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Abstract

Regulatory stress tests have become the primary tool for setting capital requirements
at the largest U.S. banks. The Federal Reserve uses confidential models to evaluate bank-
specific outcomes for bank-specific portfolios in shared stress scenarios. As a matter of
policy, the same models are used for all banks, despite considerable heterogeneity across
institutions; individual banks have contended that some models are not suited to their
businesses. Motivated by this debate, we ask, what is a fair aggregation of individually
tailored models into a common model? We argue that simply pooling data across banks
treats banks equally but is subject to two deficiencies: it may distort the impact of legitimate
portfolio features, and it is vulnerable to implicit misdirection of legitimate information to
infer bank identity. We compare various notions of regression fairness to address these
deficiencies, considering both forecast accuracy and equal treatment. In the setting of
linear models, we argue for estimating and then discarding centered bank fixed effects as
preferable to simply ignoring differences across banks. We present evidence that the overall
impact can be material. We also discuss extensions to nonlinear models.

1 Introduction

In the aftermath of the 2008 financial crisis, U.S. banking regulators adopted stress testing as

the primary tool for monitoring the capital adequacy of the largest banks. For each round of

annual stress tests, the Federal Reserve announces a “severely adverse stress scenario,” defined

by a hypothetical path of economic variables over the next several quarters. A typical path

includes an increase in unemployment, a decline in GDP, and projections for the level and

volatility of the stock market, among other variables. The largest banks provide the Fed

with detailed information about their loan portfolios and other assets. The Fed then applies

internally developed models to project revenues and losses for each bank through the stress

scenario. Banks are required to have sufficient capital to weather the projected losses.

The Fed does not disclose details of the models it uses to project revenues and losses.

The Fed makes clear that to ensure consistent treatment for different banks it uses “industry

models,” as opposed to models tailored to individual banks. As a matter of policy, the same

models are applied to all banks. Quoting Board of Governors [9] (p.3), “two firms with the

same portfolio receive the same results for that portfolio.”
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Banks have countered that the Fed’s models fail to capture bank-specific features that should

lower projected losses. They have made these arguments in requests for reconsideration of stress

test results. Of course, banks are not objective critics of the Fed’s supervision; but significant

heterogeneity among the largest banks is indisputable. The banks subject to annual stress

testing include universal banks, investment banks, large regional banks, the U.S. subsidiaries of

certain foreign banks, and a variety of more specialized financial firms. It is certainly possible

that bank-specific models would produce more accurate forecasts than a single industry model,

in which case using a single model entails a trade-off between forecast accuracy and consistency

across banks.

The heterogeneity among large banks motivates the questions we study: What is the best

way to aggregate bank-specific models into an industry model? Is simply ignoring bank identity

in estimating and applying models the best way to achieve fairness? To what extent is fairness

at odds with accuracy? Although the heterogeneity of large banks is widely recognized, we

know of no prior work that seeks to address this property within the constraints of the Fed’s

policy of equal treatment of banks. We will argue that addressing heterogeneity is preferable

to ignoring it.

The question of fairness in algorithms and models has received a great deal of renewed

interest in recent years, in some cases reviving earlier debates over fairness in testing and related

policies that were not explicitly “algorithmic;” see, for example, the overviews in Barocas,

Hardt, and Narayanan [6] and Hutchinson and Mitchell [28]. We draw on this literature, but

our setting differs in important ways from most discussions of fairness.

Algorithmic fairness is usually concerned with ensuring that certain protected attributes —

race or gender, for example — do not influence outcomes — such as hiring decisions or loan

approvals. Different methods can be compared based on alternative measures of influence and

the degree to which sensitive attributes are indeed protected.

The counterpart of a protected attribute in our setting is a bank’s identity; but this attribute

is not so much protected (in the sense that race and gender are) as inadmissible for the Fed’s

purpose. In stating that “two firms with the same portfolio receive the same results for that

portfolio,” the Fed is stating that bank identity is not a legitimate predictor of losses. Perhaps,

then, fairness is achieved as long as the Fed uses the same model for all banks. In other words,

perhaps “fairness through unawareness,” paraphrasing Dwork et al. [15], is sufficient in this

setting. Moreover, in questioning whether the Fed’s models apply to them, banks are not

claiming discrimination; on the contrary, they are asking for discrimination — asking that the

Fed change its models to recognize ways in which an individual bank differs from other banks.

To investigate these issues, we focus primarily on a simple setting in which the “true” loss
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rate for each bank is described by a bank-specific regression on portfolio features and scenario

features. The regulator’s goal is to aggregate these bank-specific models into a single model.

A natural interpretation of an “industry” model in this setting is a pooled regression based on

combining results across banks. The pooled model treats banks equally, but we show that it

has at least two significant deficiencies: when applied to heterogeneous banks, it can produce

poor measures of the marginal impact of individual features, even resulting in the wrong sign;

and it implicitly misdirects legitimate information in portfolio features to infer bank identity in

forecasting losses. The second of these deficiencies works against the spirit of equal treatment

of banks, even if bank identity is not explicitly used in the model.

We then investigate the application of ideas from algorithmic fairness in our setting. The

fairness literature has mainly focused on classification problems (hiring decisions and credit

approvals, for example), with regression problems getting somewhat less attention. Chzhen et

al. [12] and Le Gouic et al. [35] developed a method of particular importance for regression

that Le Gouic et al. [35] call “projection to fairness.” This method produces optimal forecasts

(in the least-squares sense) subject to a fairness constraint known as demographic parity. We

examine the application of this approach in our setting and conclude that it goes too far in

leveling results across banks.

The pooled method ignores fairness and the projection method goes too far in imposing

fairness, so we seek an intermediate solution. Johnson, Foster, and Stine [30] introduce a variety

of methods for introducing fairness considerations in regression. These include methods they

call “full equality of opportunity” (FEO) and “substantive equality of opportunity” (SEO). We

examine these methods in our setting and conclude that the FEO method provides an attractive

solution. In particular, we show that it addresses the two deficiencies of the pooled method

highlighted above: it removes the distortion in the pooled coefficients that results from bank

heterogeneity, and it prevents the misdirection of legitimate information to infer bank identity.

Indeed, we show that the only way to achieve lower forecast errors than the FEO method is

through such misdirection.

Moreover, the method is easy to interpret and implement: fit a pooled model with centered

bank fixed effects, and then discard the centered fixed effects to forecast losses. Including

the fixed effects prevents misdirection of legitimate information; discarding them is necessary

to treat banks equally; centering ensures that the overall mean forecast remains unchanged.

Although we mainly work with linear models, we show that these ideas can be extended to

nonlinear models as well.

We also investigate the empirical relevance of these considerations. We regress the loss

rates of loan portfolios (credit cards, first lien mortgages, commercial real estate, and corporate
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and industrial loans) on measures of portfolio quality (past-due rates and allowances for losses)

and macroeconomic variables. We document significant heterogeneity across banks in their

estimated coefficients, and we show that the difference in pooled and FEO estimates can be

material. This investigation is limited by the information banks make public — the Federal Re-

serve has access to far more granular data in forecasting losses. We cannot claim to approximate

the Fed’s forecasts; our goal is to provide evidence of the importance of heterogeneity.

We provide additional background on the Federal Reserve’s stress tests in Section 2. Sec-

tion 3 lays out our modeling framework and analyzes the pooled industry model within this

framework. Section 4 analyzes various ways to introduce fairness considerations, including the

projection-to-fairness and FEO methods. Section 5 presents our empirical results. Section 6

investigates cross-bank externalities that arise when bank-specific models are aggregated into a

common model: a change at one bank can impact loss forecasts at other banks. Effects of this

type are inevitable under model aggregation, but we argue that the effects are more transparent

and less objectionable under FEO than under a pooled model. Section 7 considers nonlinear

models. Additional supporting material is included in appendices.

We conclude this introduction with a brief discussion of some other research on bank stress

tests. Covas, Rump, and Zakrajsek [14], Kapinos and Mitnik [32], and Kupiec [34] find strong

evidence of heterogeneity in banks’ responses to macroeconomic shocks, and Kapinos and Mit-

nik [32] argue that ignoring heterogeneity can substantially underestimate projected capital

requirements. The related models of Hirtle et al. [29] and Guerrieri and Welch [26] forecast

aggregate results and are therefore not concerned with differences among banks. Heterogene-

ity in the accuracy of the Fed’s models for different banks is suggested by the comparisons in

Agarwal et al. [1], Bassett and Berrospide [7], and Flannery, Hirtle, and Kovner [18] between

the Fed’s results and results based on the banks’ own models.

A separate line of research considers the design of stress scenarios. Several studies (including

Breuer et al. [11], Flood and Korenko [20], Glasserman et al. [22], Pritsker [40], and Schuermann

[42]) have advocated the use of multiple scenarios to capture different combinations of risk

factors. Cope et al. [13] and Flood et al. [19] recommend designing scenarios to reflect bank

heterogeneity. Parlatore and Philippon [38] propose a theoretical framework for scenario design

as a problem of optimal information acquisition.

Several studies have investigated the information content of stress test results, either through

market responses (as in Fernandes, Igan, and Pinheiro [16], Flannery, Hirtle, and Kovner [18],

Georgescu et al. [21], Glasserman and Tangirala [23], Guerrieri and Modugno [25], Morgan,

Peristiani, and Savino [37], and Sahin, de Haan, and Neretina [41]) or through subsequent bank

performance (as in Kupiec [34] and Philippon, Pessarossi, and Camara [39]). Flannery [17]
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discusses just how much information the Fed should disclose about stress testing procedures

and outcomes. For perspectives on the effectiveness of the Fed’s stress tests, see Kohn and

Liang [33] and Schuermann [42].

2 Background

This section provides background on the Federal Reserve’s stress testing process and on the

heterogeneity of the participating banks.

2.1 Regulatory Bank Stress Tests

In early 2009, in the depths of the Global Financial Crisis, the Federal Reserve launched a

stress test of the 19 largest U.S. bank holding companies to gauge how much more capital they

would need if economic conditions continued to worsen. The results of the stress test were made

public, and the transparency and credibility of the process have been credited with restoring

public confidence and helping to end the crisis.

The Dodd-Frank Act, the package of reforms that followed the crisis, codified the use of

stress testing for bank supervision. The number of banks subject to DFAST (Dodd-Frank Act

Stress Tests) has varied over time. The current requirement applies annually to banks with

over $250 billion in assets and every other year to banks with assets between $100 billion and

$250 billion. The 2021 DFAST covered 23 banks, down from a peak of 35 in 2018. We refer to

the participating firms as “banks,” but they are more precisely holding companies, including

the U.S. subsidiaries of some foreign banks.

The inputs to the stress test analysis are the stress scenario, which is common to all banks,

and bank-specific balance sheet information. A scenario is specified through a hypothetical

path of economic variables over the next nine quarters. The 2021 DFAST specified paths for

28 variables, including GDP, inflation, unemployment, stock market and real estate indexes,

interest rates, exchange rates, and measures of overseas economic activity. Each bank submits

detailed information on its loans and other assets.

The Fed uses 21 models to integrate the stress scenarios with bank-level information to make

bank-level projections. For example, one model applies to commercial and industrial loans,

one to credit cards, one to commercial real estate loans, and another to first lien residential

mortgages. These models project losses in each of these portfolios. Some other models project

revenues.

The Fed does not disclose details of its models, either to banks or the general public. But

it does describe its general modeling approach in public documents. At a high level, a model

assigns a loss rate to a set of bank-specific loan portfolio features x and a common set of scenario
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variables z through a function f(x, z). The function f is estimated from past observations of

the macro variables and the bank-specific variables for multiple banks. Thus, f is estimated as

an industry-wide model and then applied individually to each bank.

This approach is described, for example, on p.3 of Board of Governors [9], where we read,

“The Federal Reserve generally develops its models under an industry-level approach calibrated

using data from many financial institutions.. . . The Federal Reserve models the response of spe-

cific portfolios and instruments to variations in macroeconomic and financial scenario variables

such that differences across firms are driven by differences in firm-specific input data, as op-

posed to differences in model parameters and specifications. As a result, two firms with the

same portfolio receive the same results for that portfolio in the supervisory stress test, facili-

tating the comparability of results.” We will refer to the principle that banks with the same

portfolio receive the same results as equal treatment.

2.2 Bank Heterogeneity

The appropriateness of equal treatment seems incontrovertible. But the right notion of consis-

tency across firms becomes less clear when portfolios vary widely. The largest U.S. banks are a

highly heterogeneous group. They include universal banks (like JPMorgan Chase and Bank of

America), investment banks (Goldman Sachs and Morgan Stanley), custodians (BNY Mellon

and State Street), regional banks (like US Bancorp and PNC Financial), specialized banks (like

American Express), and the U.S. subsidiaries of large foreign banks (such as TD Group and

HSBC North America). We may not expect a regional bank to have an investment bank’s skill

in the capital markets, nor do we expect the investment bank to have the regional bank’s skill

in making single-family residential loans.

Heterogeneity among the eight U.S. Global Systemically Important Banks (G-SIBs) is illus-

trated in Figure 2.1. The left panel shows variation in bank size, with JPMorgan Chase (JPM)

more than ten times larger than State Street (STT), as measured by total assets. The left

panel also shows significant variation in the proportion of assets made up by loans. The right

panel shows heterogeneity in the fractions of loans the banks hold in each of four categories.

For example, for Wells Fargo (WFC) first lien mortgages are a relatively large fraction of its

loans, whereas for Citigroup (C), credit cards make up a relatively large fraction.

Beginning in 2020, the Federal Reserve allowed banks to submit requests for reconsideration

of the stress capital buffer set by the Fed through the stress testing process. (The capital buffer

is set through the Comprehensive Capital Analysis and Review, or CCAR, process, which

accompanies the stress test.) The banks’ requests are confidential, but the Fed’s responses to

these requests are public. The responses show that the banks were arguing for reconsideration
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Figure 2.1: Heterogeneity among the U.S. G-SIBs. Left: Total assets and total loans for each
bank. Right: The percentage of loans in each of four categories for each bank. Source: Bank
Y-9C reports for Q4 2021.

at least in part based on claims that the Fed’s models do not capture distinctive features of the

banks’ businesses. For example, Regions Financial claimed that the Fed’s models overlook the

bank’s hedging of interest rate risk. Goldman Sachs took issue with the Fed’s modeling of its

trading revenues, pointing to specific features of the firm’s compensation of traders. Citizens

Financial claimed that the Fed’s models fail to capture the bank’s loss-sharing agreements in

its retail portfolio.

Five firms requested reconsideration in 2020, and all five requests were rejected. In its

response1 to Goldman Sachs, the Fed wrote, “the Board has determined that it will follow its

published principles for stress testing, including the principle of creating industry-level models,

and not modify the existing results of these models. In particular, models used in the supervisory

stress test are generally developed according to an industry-level approach, calibrated using data

from many institutions.” Similar statements appear in all five rejections. These exchanges point

to a debate in which the banks highlight their heterogeneity and the Fed asserts the importance

of consistency.

2.3 Sources of Heterogeneity

Stepping back from the specifics of this debate, it is helpful to consider sources of heterogeneity

through the lens of a linear regression of a loan portfolio’s loss rate on portfolio characteristics

and macro variables. In this setting, we have at least four sources of heterogeneity: the distri-

bution of portfolio characteristics, differences in intercepts, differences in slopes, and differences

in error distributions. Differences in errors mainly affect the precision of forecasts rather than

the forecasts themselves, so we focus on the first three items.

1https://www.federalreserve.gov/supervisionreg/files/goldman-sachs-group-inc-20200904.pdf
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Differences in portfolio characteristics are evident. Banks differ in their mix of corporate

and retail business, their mix of regional, national, and international clients, and their focus

on higher- or lower-risk borrowers. (In its 2020 annual report, Capital One reported that 31%

of its credit card receivables were due from customers with FICO scores of 660 or lower. For

Citigroup the proportion was less than 15% on its Citi-branded cards.)

Potential differences in slopes admit at least two possible interpretations. One possibility

is that banks differ in unobserved portfolio characteristics that influence loss rates. If these

unobserved characteristics are correlated with observed features, then omitting them changes

the coefficients on the observed features. Unobserved portfolio characteristics could thus create

differences among otherwise identical banks. A second possibility is that banks differ in their

skill in managing loans, perhaps through more effective monitoring of borrowers. Differences in

skill are then reflected in different coefficients linking portfolio features to loss rates. The first

interpretation suggests that one bank’s B-rated borrowers may be better than another bank’s;

the second interpretation suggests that one bank is simply better at securing repayment from

B-rated borrowers.

Differences in intercepts — bank fixed effects — are commonly included in empirical work

on banking. They are typically included to absorb unobserved characteristics that persist

across time. As in our discussion of slopes, it is possible that some banks are better managed

than others and that these differences generate predictable differences in loss rates. Regulators

themselves seem to support this idea by emphasizing the importance of establishing a strong

“culture” in banks.2 However, we take the view that such differences should not confound loss

forecasts in the design of an industry model for quantitative stress-testing. Equal treatment

requires that stress-results be based on observable characteristics. Other parts of the overall

bank supervision process (outside of stress testing) address issues like the quality of internal

governance, business models, and controls. Within the Basel framework, these considerations

are part of the Pillar 2 supervisory process, as described in BCBS [8].

In running the stress tests, the Fed collects highly granular data from each bank, and it has

a great deal of power to collect the data it needs. It also designs the models that use the banks’

data. With these considerations in mind, and recalling the statements on Fed policy quoted

earlier, our analysis proceeds on the following premises: (i) The Fed considers the portfolio

features used in its models to be legitimate information for forecasting losses; (ii) no obviously

relevant portfolio features are excluded from the models; (iii) bank identity is not a legitimate

feature for forecasting losses; (iv) the Fed seeks the “best” forecasts available based on the

2See, for example, “Enhancing Financial Stability by Improving Culture in the Financial Services Industry,”
a speech given by then president of the Federal Reserve Bank of New York, William C. Dudley, on October 20,
2014, https://www.newyorkfed.org/newsevents/speeches/2014/dud141020a.html.
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direct impact of legitimate features; (v) legitimate features should not be used indirectly to

identify banks; and (vi) the overall average level of losses projected by the Fed’s industry model

should be consistent with the average that would be obtained using bank-specific models.

The rest of this paper will make precise and further develop these ideas. We will investigate

ways to aggregate bank-specific models into a single industry model, premised on these ideas

and recognizing the heterogeneity across banks. Doing so entails balancing the goal of overall

accuracy with concerns for consistent treatment of banks.

3 Pooling: Fairness Through Unawareness?

3.1 Basic Model

To capture bank heterogeneity, we consider a market with multiple banks, indexed by s =

1, . . . , S̄. The loss rate (or net charge-off rate) Ys for bank s is given by

Ys = αs + β>s Xs + εs, (1)

with αs ∈ R and βs ∈ Rd. Here, Xs is a d-dimensional vector of predictive variables; at

this point, we do not distinguish between portfolio characteristics and macro variables. The

portfolio characteristics include information about a bank’s borrowers and loan terms. We use

a linear specification in (1) because it offers the simplest setting to explore the interaction of

heterogeneity and fairness; we discuss nonlinear extensions in Section 7. We take (1) to be the

true relationship between the loss rate Ys for bank s over the forecast horizon and characteristics

Xs known at the date the forecast is made. Loss rates are normalized by loan balances to make

values of Ys comparable across banks of different sizes.

We think of Xs as a draw from some distribution with

µs = E[Xs] ∈ Rd, Σs = var[Xs] ∈ Rd×d. (2)

The randomness in Xs can be interpreted as reflecting the variation in the characteristics for

bank s (and the macro variables) over time. We assume throughout that each Σs is nonsingular.

The error εs in (1) is assumed to satisfy, for each s,

E[εs] = 0 and cov[Xs, εs] = 0. (3)

The regulator’s problem is to choose a model g that forecasts loss rate g(x, s) for bank

s if the bank’s portfolio characteristic vector is x. The forecasts should satisfy the following

property, which prohibits the regulator from applying different models to different banks:

Definition 1 (Equal treatment). Model g : Rd × {1, . . . , S̄} → R satisfies equal treatment if

g(x, s) = g(x, s′), for all x ∈ Rd, for all s, s′ ∈ {1, . . . , S̄}.
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As the true relationship for each bank is linear in (1), we mainly focus on the case of a linear

industry-wide model. The regulator’s problem is then to choose a single α ∈ R and β ∈ Rd

that it will use to form a forecast

Ŷ (x) = α+ β>x, (4)

given portfolio characteristics x. The forecast (4) satisfies equal treatment because it has no

functional dependence on bank identity s. The parameters of the industry model (4) may

depend on the bank-specific parameters (αs, βs) and on the mean and variance in (2), but they

should not depend on the realized features Xs.

The regulator would like the forecast loss Ŷ (Xs) to be close to the actual loss Ys in (1) for

every bank s. To aggregate errors across banks, we introduce a random variable S that picks a

bank according to a distribution

P(S = s) = ps, s = 1, . . . , S̄, (5)

with the probabilities ps summing to 1. In the simplest case, all banks get equal weight, and

the ps are all equal; but the ps could also reflect relative asset sizes or other weighting schemes.

When we replace a bank label s with the random variable S, we get a mixture over banks. In

particular, we can combine the bank-specific models (1) into a mixture or hierarchical model

by writing

YS = αS + β>SXS + εS . (6)

In choosing parameters α and β in (4), the regulator would like to make the forecast errors

small for all banks. A natural way to aggregate forecast errors across banks is to consider the

average squared error, in which case the regulator’s problem becomes choosing α and β in (4)

to solve

min
α,β

E[(Ŷ (XS)− YS)2]. (7)

The objective in (7) averages squared forecast errors over banks. It can also be written as∑
s psE[(Ŷ (Xs)− Ys)2].

We emphasize that the problem posed by (7), like the more general problem of choosing

industry parameters in (4), is one of characterizing ideal coefficients α and β. This is a question

of choosing the correct targets of estimation, rather than a question of choosing estimators. In

particular, α and β are population quantities rather than sample quantities. In practice, the

regulator would have a panel of time series of observations of (1) across banks. Estimation

methods for panel data ordinarily focus on coefficients that are common to all units and exploit

the panel structure to estimate these shared values. Our concern is precisely with the case of

heterogeneous coefficients, where we need to identify suitable targets before we can consider
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their estimation. It would not be meaningful to refer to an estimator as unbiased or consistent

until we have clearly identified the estimation target.

For the solution to (7), write

µ̄ = E[XS ] = E[µS ] =
∑
s

psµs ∈ Rd, (8)

and

var[XS ] = E[(XS − µ̄)(XS − µ̄)>] = E[WS ] =
∑
s

psWs, (9)

with

Ws = Σs + µsµ
>
s − µ̄µ>s ∈ Rd×d. (10)

Similarly,

cov[αS , µS ] =
∑
s

psαs(µs − µ̄) ∈ Rd.

Proposition 3.1. Problem (7) is solved by

βPooled = E[WS ]−1 (cov[αS , µS ] + E[WSβS ]) (11)

and

αPooled = E[YS ]− β>Pooledµ̄. (12)

Loss forecasts using αPooled and βPooled in (4) provide fairness through unawareness, in that

they ignore bank identity. They satisfy the equal treatment principle articulated by the Federal

Reserve that “two firms with the same portfolio receive the same results for that portfolio.”

Given our starting point (1), problem (7) would seem to be the most direct interpretation of

the Fed’s policy of developing an “industry-level approach calibrated using data from many

financial institutions.”

However, the solution in (11) is not a satisfactory target. Indeed, (11) shows where het-

erogeneity is most problematic. If the intercepts αs covary with the means µs, this effect can

distort βPooled. As an extreme example, consider the case that βs = 0 for all s; in other words,

none of the features in Xs is predictive of losses for any of the banks. The regulator’s model (4)

using βPooled would nevertheless forecast losses based on these features if cov[αS , µS ] is nonzero.

This covariation would create the illusion of predictability. In applying (11), we would be fore-

casting losses based on irrelevant features, purely as a consequence of the way we aggregated

the bank-specific models.

Even in a less extreme setting in which the βs are nonzero, the presence of the cov[αS , µS ]

term in (11) reflects an indirect influence of bank identity on loss forecasts. If the bank-level

11



mean characteristics µs positively covary with the bank-level intercepts αs, then in the pooled

model this covariance will lead to a higher loss forecast for a bank with a higher value of

Xs. This is arguably unfair, in the sense that the loss forecast is not based on the legitimate

influence of the feature Xs. We will formalize the idea that the pooled method misdirects

legitimate information in Sections 4.2 and 4.5.

This effect is reminiscent of the bias incurred in panel regressions when fixed effects are

present in the data but omitted from a model. As we emphasized above, in our setting the

primary objective is to define the appropriate target of estimation, given the heterogeneity in

the coefficients. We cannot say the term cov[αS , µS ] introduces bias until we have decided what

we are trying to estimate.

3.2 Average Treatment Effects

We can gain additional insight by considering the case of scalar Xs. In this case, the pooled

coefficient βPooled in (11) becomes

βPooled =
cov[αS , µS ] +

∑
s ps(σ

2
s + µ2

s − µ̄µs)βs∑
s ps(σ

2
s + µ2

s − µ̄µs)
. (13)

If cov[αS , µS ] = 0 and if σ2
s + µ2

s − µ̄µs ≥ 0, for all s, then (13) becomes a convex combination

of the individual βs. In Appendix B, we state some simple properties that an aggregation of

the individual βs into a single industry value should satisfy, and we show that only a convex

combination satisfies these properties. Equation (13) thus shows a further potential problem

with the pooled method. Even if cov[αS , µS ] = 0, the coefficient on some βs could be negative,

which would mean that a reduction in βs would increase βPooled; we return to these cross-bank

effects in Section 6.

We will refer to any convex combination of the βs as a weighted average treatment effect or

WATE parameter. This terminology is suggested by thinking of a unit increase in a portfolio

characteristic Xs as a treatment, and βs as the response to that treatment. The (ordinary)

average treatment effect is the the expected coefficient,

βATE = E[βS ] =
∑
s

psβs, (14)

but weighting the individual coefficients allows other combinations. In particular, if the µs are

all equal, the pooled coefficient (13) becomes

βPooled =

∑
s psσ

2
sβs∑

s psσ
2
s

. (15)

We will say more about these cases in subsequent sections.
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To translate a WATE coefficient into a loss projection Ŷ , as in (4), we also need to specify

an intercept. Setting

αWATE = E[YS ]− β>WATEµ̄,

ensures that the forecasts

ŶWATE(Xs) = αWATE + β>WATEXs, s = 1, . . . , S̄,

have zero expected error, in the sense that

E[ŶWATE(XS)− YS ] =
∑
s

ps(αWATE + β>WATEµs)− E[YS ] = 0.

4 Fair Regressions

We have seen that if the regulator’s sole objective is to minimize average squared forecast errors

subject to equal treatment, then the solution is given by the pooled coefficients in (11) and (12).

However, we have also seen that (11) has consequences that are undesirable and even unfair.

In this section, we turn to methods that expand the squared loss minimization objective (7) to

include fairness considerations.

4.1 Projection to Fairness

In the literature on fairness in classification methods, demographic parity is among the most

widely discussed fairness principles; see, for example, Chapter 3 of Barocas et al. [6]. In the

simplest classification setting, the counterpart of our forecast is a binary outcome Ŷ ∈ {0, 1}.
For example, Ŷ = 1 may indicate a hiring decision, a loan approval, or a school admission

decision. The decision is to be based on certain features of a candidate that are deemed

legitimate. Demographic parity requires that the event {Ŷ = 1} be statistically independent

of a protected attribute, such as race or gender. This objective is difficult to achieve when

legitimate features covary with the protected attribute.

Chzhen et al. [12] and Le Gouic et al. [35] extend the notion of demographic parity to the

regression setting by requiring that model predictions be independent of a protected attribute.

These two articles solve the problem of finding the model that minimizes mean squared pre-

diction errors while achieving demographic parity. We will use the term projection to fairness

(PTF), coined in Le Gouic et al. [35], for the method in these papers.

Both papers reduce the problem of regression fairness to one of finding the Wasserstein

barycenter of a set of distributions, in the sense of Agueh and Carlier [2]. The barycenter is the

distribution closest to the set of distributions in an average sense. For a squared error and one-

dimensional distributions, the barycenter can be described as the distribution whose quantile
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function is a weighted average of the individual quantile functions. (The quantile function is

the inverse of the cumulative distribution function.)

In the setting of Section 3.1, the resulting solution can be interpreted as follows. For bank s,

the regulator first forms the forecast Ŷs(x) = αs + β>s x, using the bank-specific coefficients and

the realized features Xs = x. Suppose Ŷs falls at the 80th percentile of the forecast distribution

for bank s. The regulator then takes a weighted average of the 80th percentile forecast for all

of the bank-specific models. That weighted average becomes the forecast for bank s.

To make this procedure more explicit and to specialize the general framework of Chzhen et

al. [12] and Le Gouic et al. [35] to our setting, we consider the case (for this section only) that

each feature vector Xs has a multivariate normal distribution N(µs,Σs). Write Σ
1/2
s for the

symmetric square root of Σs, and define the standardized feature vectors

Zs = Σ−1/2
s (Xs − µs); (16)

each Zs has a multivariate standard normal distribution. Write the basic identity (1) using

standardized variables as

Ys = αos + βo>s Zs + εs,

with standardized coefficients

βos = Σ1/2
s βs, αos = αs + β>s µs. (17)

Suppose ‖βos‖ 6= 0, for all s, with ‖ · ‖ denoting the usual Euclidean norm. Consider the model

that assigns, to each bank s = 1, . . . , S̄, with features Xs = x the forecast

Ŷ o(x, s) =
∑
i

piα
o
i +

∑
i

pi‖βoi ‖
βo>s zs
‖βos‖

, zs = Σ−1/2
s (x− µs). (18)

If there exists a β ∈ Rd and scalars as > 0 for which

βos = asβ, s = 1, . . . , S̄, (19)

then we will see that (18) simplifies to the weighted average

Ŷ o(x, s) = ᾱo + β̄o>zs, ᾱo =
∑
i

piα
o
i , β̄

o =
∑
i

piβ
o
i . (20)

In the case of scalar Xs, (19) holds whenever all βs have the same sign.

Proposition 4.1. Suppose that the Xs are multivariate normal and ‖βs‖ 6= 0, for all s =

1, . . . , S̄. Then (18) is the projection-to-fairness of the bank-specific models (1), meaning that

(18) minimizes E[(Ŷ o(XS , S) − YS)2] among all models (whether linear or not) that satisfy

demographic parity. If (19) holds, the projection-to-fairness is given by (20).
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We can see from (18) that the PTF model does not satisfy equal treatment: to calculate the

loss forecast for a bank, we need to know its identity s. We have included the special case of

(20) because it more nearly parallels the type of model we seek in (4). The coefficients in (20)

are weighted averages of bank-specific coefficients. The model in (20) satisfies equal treatment

with respect to the standardized features Zs, rather than the raw features Xs: two banks with

the same standardized features will receive the same forecasts. But the means for the two banks

could be very different — the standardization is done separately for each bank — indicating

that one bank’s portfolio may be much riskier than the other bank’s. In treating standard-

ized characteristics for different banks as comparable, the PTF model implicitly evaluates the

riskiness of each bank relative to the distribution for that bank, not relative to all banks. The

suitability of PTF in our setting is therefore questionable.

The root of the problem is that demographic parity is too strong a property for our setting.

Ensuring that a hiring decision is independent of race or gender is important; but forcing loss

projections to be independent of bank identity ignores relevant differences in bank’s portfolios.

Whereas the pooled model (11)–(12) does too little to address heterogeneity across banks, the

PTF model goes too far in leveling differences. The next section provides a better balance.

4.2 Formal Equality of Opportunity

Johnson, Foster, and Stine [30] introduce the concept of formal equality of opportunity (FEO)

in regression, based on the use of the term in political philosophy, for which they cite the

review in Arneson [5]. According to Arneson [5], FEO means that “positions and posts that

confer superior advantages should be open to all applicants. Applications are assessed on their

merits.”

In adapting this idea to our setting, it is helpful to make a contrast with the previous section:

whereas demographic parity requires that loss forecasts be independent of bank identity, FEO

allows bank-dependence, but only through legitimate portfolio characteristics — through the

bank’s “merits.” This notion aligns well with our definition of equal treatment and with the

Fed policy, quoted earlier, that “two firms with the same portfolio receive the same results.”

The objective of FEO in regression, as developed by Johnson et al. [30], is to ensure that

a protected attribute (for us, bank identity) has no direct or “causal” impact on a model’s

predictions. The predictions may be correlated with protected attributes if legitimate features

(portfolio characteristics) are correlated with bank identity.

To develop this idea in our setting, we introduce the centered dummy variables

Ui(s) = 1{s = i} − pi, i = 1, . . . , S̄ − 1, s = 1, . . . , S̄. (21)
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We discuss the implications of centering below. For any coefficients α, δ1, . . . δS̄−1 ∈ R and

β ∈ Rd, and any x ∈ Rd, let

Ŷ (x, s) = α+
∑
i

δiUi(s) + β>x. (22)

We have included the bank label s as an argument of Ŷ because Ui depends on s. Let αF , {δi,
i = 1, . . . , S̄ − 1}, and βF solve the error minimization problem

min
α,{δi},β

E[(Ŷ (XS , S)− YS)2]. (23)

With the coefficients that minimize (7), (22) becomes the linear projection of YS onto the span

of 1, the Ui(S), and XS , evaluated at S = s and XS = x. Now drop the dummy variables Ui

and define

ŶF (x) = αF + β>F x. (24)

The FEO loss forecast for bank s is ŶF (Xs).

Steps (22)–(24) result from applying the definition of an impartial estimate (their Definition

2) in Johnson et al. [30]. (More precisely, steps (22)–(24) define a population counterpart of

the sample formulation in [30].) The procedure in (22)–(24) can be interpreted as follows: pool

losses and portfolio features across banks; regress losses on portfolio features with bank fixed-

effects included; throw away the fixed effects in forecasting future losses. The resulting model

(24) is an equal-treatment model, with no explicit dependence on bank identity. Centering the

discarded dummy variables Ui ensures that E[ŶF (XS)] = E[YS ], so dropping the fixed effects

does not introduce an overall bias.

We will say more about the implications of this approach, but we first show that our setting

allows an explicit expression for the FEO coefficients:

Proposition 4.2. (i) The FEO coefficients are given by

βF = E[ΣS ]−1E[ΣSβS ], (25)

and

αF = E[YS ]− β>F µ̄. (26)

In particular, in the scalar case,

βF =

∑
s psσ

2
sβs∑

s psσ
2
s

. (27)

(ii) We also have

βF = var[XS − µS ]−1cov[XS − µS , YS ], (28)

so β>F (XS − µS) is the linear projection of YS − E[YS ] onto XS − µS.
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We encountered (27) in (15) as a special case of the pooled coefficient when the bank means

µs are constant. The general case in (25) similarly coincides with the pooled coefficient in (11)

when the means are constant. In other words, introducing the bank-level fixed effects in (22)

purges βF of the effect of different feature means across banks; dropping these fixed effects in

(24) ensures that the regulator’s model has no explicit dependence on bank identity and satisfies

equal treatment.

In what sense is this procedure fair? We adapt the interpretation in Johnson et al. [30] to

our setting. Write U = (U1, . . . , US̄−1)> for the vector of centered dummy variables. Write

cov[XS , U(S)] for the d × (S̄ − 1) matrix of covariances between the components of XS and

U(S). Let

Λ = (var[XS ])−1cov[XS , U(S)]. (29)

This matrix minimizes E[‖U(S) − Λ>(XS − µ̄)‖2], so Λ>(XS − µ̄) is the linear projection of

the bank-identity variables U(S) onto the centered portfolio features XS − µ̄. The relationship

between βPooled and βF can be expressed as follows.

Proposition 4.3. The coefficients βPooled and βF satisfy

βPooled = βF + Λδ, (30)

where δ = (δ1, . . . , δS̄−1)> is the vector of coefficients from (22)–(23). In particular,

δs = (αs + βsµs)− (αS̄ + βS̄µS̄)− β>F (µs − µS̄), s = 1, . . . , S̄ − 1. (31)

We can write the forecast in (22), using the optimal coefficients from (23) as

Ŷ (x, s) = E[YS ] + δ>U(s) + β>F (x− µ̄); (32)

This is the linear projection of YS onto (1, U(S), XS), evaluated at S = s, Xs = x. Let

ŶP (x) = αPooled + β>Pooledx denote the forecast based on the pooled coefficients (11) and (12).

Decomposing U(S) into its projection onto XS − µ̄ and an orthogonal component leads to the

following contrast of these forecasts:

Ŷ (x, s) = E[YS ] + δ>Λ>(x− µ̄) + δ>[U(s)− Λ>(x− µ̄)]+β>F (x− µ̄) (33)

ŶP (x) = E[YS ] + δ>Λ>(x− µ̄) +β>F (x− µ̄) (34)

ŶF (x) = E[YS ] +β>F (x− µ̄) (35)

The term δ>[U(s)− Λ>(x− µ̄)] in (33) changes the forecast based on information in bank

identity that is orthogonal to the features x. In the terminology of Johnson et al. [30], this would

be disparate treatment. Through “unawareness” (meaning that it has no functional dependence
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on bank identity) the pooled forecast (34) drops this term, but it retains δ>Λ>(x− µ̄), as can

be seen from (30).

The term δ>Λ>(x − µ̄) is the problematic component of the pooled method. Although it

does not explicitly use bank identity (it satisfies equal treatment), this term relies on the fact

that bank identity is to some extent predictable from portfolio features. Imagine the regulator

forming loss forecasts from blinded data — the regulator does not know the identity of the

bank. The term Λ>(x − µ̄) is the least-squares prediction of U(s) from x − µ̄. In the pooled

forecast (34), the regulator is implicitly “misusing” the data in the features x − µ̄ to try to

identify the bank and then to adjust the forecast based on the inferred identity. The FEO

forecast (35) removes this effect and retains only the direct effect of portfolio features on the

loss rate.

We will develop this idea further in Section 4.5 and conclude that the FEO forecast is, in a

precise sense, the best way to aggregate the bank-specific models into a single regulatory model.

The FEO forecast satisfies the equal-treatment property and thus has no direct dependence on

bank identity; but it also removes the indirect dependence that results when bank identity is

partly predictable from portfolio features. We discuss other methods for comparison.

4.3 Conditional Expectation Model

A similar “misuse” of information occurs if we project the bank-specific models to an industry

model in the sense of conditional expectation, rather than least squares. Suppose Xs has density

gs, and suppose E[εs|Xs] = 0, s = 1, . . . , S̄. Then, by Bayes’ rule,

ŶC(x) ≡ E[YS |XS = x] =

∑
s psgs(x)(αs + β>s x)∑

s psgs(x)
. (36)

This model satisfies equal treatment — ŶC(x) depends on the portfolio features x but not on

a bank’s identity. However, the point of the weights psgs(x) is to infer the identity of the bank

from the features. Indeed, as discussed in Section 7, the conditional expectation E[YS |XS = x]

can be viewed as a nonlinear generalization of the pooled method, with some of the same

shortcomings.

4.4 Substantive Equality of Opportunity

As discussed in Arneson [5], a system in which admission decisions are made through a com-

petitive exam open to everyone achieves formal equality of opportunity; but if only the wealthy

have access to the preparation required for the exam, the system fails to achieve substantive

equality of opportunity (SEO). In the regression setting, Johnson et al. [30] interpret SEO to

mean that any influence of protected attributes should be removed from other variables included
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in a regression model. In the analogy with Arneson’s [5] example, SEO would seek to remove

the effect of economic status from performance on the exam, whereas FEO would accept exam

scores as a legitimate basis for decision-making.

To apply these ideas to our setting, define the (S̄ − 1)× d matrix

M = var[U(S)]−1cov[U(S), XS ]; (37)

then M minimizes E[‖XS − µ̄−M>U(S)‖2]. In accordance with Definition 2 of Johnson et al.

[30], define

ŶSEO(x, s) = αF + β>F (x−M>U(s)), (38)

with αF and βF defined by (23). The SEO forecast adjusts the portfolio features x to remove

the linear projection onto the centered bank dummy variables U . We can write (38) somewhat

more explicitly as follows:

Proposition 4.4. With M as in (37)

M>U(s) =
∑
i

(µi − µS̄)Ui(s) = µs − µ̄, (39)

so the SEO forecast (38) is given by

ŶSEO(x, s) = αF + β>F (x− µs + µ̄). (40)

The SEO forecast is the linear projection of YS onto a constant and XS − µS.

Recall from Section 4.1 that a model satisfies demographic parity if its forecasts are indepen-

dent of bank identity. Let us say that a model satisfies weak demographic parity if its forecasts

are uncorrelated with the bank-identity variables Ui(S). The centered features XS − µS are

uncorrelated with the Ui(S). It therefore follows from Proposition 4.4 that SEO forecasts are

uncorrelated with the Ui(S). In other words, we have the following result:

Corollary 4.1. The SEO forecast satisfies weak demographic parity.

Under additional conditions, we get a stronger conclusion:

Corollary 4.2. If the covariance matrix Σs and the distribution of Zs in (16) are the same

for all s, then the SEO model coincides with the standardized model (20), and both satisfy

demographic parity.

Under the conditions in the corollary the mean adjustment in (40) is sufficient to give

ŶSEO(Xs, s) the same distribution for all s. Put differently, PTF considers only the quantile of
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αs + β>s Xs, relative to the distribution for bank s, to be legitimate information; SEO considers

Xs − µs to be legitimate information. Under the conditions of the corollary, the two concepts

coincide.

The mean adjustment in (40) requires knowledge of the bank identity s, so (38) does not

satisfy equal treatment. The intent of the mean adjustment is to achieve a greater degree of

equality. Consider the example with which began this section. If x represents an exam score

and µ1 > µ0 are the mean scores among wealthy and non-wealthy exam takers, (40) adjusts

scores downward for wealthy exam takers and upward for non-wealthy exam takers.

Such an adjustment may be appropriate when the individuals or firms under evaluation are,

in some sense, not responsible for their mean characteristic (or the mean in their peer group)

and are therefore evaluated based on deviations from the mean. This type of consideration

does not seem applicable to the stress-test setting, but it could arise more generally in settings

where capital regulation intersects with other policy objectives.

One such example is suggested by the Paycheck Protection Program Lending Facility (PPPL)

launched by the Federal Reserve early in the COVID crisis. The PPPL provided for loans to

small businesses to be made by banks and guaranteed by the Small Business Administration.

Under normal circumstances, the loans would increase participating banks’ balance sheets and

thus potentially increase their capital requirements. To promote use of the facility, banking

regulators issued a rule excluding PPPL loans from capital requirements, thus “neutralizing

the effects of participating in the PPPL Facility on regulatory capital requirements.”3 This

“neutralizing” action is somewhat analogous to the SEO adjustment in that it removes respon-

sibility for the larger balance sheet from the bank. The adjustments differ in that SEO adjusts

for the mean whereas the PPPL adjustment removes the amount lent through the program.

4.5 A Unified Perspective: Legitimate Information

All of the methods we have discussed can be seen as ways of choosing forecasts Ŷs, s = 1, . . . S̄,

(of the form Ŷ (Xs) or Ŷ (Xs, s)) to minimize

E[(ŶS − YS)2], (41)

subject to additional considerations. Table 4.1 summarizes the cases we have considered. In

rows (i), (iv), and (v), we minimize (41) over the indicated coefficients. In (ii) and (iii), we

allow g to be an arbitrary (suitably measurable) function of the indicated arguments. In (iii)

we strengthen the condition (3) on the errors εs.

3Federal Register, Vol. 85, No. 71, p.20389, April 13, 2020.
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Form Constraint Forecast

(i) Ŷs = α+ β>Xs Pooled (11)–(12)

(ii) Ŷs = g(Xs, s), some g ŶS independent of S PTF ([12, 35])

(iii) Ŷs = g(Xs), some g, E[εs|Xs] = 0 Cond. exp. (36)

(iv) Ŷs = α+ β>Xs cov[YS − ŶS , XS − µS ] = 0 FEO (24)

(v) Ŷs = α+ λ>U(s) + β>Xs cov[ŶS , U(S)] = 0 SEO (38)

Table 4.1: Summary of forecast model forms and constraints.

Proposition 4.5. In each row of Table 4.1, the squared loss (41) is minimized over forecasts

of the form in the first column, subject to the constraint in the second column, by the model in

the last column.

The constraint in Table 4.1(v) is weak demographic parity. SEO implicitly takes the view

that the only legitimate information in forecasting losses for bank s is the deviation Xs − µs.
In contrast, FEO takes the full set of features Xs as legitimate information. Through

the constraint in Table 4.1(iv), it enforces a requirement we call no misdirection of legitimate

information. FEO uses all of Xs in projecting losses; but it chooses the coefficient βF to be

the coefficient in a regression of YS on XS − µS , which is the part of XS orthogonal to bank

identity. This condition ensures that the information in XS is not misdirected to infer bank

identity.

To make this idea precise, consider any model of the form (4). If we assume the intercept

is chosen to match the unconditional mean, we may write the model as

Ŷγ(x) = E[YS ] + (βF + γ)>(x− µ̄), (42)

for some γ ∈ Rd. With γ = 0, we get the FEO forecast (24).

Proposition 4.6. If γ reduces errors in the sense that E[(Ŷγ(XS)−YS)2] < E[(ŶF (XS)−YS)2],

then the forecast Ŷγ misdirects legitimate information in the sense that

(i) cov[γ>XS , δ
>Λ>XS ] > 0, and

(ii) cov[γ>M>U(S), δ>U(S)] > 0.

Recall that Λ>(XS − µ̄) is the linear projection of the centered bank identity variables

U(S) onto the centered portfolio features XS − µ̄. The condition in (i) therefore indicates that

γ misdirects some of the legitimate information in XS toward inferring bank identity. Thus,

deviating from βF in (42) either increases errors or misdirects information.

Property (ii) has a similar interpretation. The term δ>U(S) is the direct influence of bank

identity on losses YS . The proposition states that any deviation γ that reduces forecast errors

(relative to γ = 0) implicitly picks up some of the information in bank identity.
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To illustrate these ideas, consider a simple example in which some component ofXs measures

exposure to beachfront real estate. Suppose for simplicity that this feature is uncorrelated with

other features. In the SEO forecast, the only legitimate information from this exposure is a

bank’s deviation from its own mean. Years in which a bank had above average exposure would

lead to higher loss forecasts, but the bank’s average exposure would not directly inform the

forecasts. In contrast, FEO treats the bank’s total exposure (mean plus deviation) as legitimate

information. Like SEO, in evaluating the impact of this exposure — that is, in estimating the

coefficient on the exposure — it relies only on the within-bank variation. This ensures that the

information in the exposure is not misdirected toward inferring the bank’s identity, as could

happen in the pooled regression.

4.6 Average Treatment Effect as an Extension of FEO

Recall that the FEO forecast controls for bank fixed effects. One might similarly consider

controlling for interactions between bank indicators and components of the feature vectors.

This leads to a family of extensions of FEO that differ in which interactions they include. We

will show that with a full set of interactions, the extended FEO model becomes the ATE model

(14). Although we do not recommend this choice, for reasons we return to at the end of this

section, this analysis clarifies how the ATE forecast fits within a more general framework.

To examine this case, suppose the feature vector for each bank s is partitioned into two

components, Xs and Vs. We extend FEO by including interactions with components of Vs but

not with components of Xs. (Thus, in our discussion of FEO, Vs was empty.) We assume that

for every bank s, the components of Xs are uncorrelated with the components of Vs. This

allows a clear delineation between variables with and without interactions. Let νs = E[Vs]. The

bank-specific models (1) now take the form

Ys = αs + β>s Xs + γ>s Vs + εs, (43)

with εs uncorrelated with Xs and Vs.

We extend FEO to the following procedure:

1) Project YS linearly onto 1, U1(S), . . . , US̄−1(S), XS−µS , VS−νS , U1(S)VS , . . . , US̄(S)VS .

Let βF denote the coefficient of XS − µF and let γF denote the coefficient of VS − νS .

2) Set ŶF (x, v) = αF + β>F x+ γ>F v, with αF chosen so that E[Ŷ (XS , VS)] = E[YS ].

If VS is empty, then we know from (28) that these steps do indeed reduce to the original FEO

forecast. We have included the interaction US̄(S)VS in the first step (even though we omitted

US̄(S)) to simplify the derivation of γF . Including this term means that the coefficients on the
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interactions Ui(S)VS are determined only up to a constant, because U1(S)VS+· · ·+US̄(S)VS = 0.

These coefficients are dropped in the second step, so their value is immaterial.

Proposition 4.7. Suppose var[Xs] and var[Vs] have full rank and Xs and Vs are uncorrelated,

for each s = 1, . . . , S̄. Then βF is given by (25) and (28), and γF = γ̄ =
∑

s psγs. In particular,

if interactions with U(S) are included for all features, the FEO vector of coefficients reduces to

the average treatment effect (14).

This result allows us to interpret the ATE forecast as a version of the FEO forecast that

removes the effects of certain interactions. As a convex combination of the bank-specific coeffi-

cients, the ATE coefficient retains some of the advantages of the FEO coefficient, particularly

for the comparisons in Section 6.

However, we do not see a compelling case for controlling for interactions between bank

identity and portfolio features. When we control for the bank-identity variables in FEO, we

are ensuring that the industry β for legitimate features is not affected by bank fixed-effects.

Extending this idea to include interactions is tantamount to saying that we do not want het-

erogeneity with respect to one portfolio feature to affect the industry coefficient for another

portfolio feature. But the logic for FEO does not extend to this case: here we are dealing with

two presumably legitimate features whereas the point of the FEO forecast is to remove the in-

fluence of the bank-identity variables, which are not legitimate features under equal treatment.

5 Empirical Evidence

In this section, we document empirical evidence of heterogeneity in bank-specific models of loss

rates, and we examine the implications of this heterogeneity for the choice of an industry-wide

model. We find strong evidence of statistically significant differences in model parameters across

banks. These differences can lead to material differences between pooled and FEO coefficients

in an industry model.

5.1 Data

We use two types of data and data sources: loan information for individual banks and historical

macroeconomic data.

5.1.1 Loan Information for Individual Banks.

Bank holding companies publicly report financial information quarterly through the Federal

Reserve’s form Y-9C. We use these filings to collect information on four loan types that are

treated separately in the Fed’s stress tests: credit cards, first lien mortgages, commercial real
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estate loans, and commercial and industrial loans. For each category, each bank, and each

quarter, we collect loan balances, charge-offs, recoveries, and total amounts past due. For each

bank-quarter we also collect the bank’s allowances for losses; allowances are not consistently

reported separately by loan category, so we use a bank’s total allowances across all loan types.

Allowances and amounts past due are our proxy measures of loan portfolio risk.

We collect this data from 2002 to 2021 for the twenty largest banks by total assets (as of

December 2020). The banks are listed in Table D.1. In each loan category, we include only

banks with at least three years (12 quarters) of data. For each quarter and loan category, we

use the included banks’ loan balances to determine their relative weights ps.

We merger-adjust all bank data. For example, Truist Financial, one of the banks in Ta-

ble D.1, was formed from the 2019 merger of BB&T and SunTrust, so our data for Truist in

earlier years combines data from those two banks. We repeat this process as we work backwards

in time. We obtain information on mergers and acquisitions from the Federal Financial Institu-

tions Examination Council website. (We have also run our analysis without merger-adjusting

the data; doing so does not change our conclusions and generally increases heterogeneity across

banks.)

In each loan category, we calculate a loss rate (net charge-off rate) for each bank s and each

quarter t as the ratio

LossRates,t =
Charge-offss,t − Recoveriess,t

Total Loans in Categorys,t−1

.

This measure is commonly used in stress testing; see, for example, Guerrieri and Welch [26],

Hirtle et al. [29], and Kapinos and Mitnik [32]. We similarly normalize the amounts past due

and allowances to get a PastDueRates,t and an AllowanceRates,t for each bank-quarter, except

that the allowance rate is normalized by the total loans in all categories. We remove values

less than −100% or greater than 100% of LossRate, PastDueRate and AllowanceRate, and we

winsorize PastDueRate at the upper and lower 5% levels.

Table 5.1 shows descriptive statistics for these variables. Loss rates and past due rates are

shown by loan category — credit cards (CC), first liens (FL), commercial real estate (CRE),

and commercial and industrial (CI). Columns 2–4 of the table summarize time-averaged values

across banks. Columns 5–8 summarize observations across all banks and quarters.
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bank averages all observations
min mean max lower 5% mean upper 5% std

Loss Rate: CC 1.51 2.82 4.21 0.76 2.87 6.72 2.06
Loss Rate: FL 0.02 0.32 1.34 -0.02 0.34 1.62 0.66
Loss Rate: CRE -0.00 0.23 0.94 -0.04 0.16 1.02 0.42
Loss Rate: CI 0.07 0.46 1.32 0.02 0.41 1.69 0.53

Past due Rate: CC 1.80 3.18 4.30 1.43 3.28 6.32 1.50
Past due Rate: FL 1.82 5.75 10.33 0.94 7.93 19.79 6.21
Past due Rate: CRE 1.39 2.22 3.58 0.48 2.11 6.99 1.88
Past due Rate: CI 0.84 1.78 3.35 0.49 1.67 4.50 1.17

Allowance Rate: Total 1.36 2.08 3.25 0.98 2.13 4.71 1.13

Table 5.1: Descriptive statistics in percent. Columns 2-4 are calculated from banks’ time aver-
ages, and columns 5-8 are calculated from all observations, with mean and standard deviation
weighted by loan balance.

Figure 5.1 plots the mean past due rate (±1.96 standard errors) for each bank in each loan

category. The banks are identified by their stock tickers (except for USAA, the United Ser-

vices Automobile Association, which is not publicly traded). The figure illustrates substantial

heterogeneity across banks in their loan portfolios. For example, in the credit card category

Capital One (COF) has among the highest past due rates, but in the commercial real estate

category it has among the lowest. This type of pattern is consistent with the idea that banks

have different areas of specialization and may target different markets.

The widths of the bars in Figure 5.1 show differences across loan categories and banks in

the volatility of their past due rates. The volatility for commercial real estate is particularly

high, due primarily to a spike in delinquencies during the global financial crisis.
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Figure 5.1: Past due rates (winsorized) by bank and loan category. The dots show mean values
and each horizontal bar corresponds to ±1.96 standard errors.

5.1.2 Macroeconomic Data

We use data on seven of the macro variables used in the Federal Reserve’s stress tests: real dis-

posable income growth, real GDP growth, house price index level, inflation rate, unemployment

rate, Dow Jones total stock index level, and the Treasury spread. The Federal Reserve provides

historical data on its website for all variables used in forming stress scenarios, including these.

We use the values reported by the Fed for these variables in the June 2020 stress test; these

values run from 1990 through 2019.
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We aggregate these variables into a single macro variable by taking the first principal com-

ponent of their correlation matrix. Table 5.2 shows the corresponding loadings. We see that

an increase in the principal component corresponds to decreases in income growth and GDP

growth and an increase in unemployment, suggesting that this composite variable serves as a

reasonable measure of overall economic conditions. Figure 5.2 plots the level of this variable

over time and shows a sharp climb around 2008 and 2020.4

Our main results use data through 2021. As a robustness check, we also run our analysis

using data through 2019. This truncation serves two purposes. It ensures that our conclusions

are not driven by a few extreme values during the COVID period 2020–2021, and it accounts for

a change in how how banks measure allowances (the Current Expected Credit Losses method-

ology) that took effect at the end of 2019. See Appendix E.

Macro Factor PC1 Loading

Real disposable income growth -0.229
Real GDP growth -0.525
Change House Price Index -0.467
CPI inflation rate -0.079
Change unemployment 0.529
Change Dow -0.293
Change Treasury Spread 0.287

Table 5.2: Loadings of first principal component on macro variables.

Figure 5.2: First principal component (PC1) of macro variables from 1990 Q2 to 2021 Q4. The
dashed lines correspond to the 5th and 95th percentiles of PC1.

4The loadings in Table 5.2 are calculated using data through 2019, and we use these loadings to extend PC1
through the end of 2021. When we include the COVID period in the calculation of the principal components,
PC1 becomes harder to interpret. For example, the coefficients for income growth and unemployment have the
same sign.
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5.2 Heterogeneity in Slopes and Intercepts

We use the bank data to approximate our theoretical framework through the specification

LossRates,t = αs+β
PDR
s PastDueRates,t−l+β

AR
s AllowanceRates,t−l+γsMacroPCt−l+εs,t, (44)

for bank s in quarter t, where MacroPC is the principal component of the macro variables

introduced in Section 5.1.2. The lag l is either one quarter or one year, to mimic the stress-

testing framework. We estimate separate coefficients for each of the four loan categories, for

each bank. Because these are bank-specific regressions, it would not be meaningful to include

bank-specific controls.

For each loan category, we want to test for heterogeneity in parameters across banks. When

we test for heterogeneity, the null hypothesis states that slopes for all banks are equal,

H0 : β1 = · · · = βS̄ , (45)

or that the intercepts are equal,

H0 : α1 = · · · = αS̄ . (46)

The alternative hypothesis in each case states that the indicated parameters are not identical

across banks. We will run these tests with different subsets of the variables in (44) included

and interpret the coefficients in (45) accordingly.

To test these hypotheses for a particular loan category, let Xs be the ns by p data matrix

for bank s, where ns is the number of observations for bank s in the loan category, and p =1, 2,

or 3, is the number of variables included on the right side of (44). Let X̃s = (1, Xs) be Xs con-

catenated with a column of 1s, and let X∗ be the diagonal block matrix X∗ = diag(X̃1, .., X̃S).

Let θ∗ = (α1, β
>
1 , ..., αS , β

>
S )>, ε∗ = (ε1, ..., εS), where εs is a column vector of length ns. Our

unrestricted model can be written as

Y = X∗θ∗ + ε∗, (47)

and the restrictions in (45) and (46) impose linear constraints on the parameter θ∗.

We apply the Wald test to test linear constraints on θ∗ in (47) under various assumptions on

the error covariance matrix. (i) As a baseline, we allow bank heteroskedasticity: the error vari-

ance is constant through time but varies across banks; errors are assumed uncorrelated across

time and across banks. (ii) We combine (i) with clustering by time, which allows correlation

in errors across banks in each quarter, but no correlation across quarters. (iii) We combine

(i) with single-lag Newey-West standard errors, which allows serial correlation in errors within

each bank, but no correlation across banks.
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Tables 5.3 and 5.4 report p-values for the tests when different subsets of variables are

included in the right side of (44), for forecast horizons of one quarter and one year, respectively.

Almost all the tests indicate strong evidence of heterogeneity in the intercepts and in the

coefficients for past due rates. The evidence is more mixed for allowance rates and the macro

variable. These variables are also less predictive of losses than the past due rates.

Next we examine the impact of heterogeneity. Table 5.5 compares pooled and FEO coeffi-

cients for PastDueRate, AllowanceRate, and MacroPC using a one-quarter lag and four spec-

ifications of which variables are included in (44). Table 5.6 shows corresponding results with

a one-year lag. We estimate βPooled in a pooled panel regression, and βF in a panel regression

with bank fixed effects included. Both regressions are weighted by asset balances. In each table,

the columns labeled “% diff” show the percentage difference 100%×(βF−βPooled)/βPooled. This

is a measure of the impact of addressing heterogeneity in choosing an industry model. We also

report confidence intervals for these ratios. These are bootstrap confidence intervals, estimated

using the cross-sectional method in Kapetanios [31], based on resampling independently from

the panel of banks.

The percentage differences between βPooled and βF vary substantially, and the associated

confidence intervals are quite wide. But we see many cases in which the percentage difference

in estimated coefficients is roughly 5-10% or even larger. In the context of setting capital

requirements for banks, these differences could be material.

Consider, for example, the case of first lien mortgages, with coefficients βPooled = 0.053 and

βF = 0.060 in the top panel of Table 5.5. From Table 5.1, we see that the average bank has a

past due rate of 5.75% on FL loans. The difference (0.060 − 0.053) × 5.75% = 0.04% is 13%

of the average FL loss rate of 0.32% in Table 5.1. The additional capital required to offset the

higher predicted loss rate would be 13% of the capital required to offset the average loss rate.
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6 Cross-Bank Parameter Externalities

As a consequence of aggregating bank-specific results into a single industry model, changes at

one bank can affect loss forecasts at other banks, and the results are sometimes counterintuitive.

In this section, we argue that these cross-bank externalities are generally more reasonable under

FEO forecasts than under the pooled method.

For simplicity, we consider a setting with a single scalar feature x. More generally, we can

think of this as a feature that is uncorrelated with all other features. We adopt the convention

that this feature is nonnegative, and that higher values of x are associated with higher losses.

Thus, for each bank s we assume µs ≥ 0 and βs ≥ 0. In reducing µs, a bank improves its

portfolio quality; in reducing βs, a bank improves its ability to manage portfolio risk; and in

reducing αs, a bank improves unobserved features to reduces its losses. We examine how these

improvements — reductions in µs, αs, and βs — affect stress test results for bank s and other

banks l.

We can write the FEO loss forecast (24) for bank l evaluated at Xl = x as

ŶF,l(x) = ŶF (x) =
∑
s

ps(αs + βsµs) + βF (x− µ̄), (48)

with βF =
∑

i piσ
2
i βi/

∑
i piσ

2
i , as in (27). The forecast is the same for all banks l because FEO

satisfies equal treatment. It is now easy to see that

∂ŶF (x)

∂µs
= psβs − psβF ≥ 0, if and only if βs ≥ βF ; (49)

∂ŶF (x)

∂αs
= ps ≥ 0; (50)

and
∂ŶF (x)

∂βs
= psµs + (x− µ̄)psσ

2
s/
∑
i

piσ
2
i ≥ 0, if x > µ̄. (51)

In (49) we see that if bank s has above-average (relative to βF ) sensitivity to feature x, then

reducing its average exposure to that feature µs reduces loss forecasts for all banks. Equation

(50) shows a similar overall benefit if bank s improves on the other dimensions captured by

αs. In (49) we see that an improvement in risk management at bank s, corresponding to a

reduction in βs, reduces loss forecasts at above-average levels of x. If x is part of the stress

scenario, then large values of x are particularly relevant.

The directional effects in (49)–(51) are fairly simple and reasonable, considering that cross-

bank effects are inevitable in an industry model. If the industry improves its performance

(perhaps because of improvements at one bank) we generally expect loss forecasts to decrease.
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(A decrease in a forecast corresponds to a positive derivative because we are considering a

decrease µs, αs, or βs.) Counterparts to (49)–(51) continue to hold if we replace βF in (48)

with any convex combination of the βs, as in the WATE model. However, the pooled method

behaves quite differently.

The pooled forecast ŶP (x) can be written in the same form as (48) but with βF replaced

by βPooled in (11). We now get

∂ŶP (x)

∂µs
= ps(βs − βPooled) + (x− µ̄)

∂βPooled
∂µs

.

The sign of the last term is not determined by a simple condition, so the overall directional

effect is difficult to predict. The sign of

∂ŶP (x)

∂αs
= ps + ps

(µs − µ̄)(x− µ̄)∑
s psσ

2
s + var(µS)

βs,

depends on the magnitudes of µs and x, relative to µ̄. For the sensitivity to βs, we can write

∂ŶP (x)

∂βs
= psµs + (x− µ̄)

∂βPooled
∂βs

,
∂βPooled
∂βs

=
ps(σ

2
s + µs(µs − µ̄))∑
i piσ

2
i + var(µS)

.

Among the most troubling aspects of the pooled model is that the last term could be negative:

a reduction in βs could produce an increase in βPooled. In particular, σ2
s +µs(µs− µ̄) is negative

for a bank with below-average exposure to feature x (so µs < µ̄) and low variability σ2
s in

this exposure. Under the pooled model, it is therefore possible for an improvement in risk

management at one bank (a reduction in βs) to produce an increase in loss forecasts at all

banks.

The top panel of Table 6.1 shows sufficient conditions for positive sensitivities of ŶF (x) and

ŶP (x). The middle and bottom panels show corresponding results for the expected forecasts

E[Ŷl] = E[Ŷ (Xl)] and for the bias E[Ŷ (Xl) − Yl]. Supporting details for the second and third

cases are provided in Appendix C. We have tried to provide simple sufficient conditions, and

in most cases the conditions are not necessary. All of the conditions for FEO extend to WATE

with βF replaced by the weighted average coefficient.

Some counterintuitive and undesirable cases can arise at empirically plausible parameter val-

ues. For example, in equation (68) of the appendix we derive an expression for ∂E[ŶP (Xl)]/∂αs.

Using estimated parameters for the credit card data in Section 5, we find that this derivative is

negative when l is Citigroup and s is American Express or JPMorgan Chase. In other words,

an improvement at either of these two banks would result in a higher expected loss forecast at

Citigroup under the pooled model.

The bias sensitivities in Table 6.1 are more complicated than the other cases because the

bias involves the difference between the predicted and actual loss rates. A reduction in the
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Ŷ (x) FEO Pooled

µs ↓ ↓ iff βs > βF no simple rule
αs ↓ ↓ ↓ if (µs − µ̄)(x− µ̄) > 0
βs ↓ ↓ if x > µ̄ ↓ if [σ2

s + µs(µs − µ̄)](x− µ̄) > 0

E[Ŷ (Xl)]

µs ↓ l = s: ↓ no simple rule
l 6= s: ↓ iff βs > βF

αs ↓ ↓ l = s: ↓
l 6= s: ↓ if (µs − µ̄)(µl − µ̄) > 0

βs ↓ ↓ if µs + µl > µ̄ ↓ if [σ2
s + µs(µs − µ̄)](µl − µ̄) > 0

or if µs sufficiently large

bias(l)

µs ↓ l = s: ↓ iff βs < βF no simple rule
l 6= s: ↓ iff βs > βF

αs ↓ l = s: ↑ l = s: no simple rule
l 6= s: ↓ l 6= s: ↓ if (µs − µ̄)(µl − µ̄) > 0

βs ↓ l = s: ↑ if µs < µ̄ no simple rule
l 6= s: ↓ if µs + µl > µ̄ ↓ if [σ2

s + µs(µs − µ̄)](µl − µ̄) > 0

Table 6.1: Sensitivity of results for bank l in response to a decrease in parameter µs, αs, or βs
for bank s. Sensitivities shown are for predicted loss Ŷl(x) (top), mean predicted loss E[Ŷ (Xl)]
(middle), and the bias E[Ŷ (Xl)− Yl].

predicted loss rate can increase or decrease bias, depending on whether the initial forecast is

too low or too high.

7 Nonlinear Models

Most of the ideas developed in previous sections for linear regressions extend to generalized

linear models through a transformation of the response variable. For example, rather than work

with the loss rate Ys, we could specify a linear model for its logit transformation log(Ys/(1−Ys)).
But we can also extend ideas from previous sections to more fully nonlinear models. Replace

the mixture model in (6) with a general representation of the form

YS = g(S,XS) + εS , E[εS |S,XS ] = 0. (52)

In other words, the loss for bank s is given by g(s,Xs) + εs. We assume that g(S,XS) and εS

are square-integrable.

The counterpart of the pooled estimate becomes

fPooled(x) ≡ E[YS |XS = x] = E[g(S,XS)|XS = x].
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This rule satisfies equal treatment — it has no functional dependence on S — but we argued

earlier (in Section 4.3) that this forecast implicitly uses the information in the portfolio features

x to infer bank identity.

To introduce a nonlinear version of the FEO forecast, we will make the relatively modest

assumption that (52) admits a decomposition of the form

YS = f0 + f1(S) + f2(XS) + ε, E[ε|S] = E[ε|XS ] = 0, (53)

with f0 = E[YS ], f1 : {1, . . . , S̄} → R, f2 : Rd → R, and

E[YS − f0 − f1(S)|XS ] = f2(XS) (54)

E[YS − f0 − f2(XS)|S] = f1(S), (55)

E[f2
1 (S)] <∞, E[f2

2 (XS)] <∞, and

E[f1(S)] = E[f2(XS)] = 0.

Equations (54)–(55) are population versions of the backfitting algorithm in Hastie and

Tibshirani [27], which is a special case of the alternating conditional expectations algorithm of

Breiman and Friedman [10]. Given an initial choice of f1 (and known f0), (54) defines an initial

choice of f2 through the regression of the residual YS − f0 − f1(S) on XS . Equation (55) then

defines an upated choice of f1. The algorithm iterates over (54) and (55). In writing (53), we

are positing that this algorithm has a fixed point. Convergence of the backfitting algorithm is

established under widely applicable conditions in Ansley and Kohn [4].

We now introduce

ŶF (x) = f0 + f2(x) (56)

as a nonlinear counterpart of the FEO forecast. We justify this interpretation by showing that

ŶF exhibits properties that are nonlinear counterparts of the key properties of the FEO forecast

in Section 4.2 and 4.5. To state the result, consider forecasts of the form

Ŷγ(x) = f0 + f2(x) + γ(x), (57)

for some γ : Rd → R with E[γ(XS)2] <∞.

Proposition 7.1. The nonlinear FEO forecast (56) satisfies

cov[ŶF (XS)− YS , XS − E[XS |S]] = 0. (58)

For Ŷγ as in (57), if γ reduces errors, in the sense that E[(Ŷγ(XS)−YS)2] < E[(ŶF (XS)−YS)2],

then it misdirects legitimate information, in the sense that

cov[γ(XS),E[f1(S)|XS ]] > 0 (59)
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and

cov[E[γ(XS)|S], f1(S)] > 0. (60)

Property (58) parallels the condition in row (iv) of Table 4.1 that characterizes the FEO

forecast in the linear setting. It says that the forecast error ŶF (XS)− YS is uncorrelated with

the legitimate information XS − E[XS |S], which is the component of XS orthogonal to bank

identity S. Properties (59)–(60) parallel conditions (i) and (ii) in Proposition 4.6. In particular,

in (59), E[f1(S)|XS ] is the expected impact of bank identity inferred from portfolio features;

the positive covariance with γ(XS) thus indicates that γ misdirects some of the information in

XS to inferring S.

Proposition 7.1 shows that applying ideas from previous sections to nonlinear models is

a computational rather than a conceptual matter. We leave a fuller investigation into the

application of this result for future work.

We briefly contrast our FEO forecast in (56) with an alternative approach to extending

fairness concerns to complex, nonlinear models. The alternative seeks to strip XS of any

protected attributes before a model is estimated. Examples of this general approach include

Grűnewa̋lder and Khaleghi [24] and Madras et al. [36]. This approach is primarily concerned

with ensuring demographic parity: if a model has no access — not even indirect access — to a

protected attribute, its forecasts will be independent of the attribute. But we argued previously

that demographic parity is too strong a condition for our setting. Our FEO forecast in (56)

treats all the information in XS as legitimate information — even elements that could help

infer S — but it ensures that the information is not in fact misdirected to infer S.

8 Concluding Remarks

The current practice of regulatory stress testing ignores bank heterogeneity as a matter of

policy and principle. We have argued that simply pooling banks can distort coefficients on

legitimate features and is vulnerable to implicit misdirection of legitimate information to infer

bank identity. We have examined various ways of incorporating fairness considerations and

shown that estimating and discarding centered bank fixed effects addresses the deficiencies of

pooling — and it does so in an optimal sense.

Beyond this specific recommendation, the broader conclusion to be drawn from our analysis

is that accuracy and equal treatment can more effectively be addressed by accounting for

bank heterogeneity rather than ignoring it. Although we have focused on the stress testing

application, our analysis applies more generally to settings requiring the fair aggregation of

individually tailored models into a single common model.
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A Proofs

Proposition 3.1. Problem (7) is solved by the linear projection of YS onto the span of 1 and

XS . If var[XS ] is invertible, then the coefficients of the linear projection are given by (12) and

βPooled = var[XS ]−1cov[YS , XS ];

see, for example, Wooldridge [43], p.25. In (9)–(10) we can write

var[XS ] =
∑
s

psWs =
∑
s

psΣs + var[µS ].

This matrix is positive definite because we assumed that each Σs is positive definite, so var[XS ] =

E[WS ] is indeed invertible. To evaluate cov[YS , XS ] for YS in (6), we first note that

cov[XS , εS ] = E[cov[XS , εS |S]] + cov[E[XS |S],E[εS |S]] = E[0] + cov[µS , 0] = 0.

It follows that

cov[YS , XS ]

= E[cov[αS , XS |S]] + cov[E[αS |S],E[XS |S]] + E[cov[β>SXS , XS |S]] + cov[E[β>SXS |S],E[XS |S]]

= 0 + cov[αS , µS ] + E[ΣSβS ] + E[var[µS ]βS ]

= cov[αS , µS ] + E[WSβS ].

Proposition 4.1. By Proposition 3.4 of Chzhen et al. [12] or Theorem 6 of Le Gouic et al. [35],

the expected squared error is minimized subject to demographic parity by the rule that assigns
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to bank s with features x the loss forecast

ŶPTF (x, s) =
∑
i

piF
−1
i (Fs(αs + β>s x)), (61)

where Fs is the cumulative distribution function of αs+β>s Xs. By construction, Fs is then also

the cumulative distribution function of αos+βo>s Zs, which is normal with mean αos and variance

‖βos‖2. Writing Φ for the standard normal distribution function, we get

Fs(y) = Φ

(
y − αos
‖βos‖

)
, F−1

i (q) = αoi + ‖βoi ‖Φ−1(q).

Making these substitutions in (61) and writing αos +βo>s zs for αs+β>s x, with zs = Σ−1
s (x−µs),

we get

ŶPTF (x, s) =
∑
i

piF
−1
i (Fs(α

o
s + βo>s zs))

=
∑
i

piF
−1
i (Φ(βo>s zs/‖βos‖))

=
∑
i

pi{αoi + ‖βoi ‖Φ−1(Φ(βo>s zs/‖βos‖))}

=
∑
i

pi{αoi + ‖βoi ‖βo>s zs/‖βos‖},

which is (18). (Demographic parity holds because the distribution of βo>s Zs/‖βos‖ does not

depend on s.) Under (19), ‖βoi ‖βos/‖βos‖ = ‖aiβ‖asβ/‖asβ‖ = aiβ = βoi , and we get (20).

Proposition 4.2. We can rewrite Ŷ (x, s) in (22) as

Ŷ (x, s) =
S̄∑
i=1

ai1{s = i}+ β>x,

for suitable ai. Minimizing (23) over the ai and β yields the same value for β as minimizing (23)

using (22) because the indicators 1{s = i} have the same span as the Ui(s) and a constant. Thus,

the βF defined by (23) is the coefficient of XS in the regression of YS on XS and the indicators

1{S = i}. By the Frisch-Waugh-Lovell Theorem (as in Angrist and Pischke [3], pp.35–36), we

can therefore evaluate βF as the coefficient in the regression of YS on the component of XS

orthogonal to the other variables, which in our case are the indicators. The projection of XS

onto the indicators is given by
∑

i µi1{S = i} = µS , so the orthogonal component is XS − µS .

We may therefore evaluate βF as the coefficient in the regression of YS − E[YS ] on XS − µS ,

which is (28). For the first factor in (28), we have

var[XS − µS ] = E[var[XS − µS |S]] + var[E[XS − µS |S]] = E[ΣS ] + 0.
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For the second factor, we similarly have

cov[XS − µS , YS ] = E[cov[XS − µS , YS |S]] = E[cov[XS − µS , β>SXS |S]] = E[ΣSβS ],

so (25) follows. The optimal αF in (23) ensures that E[Ŷ (XS , S)] = E[YS ], which yields (26).

Proposition 4.3. The minimization in (23) yields coefficients αF , δ, and βF , with which we can

write

YS = αF +

S̄−1∑
i=1

δiUi(S) + β>FXS + u, (62)

where the error u has mean zero and is uncorrelated with U(S) and XS . We thus have

βPooled = var[XS ]−1cov[XS , YS ]

= var[XS ]−1{cov[XS , β
>
FXS ] + cov[XS , δ

>U(S)]}

= var[XS ]−1{var[XS ]βF + cov[XS , U(S)]δ}

= βF + Λδ,

using the expression for Λ in (29) for the last step.

Next, we evaluate δ. Using (62), we can derive δ as the vector of coefficients in a regression

of YS − β>FXS on U(S). Thus,

δ = var[U(S)]−1cov[U(S), YS − β>FXS ]

= var[U(S)]−1cov[U(S), YS ]− var[U(S)]−1cov[U(S), XS ]βF . (63)

To evaluate var[U(S)]−1, we first note that

var[U(S)] =


p1 − p2

1 −p1p2 · · · −p1pS̄−1

−p2p1 p2 − p2
2 · · · −p2pS̄−1

...
...

. . .
...

−pS̄−1p1 −pS̄−1p2 · · · pS̄−1 − p2
S̄−1

 ;

direct multiplication then verifies that

var[U(S)]−1 =


1/p1 + 1/pS̄ 1/pS̄ · · · 1/pS̄

1/pS̄ 1/p2 + 1/pS̄ · · · 1/pS̄
...

...
. . .

...
1/pS̄ 1/pS̄ · · · 1/pS̄−1 + 1/pS̄

 .

The vector cov[U(S), YS ] has elements

[cov[U(S), YS ]]s = ps(E[Ys]− E[YS ]), s = 1, . . . , S̄ − 1;
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and row s of the matrix cov[U(S), XS ] is given by ps(µs − µ̄)>. Thus, for s = 1, . . . , S̄ − 1, we

have the vector elements

(var[U(S)]−1cov[U(S), YS ])s = (E[Ys]− E[YS ]) +
S̄−1∑
i=1

pi(E[Yi]− E[YS ])/pS̄ = E[Ys]− E[YS̄ ],

and similarly row s of the matrix var[U(S)]−1cov[U(S), XS ] is given by

(µs − µ̄)> +

S̄−1∑
i=1

pi(µi − µ̄)>/pS̄ = (µs − µS̄)>. (64)

Combining these terms in (63) yields (31).

Proposition 4.4. We derived an expression for the rows of M in (64), and (39) follows from

that expression. By applying expression (28) for βF in (40), we see that ŶSEO is the claimed

projection.

Corollary 4.2. From (25) we know that if Σs ≡ Σ then βF = E[βS ]. From (20), we get β̄o =∑
i piβ

o
i =

∑
i piΣ

1/2βi = Σ1/2E[βS ] = Σ1/2βF . Thus, β>F (x − µs) = β̄o>Σ−1/2(x − µs) =

β̄o>zs. It follows that (20) and (40) coincide because they have the same overall mean. If the

distribution of Zs does not depend on s, then (20) satisfies demographic parity.

Proposition 4.5. The claim for (i) simply restates Proposition 3.1. The constraint in (ii) is

demographic parity, so the optimizer follows from the definition of projection to fairness. The

constraint in (v) requires cov[λ>U(S) + β>XS , U(S)] = 0. Rearranging this equation, we get

λ = −(var[U(S)])−1cov[U(S), XS ]β; i.e., λ = −Mβ. Making this substitution in the form of ŶS

in row (v), (41) becomes

E[(YS − α− λ>U(S)− β>XS)2] = E[(YS − α− β>[XS −M>U(S)])2]. (65)

Minimizing this expression over α and β yields the coefficients in a linear regression of YS on a

constant XS−M>U(S). In light of Proposition 4.4, the optimal β in (65) is then the coefficient

on XS − µS in a regression of YS on a constant XS − µS . It follows from (28) that the optimal

β in (65) is therefore βF . Because E[U(S)] = 0, the minimizing α in (65) is the αF defined by

(23). We have thus shown that the optimal forecast in row (v) is

Ŷs = αF + β>F (Xs −M>U) = αF + λ>U(s) + β>FXs.

In case (iv), by applying (39) we see that the constraint requires cov[YS−β>XS , XS−M>U(S)] =

0, so β = (cov[XS , XS−M>U(S)])−1cov[YS , XS−M>U(S)]. Using the fact that XS−M>U(S)
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is orthogonal to U(S), we get

cov[XS , XS −M>U(S)]

= cov[XS −M>U(S), XS −M>U(S)] + cov[M>U(S), XS −M>U(S)]

= var[XS −M>U(S)],

and therefore β = (var[XS−M>U(S)])−1cov[YS , XS−M>U(S)]. In other words, the optimal β

in (iv) is the coefficient in a linear regression of YS on XS−M>U(S). As noted in the discussion

of (v), this is βF , and it follows from E[U(S)] = 0 that the optimal α in (iv) is αF .

Proposition 4.6. By construction, the least-squares projection of YS onto a constant and XS is

given by the pooled forecast, so

YS = E[YS ] + β>Pooled(XS − µ̄) + εP ,

for some orthogonal error εP with a variance σ2
P that does not depend on γ. We therefore have

E[(Ŷγ(XS)− YS)2] = E[{Ŷγ(XS)− E[YS ]− β>Pooled(XS − µ̄)}2] + σ2
P

= E[{(γ − Λδ)>(XS − µ̄)}2] + σ2
P ,

from which (i) follows.

Using the linear projection of YS onto (1, U(S), XS) in (32), we can write

YS = E[YS ] + δ>U(S) + β>F (XS − µ̄) + ε,

for some orthogonal error ε with a variance σ2
ε that does not depend on γ. We therefore have

E[(Ŷγ(XS)− YS)2] = E[{γ>(XS − µ̄)− δ>U(S)}2] + σ2
ε

= E[{γ>(XS − µS) + γ>(µS − µ̄)− δ>U(S)}2] + σ2
ε

= E[{γ>(XS − µS) + (γ>M> − δ>)U(S)}2] + σ2
ε

= E[{γ>(XS − µS)}2] + E[{(γ>M> − δ>)U(S)}2] + σ2
ε ,

where the third equality uses (39), and the last equality uses the orthogonality of XS −µS and

U(S). If this expression is smaller than the corresponding value with γ = 0, then (ii) must

hold.

Proposition 4.7. We saw in the proof of Proposition 4.2 that XS − µS is uncorrelated with the

centered indicators Ui(S). It is also uncorrelated with VS − νS because

E[(XS − µS)(VS − νS)] =
∑
s

psE[(Xs − µs)(Vs − νs)] = 0,
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under our assumption that Xs and Vs are uncorrelated. Similarly,

E[(XS − µS)Ui(S)VS ] = piE[(Xi − µi)Vi]− piE[(XS − µS)VS ] = 0,

so XS − µS is uncorrelated with the interaction terms. Thus, XS − µS is uncorrelated with all

the elements of O = {1, U(S), VS − νS , U1(S)VS , . . . , US̄(S)VS}.
Starting from the representation of (43) as

YS =
S̄∑
i=1

1{S = i}{αi + β>i XS + γ>i VS + εi},

we may write

YS = β>S (XS − µS) +
S̄∑
i=1

1{S = i}(αi + β>i µi) +
S̄∑
i=1

1{S = i}γ>i VS + εS

≡ β>S (XS − µS) + Ỹ + εS ,

which expresses YS as the sum of three mutually orthogonal terms. As XS −µS is uncorrelated

with O, and Ỹ is uncorrelated with XS − µS , we may calculate the projection of YS onto the

span of XS − µS and O by projecting β>S (XS − µS) onto XS − µS and projecting Ỹ onto O.

We know from (28) that the projection of β>S (XS − µS) onto XS − µS is β>F (XS − µS); in

other words, including VS and the interaction terms does not change βF .

For the projection of Ỹ onto O, let ai = αi + β>i µi + γ̄>νi and ā =
∑

i piai. Then,

Ỹ =

S̄∑
i=1

1{S = i}(αi + β>i µi) +

S̄∑
i=1

1{S = i}γ>i VS

=

S̄∑
i=1

1{S = i}(αi + β>i µi) +

S̄∑
i=1

Ui(S)γ>i VS +

S̄∑
i=1

piγ
>
i VS

=

S̄∑
i=1

1{S = i}(αi + β>i µi + γ̄>νi) +

S̄∑
i=1

Ui(S)γ>i VS +

S̄∑
i=1

piγ
>
i (VS − νS)

= ā+

S̄−1∑
i=1

Ui(S)(ai − aS̄) +

S̄∑
i=1

Ui(S)γ>i VS + γ̄>(VS − νS).

Thus, Ỹ is in the span of O, and its coefficient on VS−νS is γ̄. With all var[Vs] having full rank,

VS−νS is not spanned by the other elements of O, so its coefficient γ̄ is uniquely determined.

Proposition 7.1. For the first claim, we have

cov[ŶF (XS)− YS , XS − E[XS |S]] = −E[(f1(S) + ε)(XS − E[XS |S])]

= −E[f1(S)(XS − E[XS |S])]− E[εXS ] + E[εE[XS |S]]

= 0 + E[E[ε|S]E[XS |S]]− E[E[ε|XS ]XS ] = 0.

47



For the second claim, we have

E[(Ŷγ(XS)− YS)2] = E[(γ(XS)− f1(S)− ε)2]

= E[(γ(XS)− f1(S))2] + E[ε2].

The last step uses

E[(γ(XS)− f1(S))ε] = E[(γ(XS)− f1(S))E[ε|S]] = 0.

It now follows that if γ reduces the expected squared forecast error then E[γ(XS)f1(S)] > 0,

which implies (59) and (60).

B Convex Combinations of Coefficients

Equation (13) aggregates the individual scalar slopes βs into a single value. We can generalize

this perspective and ask what properties we would like in an aggregation function, meaning a

function f : RS̄ → R,

β∗ = f(β1, . . . , βS̄),

that combines bank-specific coefficients βs into an “industry” parameter β∗.

We consider the following properties:

(i) f(kb1, . . . , kbS̄) = kf(b1, . . . , bS̄), for all k, b1, . . . , bS̄ ∈ R;

(ii) f(b, . . . , b) = b, for at least one nonzero b ∈ R;

(iii) bs > 0, for all s, implies f(b1, . . . , bS̄) ≥ 0;

(iv) f is differentiable at zero.

Property (i) is needed for the aggregation to perform sensibly under a change of units in

the measurement of Xs: if we divide each Xs by k, each βs increases by a factor of k, and it

is natural to require that β∗ scale accordingly. Properties (ii) and (iii) are also very modest

requirements. Property (iv) is harder to motivate but not unreasonable. These properties

constrain the aggregation function as follows:

Proposition B.1. If (i)–(iv) hold, then f(β1, . . . , βS̄) is a convex combination of its arguments.

Proof. Fix β ∈ RS̄ . Let g(t) = f(tβ). By condition (iv), g′(0) = β>f ′(0). Condition (i) and (ii)

imply g(t) = tf(β), so g′(t) = f(β) for any t. Thus, f(β) = g′(0) = β>f ′(0) =
∑S̄

i=1 f
′
i(0)βi.

Condition (ii) now implies
∑S̄

i=1 f
′
i(0) = 1, and condition (iii) implies f ′i(0) ≥ 0, for all i. Thus,

f(β) =
∑S̄

i=1 f
′
i(0)βi is a convex combination of the components of β.
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The scalar FEO coefficient in (27) is a convex combination of the bank-specific coefficients

βs, but the pooled coefficient (13) is generally not. This property of the FEO model extends to

the multivariate case under additional conditions. If all the bank-specific covariance matrices

Σs, s = 1, . . . , S̄, coincide, then in (25) we get βF = E[βS ] =
∑

s psβs. If all Σs are diagonal (but

not necessarily identical), then the representation of the scalar FEO coefficient in (27) applies to

each coordinate of βF . If all Σs have the same eigenvectors, then we can transform the original

features Xs into uncorrelated features using principal components. Using these transformed

features, each coordinate of βF is a convex combination of bank-specific coefficients.

C Sensitivity Analysis

This appendix provides supporting details for Section 6, particularly the conclusions summa-

rized in the middle and bottom panels of Table 6.1. We begin with an analysis of forecast bias

that is of independent interest.

C.1 Forecast Bias

If losses at different banks are described by different models, then forecast bias becomes in-

evitable when we apply a single model to all banks. But the distribution of bias across banks

may differ under different choices of the single model.

Let Ŷs be any of the forecasts for bank s in Table 4.1, and, as in (1), let Ys denote the actual

loss rate for bank s. Both Ŷs and Ys are evaluated at Xs. Define the forecast bias for bank s

to be

bias(s) = E[Ŷs − Ys]. (66)

The expectation integrates over the distribution of the error εs in (1) and the features Xs.

Proposition C.1. For each forecast in Table 4.1, the bias is as follows.

(i) Pooled: bias(s) = E[YS ]− E[Ys] + β>Pooled(µs − µ̄);

(ii) PTF in (18): bias(s) = E[YS ]− E[Ys];

(iii) Conditional expectation: bias(s) = E[ŶC(Xs)]− E[Ys];

(iv) FEO: bias(s) = E[YS ]− E[Ys] + β>F (µs − µ̄);

(v) SEO: bias(s) = E[YS ]− E[Ys].
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Proof. For (i), we have, using the definition of αPooled in (12),

E[Ŷs − Ys] = E[αPooled + β>PooledXs − Ys]

= (E[YS ]− β>Pooledµ̄) + β>Pooledµs − E[Ys]

= E[YS ]− E[Ys] + β>Pooled(µs − µ̄).

For the PTF forecast, (17) and (18) yield

E[Ŷs] = ᾱo =
∑
s

psα
o
s =

∑
s

psE[Ys] = E[YS ],

and the bias in (ii) follows. The expression in (iii) holds by definition. The argument for (iv)

is the same as the argument for (i). The bias in (v) follows from (iv) because we see from (38)

that the SEO forecast for bank s subtracts β>F (µs − µ̄) from the FEO forecast.

In every case of Proposition C.1, the average bias
∑

s psbias(s) is zero, but the methods

differ in how they distribute bias across banks. We saw previously that the PTF and SEO

methods go the farthest in equalizing differences; we now see that the bias for each of these

methods is the difference E[YS ] − E[Ys] between the average loss rate for all banks and the

average for an individual bank.

Using the relationship βPooled = βF + Λδ from (30), we see that the difference between the

expressions in (i) and (iv) is

biasPooled(s)− biasFEO(s) = δ>Λ>(µs − µ̄).

In light of the discussion in Section 4.2, this difference is the expected disparate impact on bank

s of using the pooled model.

C.2 Improvement in Intercept αs

By taking the expectation of (48), we get

E[ŶF (Xl)] =
∑
s

ps(αs + βsµs) + βF (µl − µ̄), (67)

and the same holds for the expected pooled forecast with βF replaced by βPooled. It follows

that, for any banks s and l,
∂E[ŶF (Xl)]

∂αs
= ps > 0.

In other words, all expected forecasts decrease following a reduction in αs.

In contrast, for the pooled model we get

∂E[ŶP (Xl)]

∂αs
= ps −

∂cov(αS , µS)/∂αs∑
t ptσ

2
t + var(µS)

βs(µ̄− µl) = ps + ps
(µs − µ̄)(µl − µ̄)∑
s psσ

2
s + var(µS)

βs. (68)
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Bank s benefits from its reduction of αs, in the sense that the derivative with l = s is positive.

For l 6= s, the sign of (68) does not admit a simple description. In particular, it may be

negative when µs and µl are on opposite sides of µ̄, meaning that one bank’s loans are riskier

than average and the other bank’s loans are less risky than average.

For the bias under FEO we have

∂biasF (l)

∂αs
= ps − 1{l = s}

It is then immediate that

∂biasF (l)

∂αs
> 0 if l 6= s and

∂biasF (s)

∂αs
< 0.

The direction of change makes sense. If the bias for a bank is positive, meaning that the industry

model overestimates its losses, then improvements at other banks will reduce loss forecasts and

thus reduce the bias. The bank’s own improvements will increase the bias by reducing the

bank’s own losses by more than they reduce the model’s forecasts. The situation is reversed for

a bank with a negative bias.

However, for the pooled regression method,

∂biasP (l)

∂αs
= ps + ps

(µs − µ̄)(µl − µ̄)∑
s psσ

2
s + var(µS)

βs − 1{l = s},

and the direction of change is unclear.

C.3 Improvement in Loan Quality

Now suppose bank s improves the quality of its loan portfolio, resulting in a smaller µs. This

has no effect on βF , which makes sense — changing one bank’s loan quality should not change

the sensitivity of losses to loan quality. However, it is evident from (11) that βPooled does change

with µs.

Under FEO, the mean the mean predicted loss rate satisfies

∂EŶF (Xl)

∂µs
= psβs + βF (1{l = s} − ps),

which is always positive if l = s. This means that an improvement in bank l’s loan quality (a

reduction in µl) reduces bank l’s mean predicted losses. In the pooled model,

∂EŶP (Xl)

∂µs
= psβs + βPooled(1{l = s} − ps) + (µs − µ̄)

∂βPooled
∂µs

;

this expression could be negative, even with l = s, meaning that a bank could be penalized

(through a higher mean predicted loss rate) as a result of improving its loan quality.
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The sensitivity of the bias under FEO is given by

∂biasF (l)

∂µs
= (1{l = s} − ps)(βF − βs);

in particular, the bias for bank l moves in opposite directions with respect to changes in µl

and µs, s 6= l. Suppose industry model overestimates bank l’s losses, in the sense that the bias

is positive, and suppose the industry model overestimates bank l’s sensitivity to loan quality,

in the sense that βF > βl. Then bank l will benefit (in the sense of reducing the bias) from

improving its loan quality by reducing µl.

For the pooled regression,

∂biasP (l)

∂µs
= (βPooled − βs)(1{l = s} − ps) + (µs − µ̄)

∂βPooled
∂µs

.

The sign of this expression does not admit a simple condition.

C.4 Improvement in Loan Management

Now suppose bank s improves its abilities in loan management, resulting in a reduction in βs.

The mean predicted loss rate under FEO satisfies

∂E[ŶF (Xl)]

∂βs
= ps(µs + µl − µ̄),

and is positive if µs + µl > µ̄. In the pooled model

∂E[ŶP (Xl)]

∂βs
= psµs +

ps(σ
2
s + µs(µs − µ̄))∑

i pi(σ
2
i + µi(µi − µ̄))

(µl − µ̄),

so [σ2
s + µs(µs − µ̄)](µl − µ̄) > 0 is a sufficient condition for the sensitivity to be positive.

Regardless of the value of µl, the sensitivity is positive for all sufficiently large µs.

For l 6= s, the sensitivity of the bias for bank l with respect to βs equals the sensitivity of

the mean predicted loss because the actual expected loss E[Yl] is unaffected by βs. We therefore

focus on the case l = s. Under FEO,

∂biasF (s)

∂βs
= (ps − 1)µs + ps(µs − µ̄),

which is guaranteed to be negative if µs < µ̄. Under the pooled model, the sign of

∂biasP (s)

∂βs
= (ps − 1)µs +

ps(σ
2
s + µs(µs − µ̄))∑

i pi(σ
2
i + µi(µi − µ̄))

(µs − µ̄)

does not admit a simple characterization.
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D Additional Information on Empirical Analysis

Table D.1 lists the bank holding companies included in our empirical analysis and the symbols

we use to refer to them. The companies are listed in order of size by total assets.

Ticker Bank Name

JPM JPMORGAN CHASE & CO.
BAC BANK OF AMERICA CORPORATION
C CITIGROUP INC.
WFC WELLS FARGO & COMPANY
GS GOLDMAN SACHS GROUP, INC.
MS MORGAN STANLEY
SCHW CHARLES SCHWAB CORPORATION
USB U.S. BANCORP
PNC PNC FINANCIAL SERVICES GROUP, INC.
TFC TRUIST FINANCIAL CORPORATION
TD TD GROUP US HOLDINGS LLC
BK BANK OF NEW YORK MELLON CORPORATION
COF CAPITAL ONE FINANCIAL CORPORATION
STT STATE STREET CORPORATION
HSBC HSBC NORTH AMERICA HOLDINGS INC.
FITB FIFTH THIRD BANCORP
USAA UNITED SERVICES AUTOMOBILE ASSOCIATION
BMO BMO FINANCIAL CORP.
CFG CITIZENS FINANCIAL GROUP, INC.
AXP AMERICAN EXPRESS COMPANY

Table D.1: Symbols and names of included bank holding companies.

We construct the loss rates, past due rates, and allowance rates using the entries in FR

Y-9C forms outlined in Table D.2.

E Robustness Check: Pre-COVID Data

We repeat the analysis of Section 5, limiting the data to 2002–2019. This serves two purposes.

It addresses the possibility that our results are driven by a few extreme values during the

COVID period 2020–2021. It also accounts for a change in how how banks measure allowances

(the Current Expected Credit Losses methodology) that took effect at the end of 2019. The

evidence for heterogeneity and its impact is generally at least as strong using the pre-COVID

data as using data through 2021.
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Variables Loan Types 2007Q1 – Present 2003Q1 – 2006Q4

Loan Amount

CC BHCKB538 BHCKB538
FL BHDM5367 BHDM5367

CRE
Owned: BHCKF160
Other: BHCKF161

BHDM1480

CI BHCK1763 BHCK1763
Total BHCK2122 BHCK2122

Allowance Amount Total BHCK3123 BHCK3123

Charge-Offs

CC BHCKB514 BHCKB514
FL BHCKC234 BHCKC234

CRE
Owned: BHCKC895
Other: BHCKC897

BHCK3590

CI BHCK4645 BHCK4645

Recoveries

CC BHCKB515 BHCKB515
FL BHCKC217 BHCKC217

CRE
Owned: BHCKC896
Other: BHCKC898

BHCK3591

CI BHCK4617 BHCK4617

Past Due: 30-89 days and accruing

CC BHCKB575 BHCKB575
FL BHCKC236 BHCKC236

CRE
Owned: BHCKF178
Other: BHCKF179

BHCK3502

CI BHCK1606 BHCK1606

Past Due: 90 days and accruing

CC BHCKB576 BHCKB576
FL BHCKC237 BHCKC237

CRE
Owned: BHCKF180
Other: BHCKF181

BHCK3503

CI BHCK1607 BHCK1607

Past Due: non-accrual

CC BHCKB577 BHCKB577
FL BHCKC229 BHCKC229

CRE
Owned: BHCKF182
Other: BHCKF183

BHCK3504

CI BHCK1608 BHCK1608

Table D.2: Loan variables and FR Y-9C form correspondence.
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