

l, j = i+ 1, · · · , i+ d1,

unrestricted, otherwise.

As the obedience constraints associated with s′are binding, the above structure implies that for
any bank j in i < j ≤ i + d1, there exists a state θ with π (s′ |θ ) > 0 and Ãj (θ) = 0; otherwise,
there exists a bank ĵ in i < ĵ ≤ i + d1 that is reported with s′

ĵ
= l but ∆Lĵ > 0 at all states

with π (s′ |θ ) > 0. Then I propose the adjustment by “postponing” the s′i = h to its lender bank
(downstream). Specifically, I replace s′ with s′′

s′′ : s′′j ≡


s′j , j 6= i, i+ 1,

h, j = i+ 1,

l, j = i,

and adjust the cross-state distribution such that the adjustment is feasible and delivers the same
payoff to the regulator. Note that some obedience constraints become slack. Let

î ≡ sup
k

{
k < i

∣∣∣Ãk+1(θ′) = 0, s′k+1 = l
}
,

and

π̂
(
s′′ |θ

)
=



π (s′ |θ ) , θ ∈
{
θ
∣∣∣Ãi+1 = A

}
∪
{
θ
∣∣∣Ãi−1 = Ãi = Ãi+1 = 0

}
,

0, θ : Ãi−1 = A, Ãi+1 = 0,

π (s′ |θ ) + π
(
s′
∣∣∣θ̂) , θ : Ãi = A, Ãî = 0, otherwiseÃj(θ) = Ãj(θ̂); θ̂ : Ãi−1 = A, Ãi = Ãi+1 = 0,

π (s′ |θ ) + π
(
s′
∣∣∣θ̃) , θ : Ãi+1 = A, Ãî = 0, otherwiseÃj(θ) = Ãj(θ̃); θ̃ : Ãi−1 = Ãi = A, Ãi+1 = 0.

By similar argument, I know the adjustment holds for any d1 > 1.

Lemma 9. (Connected Shocks)Suppose (38) and
[
pR, pR

]
hold. For states with B (θ) ≥ BNCP +1,

Θ̃∗s include the state where project shocks are on adjacent banks.

Proof. This lemma discusses at which states to lend liquidity. Without loss of generality, for any
states with B (θ) ≥ BNCP + 1 of interest, I assume that there is only one area of adjacent project
shocks, and all other project shocks are disjoint.

First, I argue that I can focus on cases where for any two non-adjacent banks with project
shocks, say Ãi1 (θ′) = Ãi2 (θ′) = 0, at least one bank i in between—i1 < i < i2 and i2—is reported
with h with positive probability. Otherwise, I denote the violation as follows: for any s′ 6= sl
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reported at θ′, π (s′ |θ′ ) > 1, I have s′i1+1 = s′i1+2 = · · · = s′i2−1 = l. Then the regulator prefers
reporting s′ at another state θ′′ where the project shock at i2 is switced upstream to bank i1 + 1.
i.e., Ãi1+1 (θ′′) = 0, Ãi2 (θ′′) = A, and Ãj (θ′′) = Ãj (θ′) for j 6= i1 +1 and i2; I make the adjustment
of π̂ (s′ |θ′ ) = 0 and π̂ (s′ |θ′′ ) = π (s′ |θ′ ) + π (s′ |θ′′ ).

Next, conditional on states with B shocks and the distance-based structures in Lemma 8, I
compare the efficiencies of lending to states with different shock distributions which statisfy the
first point above. I show that it is most efficient to lend to states Θ̃s that includes θBConn where
shocks are on adjacent banks.

Given the distance-based strategy structure, for each state of interest, it is convenient to define
a bank sequence as the set of banks in between two impaired banks, where the first impaired bank
is included and the impaired bank in the downstream is not included. If only one bank is reported
with si = h in each sequence, one can use a simple replication argument to show that θBConn is
prefered. Otherwise, the distance threshold d and the number of bank sequences z (θ) are sufficient
statistics for index ξ

(
s (d) , θ; θ

)
. I show that the index

ξ
(
s (d) , θ; θ

)
≤ X ·max

{ |Ih (s)|+ [z (θ)− 1] (d− 1)
y + (1− δ) v − δd (A− v) ,

|Ih (s)|+ z (θ) (d− 1)
v

}
,

where X is a constant that captures the excess liquidity to borrow from the good state, and d− 1
is the upper bound of banks that turn out to be solvent but are reported si = l.

Then I show that conditional on the distance-based strategy in Lemma 8 and distance d, the
index is higher if liquidity is lent to state project shocks are on adjacent banks. Let

θBConn : Ã1 = Ã2 = · · · = ÃB = 0, ÃB+1 = ÃB+2 = · · · = Ãn = A.

Depending on the asset realization of the critical bank î that is just over d distance from shock, I
have

ξ
(
s (d) , θBConn; θ

)
>


n−B−d+1

y+(1−δ)v−δd(A−v) >
|Ih(s)|+[z(θ)−1](d−1)
y+(1−δ)v−δd(A−v) , Ãî > 0,

n−B+z(θ)
v > |Ih(s)|+z(θ)(d−1)

v , Ãî = 0.

Proof of Proposition 6

Proof. The proofs for the structure of the signal distribution are shown in Lemma 7, 8 and 9. This
part examines the optimal choice of d and characterizes the collection of bad states Θ̃∗ that borrow
liquidity. For illustration purpose, I analyze the choice of d when d ≥ 1, and the discussion is
similar for the d = 0 case with a little difference in equation expositions.

From Lemma 8 and 9, I discuss the index ξ
(
s (d) , θBConn; θ

)
, which represents letting each bank

i = B + d, · · · , n borrow from its own excess liquidity at θ to itself at a collection of states Θ̃s(d)

that includes θBConn where Ã1 (θ) = · · · = ÃB (θ) = 0, ÃB+1 (θ) = · · · = Ãn (θ) = 0. Note that
there are n − 1 other states that are symmetric to θBConn, and it is without loss of generality to
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focus on θBConn to analyze the index.
To begin with, I solve for the optimal Θ̃s(d) for a given signal s (d). Because all obedience

constraints are binding, I know for any bank i = B + d + 1, · · · , n with Ãi
(
θBConn

)
= A and are

reported si (d) = h, there exists some θ 6= θBConn and θ ∈ Θ̃s(d) with Ãi (θ) = 0. Then for given(
s (d) , θBConn

)
, sufficient statistics for ξ are

Bh ≡
∑
i

1{Ãi(θ)=0,si=h} =
n∑

i>B+d
1{Ãi=0}.

By an argument similar to Lemma 9, I consider θ ∈ Θ̃s(d) with Ã1 = · · · = ÃB−Bh = 0. For
notational convenience, let θ(B,Bh)denote a typical state of Θ̃s(d), and θBConn = θ(B,0). Depending
on whether bank B + d’s borrower bank defaults at θ(B,Bh),

LB+d
(
s (d) , θ(B,Bh>0)

)
=

(d+HB) (A− v) , xB+d,B+d−1 < y,

A+ y, xB+d,B+d−1 = y.

In addition, as some of banks B − Bh + 1, · · · , B + d− 1 that are reported l but may turn out to
be solvent, I have

w
(
s (d) , θ(B,Bh>0)

)
=


[
Bh − by+(1−δ)v

A−v − (d− 1)c
]+

+ |Ih (s)| , 1 ≤ Bh < B,

n, Bh = B.

For other banks i > B + d, I have Li>B+d
(
s (d) , θ(B,Bh)

)
= A or 0. The obedience constraints of

bank B+ d and a typical bank i > B+ d pinns down the cross-state distribution of π (s (d) |·) over
Θ̃s(d), where states θ(B,Bh>0) are symmetric.

As a result, the index ξ
(
s (d) , θBConn; θ

)
has the following three possible representations:

ξ
(
s (d) , θBConn; θ

)
∝



{[
(1− δ) v + y − δ

(
d̄− 1

)
(A− v)

] A

|Ih(s)|−1

A− v
δ

+ A

|Ih(s)|−1
− (δA− v)

}−1

,{[
(1− δ) v + y − δ

(
d̄− 1

)
(A− v)

] δBhA

|Ih(s)|−1

(1−δ)v+y−δ(d̄−1)(A−v)+ δbhA

|Ih(s)|−1

− (δA− v)
}−1

,
[
(1− δ) v + y − δ

(
d̄− 1

)
(A− v)

] BhA

|Ih(s)|−1 +
∆w
(
s(d),θ(B,Bh>0)

)
|Ih(s)| (δA−v)

δBhA

|Ih(s)|−1 +
∆w
(
s(d),θ(B,Bh>0)

)
|Ih(s)| [(1−δ)v+y−δ(d̄−1)(A−v)]

− (δA− v)



−1

.
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From their monotonicy in Bh, I know28

B∗h ∈
{
d(1 + δ) y + δv

A− v
e − d, d(1 + δ) y + δv

A− v
e − d+ 1, B

}
.

Conditional on the choice of Bh, ξ
(
s (d) , θBConn; θ

)
decreases in y, so the choice of d decreases in

y.

B.11 Proof of Proposition 7

Proof. The key relies on the non-emptiness of good project return A (conditional on other parame-
ters n, δ, p, v, y). I need A to be in an intermediate level: bank profitability is low and cross-state
risk sharing is constrained, under which debt overhang of senior creditors is expensive; but A is
not too low relative to interbank spillover, under which the benefit of cross-bank risk sharing in the
complete structure is dominated.

First, I need WC
0 ≥ WR

0 in autarky. According to Acemoglu et al. (2015), conditional on only
one shock, the complete structure is always weakly more stable when the ring structure. Conditional
on multiple shocks, the result applies when y is relatively large. Hence, a sufficient condition for
WC

0 ≥WR
0 is

y > (n− 2) (A− v) .

Under this condition, the first part of Assumption 3 is satisfied, and (38) holds if BNCP ≥ 1.
Second, I construct conditions under which WR

(
π∗R

)
> WC

(
π∗C

)
. I propose a feasible

policy πR in the ring network, and construct conditions under which the resulting system stability
WR

(
πR
)
is higher than that under any feasible policy in the complete network, i.e., WR

(
πR
)
>

WC (π). I show that this essentially requires A ≥ A (v, y, n, δ).
To show this, I add conditions under which the comparison of WR

(
πR
)
and WC (π) is equiv-

alent to the comparison between indices ξ. Essentially, this requires p ≤ p ≤ pC , under which
Proposition 10 applies and thus W (π) is a linear function of the largest ξ. In the ring structure, I
propose strategy

(
s
(
d, bBNCP c+ 1

)
, Θ̃
(
θ
bBNCP c+1
Conn

)
; θ
)
as in Proposition 6. The associated

ξR > P
(
θ
)
HR

(
s
(
d, bBNCP c+ 1

)) δ (A+ y)− v − y
−∆LRbBNCP c+d

(
s (d, bBNCP c+ 1) , θbB

NCP c+1
Conn

) ,
where the inequality is because the posterior expectation of ∆LbBNCP c+d (s, θ) over Θ̃

(
θ
bBNCP c+1
Conn

)
must be larger, if all the obedience constraints of the passing banks bind. Then a sufficient condition

28The third equation is monotone in Bh, and the first equation does not depend on Bh, in which case I pick
Bh = d (1+δ)y+δv

A−v e − d.
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for ξR > ξC
(
s (H) , θB; θ

)
is

HR
(
s
(
d, bBNCP c+ 1

))
v + y − δ (A+ (d− 1) (A− v)) ≥

HC

v + y − δ
(
HC−1
n−1 y + n−B

HC A
) . (59)

There exists some A (v, y, n, δ) such that the above condition is satisfied when A ≥ A (v, y, n, δ).
In sum, I need p ≤ p ≤ pC and y ≥ y (A, v, n, δ) for scarce liquidity and simplified character-

ization of regulator payoff, A ≥ A (v, y, n, δ) for WR
(
πR
)
> WC (π), and the previous general

parameter assumptions 2 and 3. Instead of explicitly characterizing the joint set of the conditions,
I refer to the numerical example in the paper to argue the non-emptyness.

B.12 Proof of Proposition 8

Proof. First, I introduce some notations to refer to a core bank and its connected periphery banks.
Let ic denote a typical core bank, and ip a typical periphery bank. To illustrate connection, I use
c(ip) to refer to the core bank that periphery bank ip is connected to, and p(ic) refer to a typical
periphery bank that is connected to core bank ic.

The idea to find conditions under which whenever a signal s reports sip = h on a periphery
bank, it also reports sc(ip) = h on the connected core bank due to the strong complementarity.
Combining with the core banks’ better risk sharing with more counterparties, I show that the core
banks receive prefered treatment.

I introduce ζi as the size-adjusted liquidity level, where the size refers to a bank’s excess liquidity
at θ

ζi (s, θ) ≡ ∆Li (s, θ)
δAi − vi − (1− δ) yi

.

As banks share the same leverage (see Assumption 4), from the interbank payment rule, ζ across
the connected banks satisfy

ζi(sl, θ) = δÃi − vi − yi
δAi − vi − (1− δ) yi

+
∑
j 6=i

yij∑
s 6=i yis

{
min

[
ζj(sl, θ),

δyi
δAi − vi − (1− δ) yi

]}+
.

For simplicity, I use (s, θ) to refer to a risk sharing strategy where θ ∈ Θ̃. Without loss of
generality, I can focus on strategies that satisfy the following: if si = h, then sj = h for all j 6= i

with ζj(s, θ) ≥ ζi(s, θ). Hence, I have the following scenarios:
1. If π (s′ |θ′ ) > 0, where s′ic = h and Ãp(ic) (θ′) > 0, I have s′p(ic) = h.
2. If π (s′ |θ′ ) > 0, where s′ip = h and Ãip (θ′) > 0 Ãc(ip) (θ′) > 0, I have s′c(ip) = h under the

following conditions.
On the one hand, there is strong externality of c(ip) on ip: if s′c(ip) = h, I have

ζip = sup ζ = 1 + yi
δAi − vi − (1− δ) yi

;
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if instead s′c(ip) = l, I have

ζip = δAip − vi − δyi
δAip − vi − (1− δ) yi

+ ζc(ip) > ζc(ip).

Hence, cross-bank risk sharing is more efficient under large y, there exists threshold ŷ such that
when y > ŷ, the regulator reports h on both ip, c(ip).

3. If π (s′ |θ′ ) > 0 and Ãip (θ′) Ãc(ip) (θ′) = 0. A typical core bank is more efficient in risk
sharing as it has more counter-parties and project shocks are i.i.d. across banks. Specifically,

P
(
ζip(sl, θ) ≥

δA− v − δy
δA− v − (1− δ) y

)
= p2,

P
(
ζic(sl, θ) ≥

δA− v − δy
δA− v − (1− δ) y

)
= p[1− (1− p)t(ic)],

where t(ic) =
∑
j 6=ic 1{Ric,j>0} is the number of bank ic’s counter-parties. Moreover, For any

ζ ′ < sup ζ(sl, θ),
P(ζip ≥ ζ ′) ≤ P(ζc(ip) ≥ ζ ′ − 1).

Hence, when the marginal (s, θ) moves to ζi(s, θ) = 1− R
A−D , I have P(sip = h) ≤ P(sc(ip) = h). By

the similar arguement of risk sharing with multiple counterparties, P(sc(jp) = h|Ãjp = 0) ≥ P(sjp =
h|Ãjp = 0).

In sum, P(sip = h) ≤ P(sc(ip) = h).

64


	Introduction
	The Model 
	Model Setup
	Formulating the Information Design Problem
	Autarky
	Preliminary Analysis

	General Solution Properties
	Cross-state and Cross-bank Risk Sharing
	Dual Problem and Binding Obedience Constraints
	Risk Sharing Strategies 
	Illustrating Examples
	Comparative Statics

	Network Structure Implications
	Connectivity in Symmetric Networks
	Asymmetric Networks and Preferred Treatment
	Counterparty Default Component

	Conclusion
	Summary of Variables
	Mathematical Appendix
	Preliminary Lemmas
	Proof of Lemma 1
	Proof of Proposition 1
	Dual Approach
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Simplification of Solution Structure
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8


