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Abstract
We study interest rate risk at U.S. banks by measuring the impact of interest rate
changes on banks’ earnings and net worth. Changes in interest rates affect (i) future
earnings by altering income and expenses from rate-sensitive assets and liabilities and
(ii) current net worth by altering the present value of cash flows from current assets
and liabilities. We find that a 100 bps increase in interest rates, on average, increases
banks’ net interest margin (NIM) by 13 bps and reduces the net worth of the aggregate
banking sector in the range of 8% to 18%, depending on the composition of banks’ bal-
ance sheets. We find that small banks have higher interest rate risk than large banks.
During the pandemic period of 2020-2021, U.S. banks became more exposed to interest
rate risk due to an increase in the share of long-term securities with low interest rates.
Overall, although banks manage the maturity mismatch between assets and liabilities,
we provide evidence of substantial remaining interest rate risk at U.S. banks.
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1. Introduction

In 2022, the Federal Reserve began increasing the policy rate after a prolonged period
of low interest rates. The increase in interest rates has brought renewed attention to
the question of the banking sector’s vulnerability to interest rate risk. As noted in
the Financial Stability Oversight Council’s 2022 Annual Report,1 a rapid increase in
rates may decrease profitability for banks with larger shares of longer-term fixed-income
securities or mortgage loans. In addition, higher rates cause mark-to-market losses on
fixed-income securities, reducing banks’ equity capital.

First, we theoretically motivate the two effects of interest rate changes on banks: the
interest income effect and the balance sheet effect. The interest income effect refers to
changes in interest rates causing changes in net interest income. If banks engage in matu-
rity transformation by borrowing short term and lending long term, then an interest rate
increase should result in higher interest expenses relative to interest income, reducing net
interest margins (NIM). Alternatively, if banks adjust deposit interest rates slower than
market interest rates and originate a considerable share of assets under higher interest
rates, then net interest margins increase. Thus, in principle the interest income effect
can reduce or increase net interest margins. The balance sheet effect refers to a higher
interest rate lowering a discount factor and thus reducing the present value of assets and
liabilities locked under lower interest rates. Our theoretical model shows two opposing
effects of rate changes on banks: an increase in net interest income and a decrease in
current equity. These opposing effects, however, provide complementary information.
The income effect measures the interest rate sensitivity of future net interest income,
and the balance sheet effect measures the interest rate sensitivity of the bank’s current
value.

Second, we empirically quantify the above two effects on U.S. banks. To quantify the
interest income effect, we use regression analysis of the relationship between NIM and
the interest rate. To quantify the balance sheet effect, we estimate the sensitivity of the
economic value of equity (EVE) to interest rate changes. EVE is a measure of banks’
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net worth and is quantified as the present value of discounted cash flows from current
assets and liabilities. Interest rate changes affect the present value of future cash flows,
and, consequently, the values of underlying assets and liabilities change as do banks’
economic values.

Our main empirical results are as follows. First, we find that a 100 bps increase
in the short-term interest rate increases NIM by 13 bps, and a 100 bps increase in the
spread between long-term and short-term interest rates increases NIM by 11 bps for a
U.S. bank on average. While these magnitudes of NIM’s sensitivity are small relative to
interest rate changes, we demonstrate that they imply material impacts on interest rate
profitability. A 13 bps decline in NIM translates to a $26 billion decline in net interest
income for U.S. banks in aggregate in 2021. Moreover, from 1997 through 2021, NIM
declined by 31.5% or 148 bps, and our model attributes 68 bps of this decline to interest
rate changes. In addition, we demonstrate that banks hold assets with longer maturities
during low interest rate periods to mitigate the decline in interest rate earnings.

Second, we find that a 100 bps parallel upward shift in the yield curve reduces the
EVE of the aggregate U.S. banking sector in the range between 8% and 18% during the
post-2008 financial crisis. Thus, consistent with the prediction of our theoretical model,
increases in interest rates have a positive impact on earnings but come with the cost of
substantially reducing the current economic value of equity.

Third, we examine differences in the interest rate sensitivities of small and large U.S.
banks using $10B of total assets as a size threshold. We find that small banks’ NIM
and EVE exhibit higher interest rate sensitivities. Although small banks receive higher
gains in NIM from an interest rate increase than large banks, it comes with the cost of a
larger decline in EVE. We show that large banks compensate for lower NIM profitability
with higher non-interest income profitability relative to small banks. We explain it by
large banks having diverse business structures that generate higher shares of non-interest
revenues.

Fourth, we show that U.S. banks’ exposure to interest rate risk increased during the
pandemic period of 2020-2021. We attribute these results primarily to the increase in
the share of long-term securities on banks’ balance sheets. During this period, banks
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increased their holdings of long-term securities with low interest rates, and their in-
creased share in banks’ total assets caused NIM to decline by more than the decline
associated with the interest rate decrease. In addition, the increase in the share of
long-term securities extended the repricing maturities of assets, and it increased the
interest rate sensitivity of EVE. We note that most assets are valued at the amortized
cost rather than mark-to-market on the balance sheet. Therefore, financial statements
mostly do not reflect the impact of interest rate changes on EVE. However, the interest
rate sensitivity of EVE reflects lost economic value as fixed cash flows are discounted
at higher rates. Moreover, the interest rate sensitivity of EVE creates short-term risk
in stressful economic scenarios when banks experience liquidity constraints and need to
sell long-term assets at a discount, realizing losses.

Overall, our results show material interest rate risk at U.S. banks. We find that (1)
interest rate changes materially impact banks’ earnings and net worth, (2) interest rate
risk increased substantially during the pandemic, (3) small banks have higher interest
rate risk than large banks.

The rest of this paper is organized as follows. Section 2 discusses the relevant
literature and our contribution. Section 3 presents our theoretical model. Section 4
describes our empirical models and key assumptions to quantify interest rate sensitivities.
Section 5 describes our data sets. Section 6 analyzes our results. Section 7 concludes.

2. Related Literature and Contribution

Our study provides two main contributions to the literature. First, we contribute
to the literature on structural modeling of banks, and second, we contribute to the
empirical literature on interest rate risk in banking.

In our paper, we extend the original Merton (1974) structural model by explicitly
incorporating a fixed-income portfolio in the balance sheet. This extension allows the
structural model to decompose the impact of interest rates on bank value for our two
effects and provides a theoretical foundation for our empirical analysis. The previous
literature on structural modeling mainly focuses on default risk. For example, Nagel and
Purnanandam (2019) develop a structural bank model by explicitly incorporating the
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loan portfolio on the bank balance sheet. They find that a standard structural credit risk
model could underestimate the default risk of banks. Hugonnier and Morellec (2017)
develop a structural credit risk model of banks that incorporates taxation cost, issuance
cost of securities, and default cost. Our extension is targeted to analyze banks’ interest
rate risk and shows that if the weighted-average duration for assets is longer than the
weighted-average duration of liabilities then an increase in interest rates results in a
decrease in bank’s current equity. In addition, our model shows that when a bank’s
deposits are less sensitive to the market short-term interest rate than the interest rate
applied to newly originated assets, an increase in interest rates results in an increase in
net interest income.

We also contribute to the literature characterized by opposing views on the sensitivity
of bank value to interest rate changes. The first view focuses on the fact that banks
are involved in maturity transformation by funding long-term assets with short-term
liabilities. For example, English et al. (2018) find that banks’ values decline significantly
following an increase in the level or slope of the yield curve. The decline is larger for
banks with a large maturity mismatch. Similarly, Paul (2020) finds that banks’ values
are materially sensitive to interest rate changes. In an alternative view, banks match
asset and liability maturities and therefore they are insensitive to the interest rate. For
example, Drechsler et al. (2021) argue that banks perfectly match asset maturities with
term deposits, exercising significant market power in deposit markets. Hoffmann et al.
(2019) find that, in aggregate, banks in Europe are insensitive to interest rate risk,
although the sensitivity is heterogeneous across banks. Similarly, Williams (2020) finds
that the median U.S. bank matches interest income and interest expenses, however, the
sensitivity of interest rate income to the interest rate is heterogeneous across banks. In
contrast to this alternative view in the literature, we find that banks, in aggregate and
on average, are exposed to material interest rate risk.

Commonly used methods in the literature measure stock price reactions to surprise
changes in policy interest rates to proxy the impact of interest rate changes on bank
value (e,g., English et al. (2018), Flannery and James (1984a), Ampudia and Van den
Heuvel (2018), and Paul (2020)). Arguably, it is challenging to separate stock price re-
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actions to interest rate shocks from other confounding factors imbedded in interest rate
shock announcements (e.g., the central bank’s assessments of future macroeconomic
growth or inflation). Unlike this approach in the literature, the EVE approach directly
estimates the impact of interest rate changes on the current value of equity. In our
model, we capture the main components of interest rate risk, including: (i) re-pricing
risk by accounting for maturities of assets and liabilities and (ii) pre-payment risk by
modeling embedded optionality. Fixed-rate mortgage loans and mortgage-backed secu-
rities (MBS), which are subject to pre-payment risk, comprise a considerable share of
U.S. banks’ assets. Our method is conceptually similar to Hoffmann et al. (2019) who
also study the sensitivity of net worth and net interest income to interest rate shocks.
Meanwhile, our simulation-based EVE model allows us to incorporate an interest-rate-
dependent prepayment model for mortgage loans and MBS, resulting in a more accurate
measurement of interest rate sensitivity. Our EVE pricing methods account for differ-
ences in types of assets and liabilities. In addition, we study interest rate risk at U.S.
banks while Hoffmann et al. (2019) study the European banking sector, and we present
contrasting results.

The estimates of the interest rate sensitivity of banks’ net worth vary in the literature.
English et al. (2018) estimate the reaction of bank stock prices to the surprise movements
in interest rates prompted by FOMC announcements. Their findings imply that a 100
bps parallel upward shift in the yield curve lowers the average bank’s stock price between
8% and 10%. Paul (2020) estimates that the average bank’s stock price will fall by around
17% in response to a 100 bps increase in expected short-term rates. Di Tella and Kurlat
(2021) calibrate their theoretical model to match with data on interest rates, deposit
spreads, bank leverage, and other macroeconomic variables. They find that a 100 bps
increase in the interest rate reduces banks’ mark-to-market net worth by about 30%.
We estimate that a 100 bps increase in interest rates reduces banks’ net worth between
8% and 18% in aggregate for U.S. banks during period 2010-2021, depending on the
composition of banks’ balance sheets.

Unlike the methods used in the literature, our method allows us to estimate time-
varying sensitivity and shows the dependence on repricing maturity and asset and deposit
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compositions. Begenau et al. (2020) propose time varying measures of interest rate risk
exposure and report significant exposures of U.S. banks to interest rates. Similar to our
finding, Begenau et al. (2020) document time variation in interest rate risk exposure.
As discussed in Drechsler et al. (2021), the sensitivity of deposit rates to market rates
is the key in the assessment of the impact of interest rates on banks’ value. The deposit
literature (e.g., Driscoll and Judson (2013), Drechsler et al. (2017), and Gerlach et al.
(2018)) suggests that deposit rates have relatively low sensitivity to market interest
rates. We use average deposit betas by deposit types reported by the largest banks
to the Federal Reserve and published in Gerlach et al. (2018). By applying industry-
reported deposit betas, we avoid making our own assumptions in our EVE model.

The empirical banking literature varies in estimates of the interest rate sensitivity
of NIM. For example, Genay et al. (2014) and Drechsler et al. (2021) report that NIM
is insensitive to interest rate changes. Drechsler et al. (2021) report that with a 100
bps increase in the short-term rate, both interest income and interest expense increase
by about the same amount, around 35 bps, and as a result NIM is not sensitive to
interest rate changes on average. Genay et al. (2014) estimate that a 100 bps increase
in the short-term interest rate results in only a 1.5 bps increase in NIM of the smallest
banks and a 0.3 bps increase in the average NIM of large banks. Among papers which
report larger sensitivities are English et al. (2018) and Claessens et al. (2018). English
et al. (2018) report that a 100 bps increase in interest rates results in a roughly 20 bps
increase in NIM after one quarter, although the impact declines over time. Claessens
et al. (2018) use a sample of banks from 47 countries from 2005 to 2013 and estimate
that a 100 bps interest rate drop causes an 8 bps decline in NIM, and the effect increases
to 20 bps at low rates. Our estimates imply that a 100 bps interest rate increase results
in a 13 bps increase in NIM. We demonstrate that our estimates explain reasonably well
changes in NIM over various sub-periods of interest rate changes in our sample from
1997 through 2021. We explain the difference between estimates of NIM sensitivities in
Drechsler et al. (2021) and in our paper by differences in research questions and empirical
approaches. Drechsler et al. (2021) employ individual time-series regressions to study
the heterogeneity in interest income sensitivity across banks. We use a panel analysis
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to study how banks, on average, respond to changes in interest rates, and therefore, our
approach is better suited to explain the dynamics of the bank-average NIM.

Hanson and Stein (2015) use the aggregate fraction of securities with a re-pricing
maturity of one year or longer and find that in response to an interest rate decrease
banks increase bond holdings toward longer maturities to reduce the degree of interest
income decline. We use more granular data on repricing maturities of assets and find
similar results to Hanson and Stein (2015).

3. Theoretical Model

To motivate our empirical analysis of the impact of interest rate changes banks,
we extend the Merton (1974) model and incorporate a fixed-income portfolio into the
balance sheet. The original Merton (1974) model describes a firm’s asset value in total.
We represent the total assets of a bank’s balance sheet as a portfolio of fixed-income
bonds with different maturities. This allows us to analyze how the short-term interest
rate impacts the bank’s value through the balance sheet channel and the interest income
channel. Our modeling approach is close to Nagel and Purnanandam (2019) who describe
a bank’s asset value as a collection of defaultable loans. Unlike Nagel and Purnanandam
(2019), who study credit risk, we focus on interest rate risk.

We compute the mark-to-market value of the portfolio of fixed income bonds, assum-
ing short-term interest rates follow a stochastic process. We assume that banks cannot
re-balance their portfolios during a certain time period under stress. The balance sheet
effect is captured through the impact of interest rate changes on the mark-to-market
value of the fixed-income portfolio and hence affects the equity value. The interest in-
come effect is captured by assuming that the drift term of total assets depends on the
interest rate.

The short-term interest rate follows a stochastic process:

drt = µr(rt)dt + σrdWt (3.1)

where µr is the drift of the interest rate under the risk-neural measure; σr is the volatility
of the interest rate; and Wt is a Brownian motion process.
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We assume that the bank has a portfolio of zero-coupons bonds Bt(τ, rt) with dif-
ferent maturities τ . With the interest rate increase, the bond price declines (i.e.,
d(Bt(τ, rt))/d(rt) < 0). The bank’s total asset value, denoted ANR

t , is the sum of all
bond values

ANR
t =

KA∑
k=1

NA,kB(τA,k, rt) t0 ≤ t ≤ t0 + δ, (3.2)

where NA,k is the amount of bonds with maturity τA,k = TA,k − t (k = 1, · · · , K) on the
asset side; TA,k is the expiry of the k-th bond; and KA is the number of different bond
maturities on the asset side.

When the fixed-income markets are stressed and liquidity dries up, we assume that
the bank cannot rebalance its portfolio from t0 to t0 + δ. We call δ a non-rebalancing
time period. While the bank cannot re-balance its fixed-income portfolio during the
non-rebalancing time period, it can change its portfolio after t+ δ. Therefore, we obtain
the total asset value during the non-rebalancing period and the post non-rebalancing
period

At =


∑KA

k=1 NA,kBt(τA,k, rt) for t0 ≤ t ≤ t0 + δ,

At0+δe
∫ t

t0+δ
µAds− 1

2
σ2

A(t−t0−δ)+σAWA,t for t > t0 + δ,
(3.3)

where µA is the drift term of total assets under the physical measure, and σA is its
volatility.

Similar to the asset side, we assume that the total liability Dt consists of zero-coupon
bonds with different maturities

Dt =


∑KD

k=1 ND,kBt(τD,k, rt) for t0 ≤ t ≤ t0 + δ,

Dt0+δe
∫ t

t0+δ
µDds− 1

2
σ2

D(t−t0−δ)+σDWD,t for t > t0 + δ,
(3.4)

where µD is the drift term of the total liability; ND,k is the amount of bonds with
maturity τD,k; and KD is the number of different bond maturities on the liability side.

We assume that the drift term of total assets and liabilities linearly depends on the
short-term interest rate

µA,t = a0 + arrt, (3.5)

9



µD,t = d0 + drrt, (3.6)

where a0,ar,d0, and dr are constant parameters.
Finally, the economic value of equity Et(= At − Dt) is given by

Et =



∑KA
k=1 NA,kBt(τA,k, rt) −∑KD

k=1 ND,kBt(τD,k, rt)
for t0 ≤ t ≤ t0 + δ,

At0+δe
∫ t

t0+δ
µAds− 1

2
σ2

A(t−δ)+σAWA,t − Dt0+δe
∫ t

t0+δ
µDds− 1

2
σ2

D(t−δ)+σDWD,t

for t > t0 + δ,

(3.7)

Suppose that the short-term interest rate increases from rt to rt + ∆r. We analyze
the impact of an interest rate increase on economic value during the non-rebalancing
and rebalancing periods.

The impact of an interest rate increase on economic value during the non-rebalancing
period should be interpreted as an instantaneous impact on the balance sheet. The
impact is approximately equal to

∆EV Et = ∆Et ≈ −

KA∑
k=1

NA,kBt(τA,k, rt)τA,k −
KD∑
k=1

ND,kBt(τD,k, rt)τD,k

∆r. (3.8)

This equation suggests that an interest rate increase results in a decline in EVE impact
if the weighted-average duration for assets is longer than the weighted-average duration
of liabilities.

The effect of an interest rate increase on economic value during the rebalancing
period reflects its impact on the bank’s future profitability. It arises from the growth
rate of the bank’s assets and liabilities which are captured in the drift term.

Distance-to-default is widely used as a measure of financial soundness and its decline
implies a decline in equity value. In our model, the distance-to-default DDt0+δ,T is given
by

DDt0+δ,T =
log

(
ANR

t0+δ/DNR
t0+δ

)
+
(
µ̄A,T − µ̄D,T − 1

2
σ2

A + 1
2
σ2

D

)
(T − t0 − δ)

σAD

√
T − t0 − δ

. (3.9)
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where µ̄A,T and µ̄D,T are the time average of the drift terms (µ̄i,T =
∫ T

t0+δ µi,tdt/(T−t0−δ))
for i = A, D) and σAD is defined as

σ2
AD = σ2

A − 2ρADσAσD + σ2
D. (3.10)

where ρAL is the correlation between two Brownian motions for the total assets and
liabilities (ρAD = dWAdWD).

The first term in the numerator captures how the current values of assets and lia-
bilities on the balance sheet are affected by the interest rate during the non-rebalancing
period. The values of total assets and liabilities, ANR

t and DNR
t , are decreasing func-

tions of the interest rate during the non-rebalancing period (i.e., ∂ANR
t /∂rt < 0 and

∂DNR
t /∂rt < 0). If assets have longer maturities relative to liabilities, then the first

term, and hence the current value of equity, deceases with an increase in the interest
rate. This component corresponds to the balance sheet effect of the interest rate change.

In the second term in the numerator, we observe the following drift terms µ̄A,T −

µ̄D,T = a0 − d0 + (ar − dr)r̄T where r̄T is the time average of the short-term interest
rate (r̄i,T =

∫ T
t0+δ rtdt/(T − t0 − δ)). The drift term captures how a bank’s future value

changes due to shifts in future net income resulting from movements in the interest
rate. If ar > dr, then the future value of assets increases more than the future value
of liabilities, and the bank’s future value increases with an increase in the short-term
interest rate. This occurs when a bank’s liabilities, which mostly comprise deposits, are
less sensitive to the market short-term interest rate than the lending rate applied to
newly originated assets (i.e., ∂(µ̄A,T − µ̄D,T )/∂r̄T > 0). This component corresponds to
the interest income effect of the interest rate change.

Thus, the model demonstrates that an interest rate increase impacts a bank’s value
by affecting: (1) the bank’s current value by changing the present value of current assets
and liabilities and (2) the bank’s future value by changing net interest income from
future assets and liabilities. In this paper, we focus on interest rate risk. A valuable
extension, though, would be to incorporate credit risk into the model for an integrated
framework to design stress scenarios for both interest rate risk and credit risk.
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4. Measures of Interest Rate Risk

In this section, we describe two empirical measures of interest rate risk: the sensitivity
of future interest earnings and the sensitivity of the current equity value to interest rate
changes. These two sensitivities correspond to the interest income and balance sheet
effects that we theoretically motivated using Equation 3.9. The Basel Committee on
Banking Supervision’s (2016) standards require banks to manage interest rate risk to
both future earnings and economic equity. If a bank minimizes earnings risk by altering
the maturities of assets and liabilities in response to interest rate changes, it may create
risk to its economic capital. Alternatively, minimizing economic value risk by matching
maturities of assets and liabilities may cause earnings volatility risk. In the next two
subsections, we describe our methods for measuring these two interest rate effects.

4.1. Model for the Interest Rate Sensitivity of NIM

To quantify the impact of interest rate changes on net interest income, we use panel
regression analysis. Specifically, we estimate the sensitivity of NIM, the interest in-
come ratio, and the interest expense ratio to interest rate changes using the following
specification:

∆yi,t = αi + β∆rt−1 + γ∆st−1 + ϵi,t, (4.1)

where ∆ denotes quarterly change; yi,t is one of three variables – NIM, the income ratio,
or the expense ratio of bank i in quarter t; rt−1 is the quarterly average of the daily
3-month Treasury rate in quarter t − 1; and st−1 is the term spread defined as difference
between the quarterly average 10-year Treasury rate and the quarterly average 3-month
Treasury rate.

The interest income (expense) ratio is computed as the ratio of quarterly interest
income (expense) to quarterly average earning assets. To annualize and express these
ratios in percentage units, we multiply the quarterly ratios by 400. NIM is the ratio of
net interest income to average earning assets and is mathematically equivalent to the
difference between the income ratio and expense ratio. The regressions include bank
fixed effects.
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We use one-quarter-lagged independent variables to account for a time lag between
the market rate change and the bank’s internal interest rate reaction. Specifying our
regression in differences as opposed to levels helps us avoid the need to control for risk-
taking characteristics which change slowly over time. We use panel regressions instead of
the time-series regressions for individual banks used by Drechsler et al. (2021), Hoffmann
et al. (2019), and Williams (2020) because of the differences in our research questions.
The above papers study the sources of heterogeneity in interest income sensitivity across
banks. In our paper, we use cross-sectional information to study how banks, on average,
respond to changes in interest rates. In this approach, we are similar to English et al.
(2018) who also use panel regressions to quantify the average sensitivity of NIM to
policy-induced interest rate changes.

4.2. Model for the Interest Rate Sensitivity of EVE

We define the interest rate sensitivity of EVE as the relative change in EVE after
applying a shock to the current yield curve:

%∆EV E =
EV E1 − EV E0

EV E0
× 100%, (4.2)

where EV E0 and EV E1 denote economic values of equity under current and shocked
yield curve scenarios.

EVE is computed as the difference between the sums of the present values of assets
and the present values of liabilities

EV Ey =
∑

a

PV a
y −

∑
b

PV l
y , (4.3)

where EV Ey denotes economic value of equity and PV a
y and PV l

y denote the present
values of assets and liabilities under yield curve scenario y.

The present values of assets and liabilities are computed as the sum of discounted
cash flows for each maturity bucket:

PV x
y =

M∑
m=1

CF x
y,m × DFy,m, (4.4)

where CF x
y,m is a cash flow from asset or liability x under yield curve scenario y at
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maturity bucket m; DFy,m is a discount factor under yield curve scenario y for maturity
bucket m; and M is the total number of maturity buckets.

We apply a continuously compounded discount factor defined by

DFs,m = exp(−rs(tm) × tm), (4.5)

where tm is time in years to the mid-point of maturity bucket m and rs(tm) is a discount
rate at time tm, implied by yield curve scenario s. We use discount rates extracted from
the yield curve scenario and discount cash flows to compute the present values of assets
and liabilities. The difference between the present values of assets and liabilities results
in the EVE for a given yield curve scenario.

We follow the Basel Committee on Banking Supervision’s (2016) guidance and com-
pute the EVE with a run-off balance sheet where current positions mature over their
lifetime and no new businesses replace maturing positions. Thus, one should interpret
%∆EV E as the impact of a shock to interest rates on current assets and liabilities. In
general, we conceptually follow the method for computing the EVE described in Ab-
dymomunov and Gerlach (2014) with modifications to account for actual balance sheet
data and more specific pricing of each asset class.

4.2.1. Pricing Debt Securities

The present value of a debt security, such as a government bond, is the sum of
discounted monthly cash flows. The present value of one unit of the debt security is
computed as

PVDebt
t =

K∑
k=0

exp(−yt(τk)τk)cD + exp(−yt(τK)τK), (4.6)

where cD is coupon rate for the debt security with coupons paid at periods τk(k =

1, ..., K); K is the number of periods until maturity; τK is the maturity, and yt(τk) is
the yield to maturity τk at time t.

The above formula requires zero-coupon yields yt(τk) for each monthly maturity τk.
We obtain monthly yields by interpolating yield curve data at reported maturities using
the Nelson-Siegel functional form proposed by Diebold and Li (2006):
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yt(τ) = Lt +
1 − e−λτ

λτ
St +

(
1 − e−λτ

κτ
− e−λτ

)
Ct, (4.7)

where yt(τ) is the zero-coupon yield at time t and with maturity τ ; Lt,St,and Ct are the
level, slope, and curvature factors, respectively.

We extract the time series of three Nelson-Siegel factors by fitting the Nelson-Siegel
functional form to the yield curve data every quarter. κ is obtained by minimizing the
yield fitting errors over the sample period. This procedure results in κ = 0.7183 in our
sample of yield data.

4.2.2. Pricing Mortgage Loans and Mortgage-Backed Securities

Our pricing formula for mortgage loans and MBS follows Chernov et al. (2018) where
the mortgage balance It is represented as:

It = I0
1 − e−rm(T −t)

1 − e−rmT
, (4.8)

where I0 is the initial notional amount of a mortgage loan, rm is the contractual mortgage
rate, and T is the maturity.2

Without loss of generality, we set the initial notional amount of a mortgage loan
I0 =$1 and the initial value of the notional balance of the mortgage loan pool is nor-
malized to N0=1.

The mortgage pool decreases over time through the maturity due to prepayments.
The remaining notional balance of the mortgage loan pool Nt is a function of the pre-
payment intensity ht:

Nt = exp(−
∫ t

0
hsds) (4.9)

The remaining principal balance of the mortgage loan pool is NtIt. In this intensity-
based prepayment approach, we follow the previous literature on pricing mortgage loans

2This representation of the principal of the mortgage balance It is obtained by solving the ordinary
differential equation dI/dt = rmI(t)− c with the boundary condition at IT = 0, where c is the monthly
mortgage payment.
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and MBS with embedded optionality (e.g., Goncharov (2006) and Rom-Poulsen (2007)).
The present value of MBS is given by3

PVMBS = E
[∫ T

0
exp

(
−
∫ t

0
rsds

)
Nt(c + htIt)dt

]
(4.10)

While some prepayment factors are idiosyncratic, such as selling a house and prepay-
ing a mortgage loan due to relocation, the interest rate is a systemic factor. Intuitively,
if the market interest rate decreases below the contractual loan interest rate, then the
borrower has an incentive to refinance the loan under new interest rate terms. To ac-
count for prepayment optionality, we use the prepayment model described in Gorovoy
and Linetsky (2007):

ht = h0(t) + γ max(ϕ − rt, 0), (4.11)

where γ and ϕ are parameters. In our empirical analysis, we follow Gorovoy and Linetsky
(2007) and set γ = 5 and ϕ = r0. As discussed in Gorovoy and Linetsky (2007), this
specification implies that a decline in the market interest rate leads to a proportional
increase in prepayment intensity. We note that the short-term rate at time t = 0,
and therefore parameter ϕ, are updated in our EVE calculations for each period in our
sample.

The time-dependent deterministic component h0(t) is defined as

h0(t) = b(at1t<T ∗ + aT ∗1t>T ∗) (4.12)

where parameters a, b, and T ∗ are constant. This time-dependent component captures
the dependence of the prepayment intensity on the mortgage loan age. Following the
recommendation from the Public Securities Association (PSA), we assume that the
parameters are a = 0.024, b = 1, and T ∗ = 2.5. As discussed in Gorovoy and Linetsky
(2007), these assumptions are accepted by practitioners as an industry benchmark for
prepayment intensity. We note that h0(t) increases from 0% at time t = 0 to 6% at

3In Chernov et al. (2018), the discount rate is formulated as rt + wt where wt is credit or liquidity
spread. As our main focus is interest rate risk, we set wt = 0.
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t = T ∗ = 2.5 and capped at 6% thereafter (t > T ∗).
The final building block is to specify the time dynamics of short-term interest rates.

For simplicity, we follow Rom-Poulsen (2007) and employ the Vasicek process (Vasicek
(1977)):

drt = κ(θ − rt)dt + σdWt, (4.13)

where θ is the mean-reverting level, κ is the mean-reverting speed, and σ is the interest
rate volatility. We use the Federal Funds Rate historical data and calibrate κ = 0.21,
and σ = 0.006 and θ = L0 which is the Nelson-Siegel level factor. Note that L0 is
updated given the yield curve in each year and thus not constant. We simulate the short-
term interest rate for creating both the discount factor and the interest-rate-dependent
component in the prepayment intensity.

Given our parameter values, the prepayment hazard rate, ht, ranges between 0% at
time t = 0 and 10% at time t = T ∗.4 When we use the inputs as of 2021Q4, the effective
duration of 30-year mortgage is 3.4 years, which is computed as dP V

P V
/dr. Our estimate

of the effective duration is consistent with estimates in Hanson (2014).5

We conduct Monte Carlo simulation-based pricing as follows:

• The time frequency of the simulation is monthly. The number of simulation paths
is N = 10, 000.

• Simulate a path of the short-term interest rate rt from time t = 0 to t = T (the
maturity of MBS), using Equation 4.13.

• For each simulated path i, obtain the present value PVMBS
i as a sum of discounted

cash flows by applying interest rates to the MBS pricing formula 4.10. The pre-
payment hazard rate ht(rt) is determined by applying a generated interest rate at
each time t.

4We obtain 10% by computing h0(T
∗) + γ max(rm − rt, 0) = 0.06 + 5 · 0.007 ≈ 0.1 where 0.007 is

obtained as the maximum of the Nelson Siegel slope factor S0 = r0 − L0.
5Hanson (2014) reports that the average effective duration is 3.35 years during the time sample

period from January 1989 to April 2011.
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• Compute the present value of MBS as the average of the PV across simulated
paths: PVMBS =

∑i=N
i=1 PVMBS

i /N .

4.3. Pricing loans

To price non-mortgage loans, we apply the above pricing method with the assumption
of constant prepayment intensity ht for simplicity. We follow Hoffmann et al. (2019) and
assume that loans have a constant prepayment intensity of 5%.6

4.3.1. Pricing Deposits

We compute the present value of time deposits, which are deposits with defined
maturity periods, following Equation 4.5 for debt securities. We derive an analytical
solution for the interest rate sensitivity of the present value of non-maturity deposits
(NMDs). In contrast to time-consuming simulation-based pricing of NMDs, this solution
instantaneously provides the interest rate sensitivity and is another contribution of our
paper.

Computing the present value of NMDs requires making assumptions about their
expected maturity. As discussed in Drechsler et al. (2021), banks have power over deposit
rates, and deposits are sticky. The literature proposes different ways of modeling NMDs
(e.g., Ellis and Jordan (2001), Kalkbrener and Willing (2004), and Avsar and Ruimy
(2021)). To compute the present value of NMDs, we use Equation 11 in Ellis and
Jordan (2001):

PVNMD =
T∑

t=1

(i + c)Dt−1 + (Dt−1 − Dt)

(1 + rt)t
(4.14)

Dt = Dt−1(1 − d), (4.15)

where Dt is the deposit balance at time t; i is the deposit rate; c is the cost of ac-

6We assume one prepayment rate for all types of non-mortgage loans (wholesale and retail loans)
because our data report repricing maturities for non-mortgage loans as one category. Wholesale loans
tend to have zero prepayment rate because they commonly have contractual prepayment penalties.
We assume that retail loans have prepayment rates around 12%. The shares of wholesale loans and
consumer loans are around 55% and 45%, respectively, for the banking industry in aggregate in our
data for the period between 2015 through 2021. Using this information we justify our assumption of
5% = 0.55 ∗ 0% + 0.45 ∗ 12% for non-mortgage loans in aggregate.
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quiring and servicing deposits expressed as a rate; rt is the short-term interest rate for
discounting; d is the decay rate; and T is the time horizon for deposits to decay.

If we assume that at time t = 0 the future values of r, i, and c are not expected to
change over time (rt = r), we can obtain an analytical solution:

PVNMD =
i + c + d

r + d
· D0 (4.16)

Now let us introduce the instantaneous interest rate shock at t = 0

r = r0 +∆r (4.17)

i = i0 +∆i (4.18)

= i0 + β∆r (4.19)

where β is the sensitivity of the deposit rate to the change in market interest rate.
Substituting these equations into Equation 4.16, we obtain:

PVNMD =
i0 + β∆r + c + d

r0 +∆r + d
· D0 (4.20)

For simplicity, we assume that the deposit servicing cost c = 0. This assumption does
not impact our sensitivity estimates because the servicing cost is not a direct function
of the interest rate. The interest rate sensitivity is given by

dPVNMD

dr
=

βr0 − i0 + (β − 1)d

(r0 +∆r + d)2
· D0 (4.21)

Therefore, dPVNMD

dr
is negative if

β <
i0 + d

r0 + d
(4.22)

If banks pay a deposit interest rate that is lower than the market interest rate at
time t = 0, then the ratio in the inequality is less than 1. Thus, if beta is less than 1
then dPV

dr
is negative, meaning that banks benefit from the present value decrease in

deposits when the market interest rate increases.
Computation of the present value of NMDs using the above equation requires assump-

tions for beta and the decay rate. For both assumptions we use industry estimates that
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are based on banks’ internal data. We use the beta estimates reported in Gerlach et al.
(2018). These betas are averages of banks’ estimates collected by the Federal Reserve
as part of the supervisory confidential information from U.S. bank holding companies
which are subject to the Dodd-Frank Wall Street Reform and Consumer Protection
Act. As part of the FR Y-14Q - Schedule G reporting requirement, these financial firms
report the balance-weighted average deposit repricing betas by deposit types. We use
the following betas reported in Gerlach et al. (2018): 0.816 for time deposits, 0.498 for
savings and other NMDs, and 0.822 for deposits in foreign offices. We use the average
life of savings deposits and other NMDs, which is 1/decay rate, reported in Office of the
Comptroller of the Currency (2022). The OCC compiles interest rate risk data collected
from banks and produces distributional statistics. We use the median of the distribution
of the average life of deposits for savings deposits, which is 4.29 years for small banks
(we use the median for banks with less than $100 million in assets) and 5.10 years for
large banks (we use the median for banks with over $10 billion in assets).7

In aggregate for U.S. banks, the share of savings and other NMDs in total deposits
increased from 66% in 1997 to 94% in 2021. The average beta of 0.498, which is sub-
stantially smaller than 1, represents a relatively long average life of NMDs and indicates
that banks manage maturity mismatch and have power over deposit interest rates.

5. Data

5.1. Interest income & expense and balance sheet data

We obtain quarterly bank income statement and balance sheet data from FFIEC 031
Call Reports for the period from 1997Q2 though 2021Q4. The most granular re-pricing
maturity structure reporting, which is critical for the EVE calculations, is available from
1997Q2. On the asset side, the data are grouped into seven buckets of the following upper
bound maturities: 0 months, 3 months, 1 year, 3 years, 5 years, 15 years, and longer
than 15 years. On the liability side, the data are grouped into 5 maturity buckets: 0

7The OCC does not have a separate category for banks with less than $10 billion in assets, which is
our threshold for separating small and large banks, so we use the OCC data for banks with less than
$100 million in assets to represent small banks.
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months, 3 months, 1 year, 3 years, and longer than 3 years. In each maturity bucket,
we take the midpoint as the representative maturity. For example, we use 2 years as
the representative maturity for the bucket with maturities between 1 and 3 years. We
assume that the upper bounds of the last asset and liability maturity buckets are 30
years and 5 years, respectively. Table 1 reports statistics of the shares of asset and
liability items and their value-weighted re-pricing maturities in our sample of banks and
time period.

[Insert Table 1 about here]

We use the above data to compute the quarterly NIM and interest income and
expense ratios. In these calculations, we closely follow NIM methodology described
by FRED.8 Average earning assets, which are used as the denominator of these ratios,
are computed as the sum of interest-bearing balances, total loans and leases net of
unearned income, total trading assets, total held-to-maturity securities, total amortized
cost of available-for-sale securities, Federal funds sold, and securities purchased under
agreement to resell. Table 2 reports statistics of these ratios in our sample of banks and
time period. We winsorize the ratios reported in Tables 1 and 2 at the 2.5 and 97.5
percentiles of the quarterly distributions of the ratios.

[Insert Table 2 about here]

5.2. Interest Rate Data

The interest rate data are constant maturity Treasury rates for maturities of 3, 12,
24, 36, 60, 84, and 120 months. The data are obtained from the website of the U.S.
Department of Treasury for the sample period from 1997-01-01 through 2021-12-31 at
the daily frequency. For EVE calculations, we convert daily interest rate data into
quarterly frequency by selecting the quarter-end data. For our regression analyses of

8See the FRED’s methodology for NIM in https : //fred.stlouisfed.org/series/USNIM
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NIM, we use quarterly average interest rates to avoid potential daily end-period spikes
in interest rates which would not materially impact quarterly income or expense flows.
In our EVE computations, we also use the rate for 30-year fixed-rate mortgages and the
bank prime loan rate data from FRED.

5.3. Deposit Rate Data

To compute the present value of deposits, we use deposit rates data from Ratewatch.
Ratewatch reports weekly deposit rates by instrument types. We match the Ratewatch
instrument types with deposit types in our study, such as savings deposits, transaction
accounts, and time deposits by maturity buckets. We use the mean weekly rate data for
each quarter by deposit types.

6. Results

6.1. Interest Rate Sensitivity of NIM

In this section, we analyze the sensitivity of NIM to interest rate changes. Panel
A of Figure 1 shows that the variation in NIM is small relative to the variation in the
interest rate. The bank-average NIM declined from 4.7% in 1997Q2 to 3.2% in 2021Q4,
while the short-term interest rate changed by 5.1 percentage points. However, this level
change in NIM translates into a 31.5% change in relative terms which is a substantial
decline in interest income profitability. As Panel B of Figure 1 shows, NIM is correlated
with the short and long-term interest rates with sample correlation coefficients of 84.2%
and 70.2%.

[Insert Figure 1 about here]

More formally, Table 3 reports estimation results from the panel regressions based on
Equation 4.1. The estimated NIM betas for the short interest rate and the term spread
changes are 0.1304 and 0.1074, respectively. These coefficients mean that for a 100 bps
increase in the short-term interest rate, NIM increases by 13 bps, and with a 100 bps
increase in the term spread, NIM increases by 11 bps. In addition, NIM betas can be
derived by taking the differences between income ratio betas and expense ratio betas.
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NIM betas from NIM regression are very close to those computed using betas from the
income and expense ratio regressions. Specifically, the income ratio beta and expense
ratio beta for the short term rate are 0.4162 and 0.2891 and for the term spread are
0.1251 and 0.0181. We note that the term spread impacts primarily the interest income
ratio and has a relatively small effect on the interest expense. This result is consistent
with longer maturities of assets which should be more sensitive to the long-term interest
rate relative to liabilities.

[Insert Table 3 about here]

The estimated NIM betas indicate that the interest rate sensitivity of NIM is rela-
tively small. This result is consistent with Drechsler et al. (2021) who find that banks
manage net earnings well and closely match interest income and expenses. However, as
we note above, NIM changes substantially over longer periods of time, and we demon-
strate that the interest rate is the key factor driving these changes. Specifically, we
analyze NIM changes over different interest rate environments to determine how much
rate changes explain changes in NIM. We split our sample into subperiods of interest
rate changes: peak-to-trough and trough-to-peak of the short-term interest rate. Table
4 reports identified sub-periods, actual NIM changes, values of the model variables, and
the fitted NIM using interest rate changes in those sub-periods. In calculations of the
fitted NIM, we omit the intercept term to demonstrate the impact of the interest rate
changes only. In all sub-periods, our model correctly predicts NIM directions, and mag-
nitudes of fitted values are comparable to actual NIM changes. The correlation between
actual and predicted changes in the reported subperiods is 85%. We demonstrate that
the model explains substantial portions of the long-term variation in NIM. Similar to
Drechsler et al. (2021), we conduct sensitivity analysis of our estimates by analyzing
NIM at the bank holding company level. Our results are robust to the panel of BHCs:
the short-term and term spread betas are 0.0853 and 0.0815 and they are statistically
significant at the 0.001 level.
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[Insert Table 4 about here]

In decreasing interest rate environments banks may mitigate the interest income
decline by investing in longer-term assets which typically have higher interest rates than
short-term assets. Consistent with this hypothesis, Figure 2 shows that the interest
rate and asset maturity are negatively correlated with a coefficient of -74%. To test
this hypothesis, we regress the change in asset maturity on the change in the short-
term interest rate. We consider two measures of asset maturity: value-weighted asset
maturity in years and the share of assets subject to re-pricing within one year. We follow
Flannery and James (1984b) and Angbazo (1997) in constructing our measure of the
share of short-term assets. As Table 5 reports, the regression results confirm that banks
pursue assets with longer maturities in response to an increase in the interest rate, and
the results are robust to the measure of asset maturity.

[Insert Figure 2 about here]

As Table 4 reports, NIM declined by 65 bps during the period 2019Q1 through
2021Q4, and most of this decline occurred during the pandemic period. Our model
explains 20 bps of that decline by the interest rate decrease. We explain the remaining
decline as resulting from the increase in the share of government securities, which pay
the lowest interest rates among all assets, during the pandemic period. From 2020Q1
to 2021Q4, the share of government debt securities increased from 10.7% to 14.7% as a
percentage of total assets.

6.1.1. NIM Sensitivity: Small and Large Banks

To study the interest rate sensitivity of NIM for small and large banks separately,
we split our sample into two sub-samples of banks with the size threshold of $10B
of total assets. The $10B size threshold is used in the previous banking literature
(e.g., Cortes et al. (2020) and Choi et al. (2022)) and reflects significant changes in
regulatory requirements for banks above that threshold. As described in Congressional
Research Service (2021), banks above $10B in total assets are subject to a series of
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additional regulations such as mandatory stress testing, heightened consumer compliance
supervision and enforcement, and additional reporting requirements.

As Table 6 reports, the interest rate sensitivity of NIM is higher for small banks
relative to large banks. Specifically, the NIM betas for the short term rate and term
spread are 0.1309 and 0.1080 for small banks vs. 0.0887 and 0.0615 for large banks.
The lower interest rate sensitivity of NIM for large banks originates from both a lower
interest rate sensitivity of interest income and a higher interest rate sensitivity of interest
expense. In addition, Table 7 shows that the interest rate sensitivity of asset maturities
is lower for large banks. In other words, large banks less actively increase asset maturities
in response to interest rate decreases than small banks. Thus, large banks are less NIM
responsive to interest rate changes than small banks.

[Insert Table 6 about here]

[Insert Table 7 about here]

Panel A of Figure 3 shows that the average NIM of large banks is systematically
lower than the one for small banks. Table 2 reports sample average NIM of 4.0% and
3.7% for small and large banks, respectively. Panel B of Figure 3 shows that both the
interest income and expense contribute to the difference in NIM dynamics between large
and small banks, raising the question of how large banks afford to have lower interest
income profitability. To answer this question, we analyze return on total assets (ROA)
and net non-interest income (NNII).

[Insert Figure 3 about here]

Panel C of Figure 3 shows that the ROA for large banks is higher than that of small
banks during most of the sample, except for the period of the 2008 financial crisis and the
COVID period of 2020-2021. In addition, Panel D of Figure 3 demonstrates that large
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banks have a higher ratio of NNII than small banks. Thus, large banks compensate for
lower interest rate profitability with higher non-interest income profitability. To formally
quantify the role of NIM and NNII in ROA, we regress the change in ROA on three main
components – the change in NIM, the change in the NNII ratio, and the change in the
provisions-to-total-assets ratio – separately for small and large banks. As Table 8 reports,
the NIM beta is smaller for large banks, while the NNII beta is larger for large banks,
relative to small banks. This result confirms that large banks compensate for a lower
NIM with higher NNII, relative to small banks. In this regression analysis, we include
net non-interest income instead of non-interest income, as well as provisions, for the
completeness of key control variables. NNII is negative because non-interest expenses
are associated with all bank activities, rather than only with non-interest income lines
of businesses.

[Insert Table 8 about here]

6.2. Interest Rate Sensitivity of EVE

In this section, we analyze the sensitivity of the EVE to interest rate changes. We
estimate the EVE for the aggregate banking sector rather than for each individual bank
because the simulation-based estimations are time-consuming. We estimate the interest
rate sensitivity of the EVE annually for our sample from 2010 through 2021. We use
a shorter period than one used for NIM analysis because regulatory changes affected
banks and increased their capital substantially during the post 2008 financial crisis
period. Therefore, estimates of the EVE sensitivity during the post 2008 period are more
relevant for the current banking structure. We quantify the interest rate sensitivity of
the EVE as a relative change between the EVE estimated using the actual yield curve
for each year and the EVE estimated using the actual yield curve shifted 100 bps upward
in parallel. As Panel A of Figure 4 displays, %∆EV E ranges between -8% and -18% in
our sample. The decline in the EVE is significant and has wide variation. To identify
sources of such a significant decline and time variation, first we analyze changes in the
present value of asset types (%∆PV ) with long re-pricing maturities. These asset types
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comprise non-mortgage loans, mortgage loans, debt securities, and MBS. In addition,
we analyze %∆PV of non-maturity deposits.

[Insert Figure 4 about here]

As Panel B of Figure 4 displays, %∆PV of debt securities, MBS, and mortgage loans
are relatively large. The time variation in %∆EV E is primarily explained by variations
in %∆PV of debt securities and MBS, which vary in the ranges between -4.2% and -5.6%,
and -3.7% and -4.5%, respectively. %∆PV for non-mortgage loans ranges between -1.3%
and -1.6%. While changes in the present value of non-mortgage loans are small relative
to the total present value of loans, these changes are significant relative to the equity
value due to leveraging. As Panel A of Figure 5 displays, the share of non-mortgage
loans in total assets ranges between 38% and 45%. The declines in the PV of assets are
compensated by the decline in the PV of NMDs. Similar to non-mortgage loans, while
%∆PV for NMDs is relatively small, around -2%, the change substantially contributes
to the decrease in the EVE sensitivity due to NMD’s large share in liabilities (see Panel
C of Figure 5). Thus, the market power over NMDs helps banks to reduce the impact
of interest rate increases on %∆EV E. In contrast to NMDs, %∆PV for time deposits
is only around -0.2%, and they have very small impact on the EVE.

[Insert Figure 5 about here]

As Panel B of Figure 5 displays, MBS have relatively long contractual repricing
maturities. However, MBS prepayments substantially reduce the impact of interest rate
changes on the present value of MBS. The prepayment optionality of MBS explains why
variations in %∆PV of MBS and debt securities are comparable in magnitudes despite
the longer maturities of MBS.

During the pandemic period of 2020-2021, the interest rate sensitivity of the EVE
increased substantially. %∆EV E decreases from -11% at the end of 2019 to -15% at
the end of 2021. This change is a result of the increase in the share and maturities of
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debt securities and MBS. The aggregate share of debt securities increased from 9.2%
to 12.3%, and value-weighted re-pricing maturity increased from 5.7 to 6.4 years during
this period. These changes led to a decrease in %∆PV of debt securities from -4.7% to
-5.6%. Similarly, %∆PV of MBS decreased from -4.1% to -4.5% in this period. Thus,
the economic value of the U.S. banking sector became more sensitive to interest rate
changes during the pandemic period of 2020-2021.

6.2.1. Interest rate sensitivity of EVE: small and large banks

In this subsection, we analyze differences in the interest rate sensitivity of the EVE
for small and large banks. Panel A of Figure 6 shows that the EVE sensitivity for small
banks is higher than for large banks. %∆EV E ranges between -10.5% and -21.1% for
small banks and between -7.8% and -17.3% for large banks in our sample.

[Insert Figure 6 about here]

As Panels B.1 and B.2 of Figure 6 show, %∆PV of debt securities and non-mortgage
loans have the largest differences between small and large banks among asset types.
%∆PV of debt securities ranges between -5.4% and -7.7% for small banks and between
-3.7% and -5.3% for large banks. %∆PV of non-mortgage loans ranges between -1.6%
and -2.3% for small banks and between -1.1% and -1.4% for large banks. Panel A of
Figure 7 shows that the share of non-mortgage loans for small banks is substantially
larger than that of large banks. In addition, Panel B of Figure 7 shows that small
banks hold debt securities and non-mortgage loans with substantially longer re-pricing
maturities relative to large banks. The longer re-pricing maturities of non-mortgage
loans and debt securities at small banks explain the higher interest rate sensitivity of
their PV s, and the larger shares of these assets in small banks’ portfolios amplify their
contributions to %∆EV E relative to large banks. As Panel D of Figure 7 shows, large
banks have a higher share of NMDs in total liabilities relative to smaller banks, and this
helps mitigate the EVE sensitivity to interest rate changes.

[Insert Figure 7 about here]
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As Panels B.1 and B.2 of Figure 6 show, unlike debt securities and non-mortgage
loans, MBS and mortgage loans have higher interest rate sensitivities at large banks.
This is a result of the longer re-pricing maturities of mortgage loans and MBS at large
banks relative to small banks, displayed on Panels A and B of Figure 7.

Panels B and C of Figure 7 suggest that small banks more actively increase repricing
maturities of debt securities and non-mortgage loans in response to interest rate changes
relative to large banks. Indeed, sample pairwise correlation coefficients between repricing
maturities of debt securities and non-mortgage loans and the 3-month interest rate are
(-0.82, -0.66) for small banks and (0.27, 0.21) for large banks. Thus, small banks are
more focused on generating interest earnings and less on managing the interest rate risk
of the EVE. During the pandemic period of 2020-2021, while both small and large banks
experienced substantially increased interest rate sensitivities of the EVE due to increases
in shares of debt securities and their repricing maturities, the magnitudes of increases
are considerably larger for small banks.

We note that most assets are valued at amortized cost rather than mark-to-market
on the balance sheet. Therefore, financial statements generally do not reflect the im-
pact of interest rate changes on EVE. For example, the interest rate sensitivity of the
present value of most loans does not impact the income statement or balance sheet.
However, the interest rate sensitivity of the EVE reflects lost or gained economic op-
portunity due to locking assets under fixed interest rates. Unlike most loans, banks
hold securities for liquidity or investment purposes. Banks classify securities held for
liquidity purposes as available for sale (AFS) and securities held for investment as held
to maturity (HTM). AFS securities, unlike HTM securities, are marked-to-market on
the balance sheet. Thus, the interest rate sensitivity of AFS securities has an impact on
the income statement and balance sheet. As Figure 8 shows, the share of AFS securities
is more volatile for large banks than small banks. During the low interest rate environ-
ment, large banks aggressively reduced the share of AFS securities to avoid potential
negative impacts of interest rate increases on their financial statements and regulatory
capital. In contrast, small banks’ securities holdings are mostly AFS, and their share
has not changed dramatically. At the beginning of pandemic, large banks sharply in-
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creased their AFS securities holdings, but this increase quickly waned as the economy
showed improvement. Although regulation does not constrain banks from reclassifying
securities holdings from AFS to HTM, reclassification in the opposite direction is highly
constrained.

[Insert Figure 8 about here]

7. Conclusion

In this paper, we study interest rate risk at banks. First, we extend the structural
Merton (1974) model by explicitly incorporating a fixed-income portfolio in the bank
balance sheet. This theoretical model shows that an interest rate increase has two
opposing effects on banks: an increase in net interest earnings and a decrease in the
bank’s current equity due to a decrease in the present value of current assets. Second,
we empirically quantify two measures of interest rate risk for U.S. banks: the interest
rate sensitivity of NIM and the interest rate sensitivity of the EVE.

We report four main empirical findings: First, we find that a 100 bps increase in the
short-term interest rate increases NIM by 13 bps, and a 100 bps increase in the spread
between long-term and short-term interest rates increases NIM by 11 bps for U.S. banks
on average. We show that this sensitivity translates into a material change in interest
income profitability, and that banks pursue assets with longer maturities when interest
rates are low to mitigate the decline in interest earnings.

Second, we find that a 100 bps parallel upward shift in the yield curve reduces EVE
for the aggregate U.S. banking sector between 8% and 18% during the period 2010-2021.
Thus, an increase in interest rates has a positive impact on earnings, but it comes with
the cost of substantially reducing the current economic value of equity, creating short-
term risk in stressful environments when a bank may need to sell assets at a discount,
realizing losses. Thus, our empirical findings are consistent with the prediction of our
theoretical model.

Third, we examine differences in the interest rate sensitivities of small and large
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banks. We find that small banks have higher interest rate sensitivities of NIM and EVE.
Although small banks have higher gains in NIM from interest rate increases than large
banks, it comes at the cost of a larger decline in EVE.

Fourth, we show that U.S. banks’ exposure to interest rate risk increased during the
pandemic period of 2020-2021, and it is related to the increase in the share of long-term
securities in assets. Overall, we provide evidence of substantial interest rate risk for
future earnings and net worth at U.S. banks.
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Figure 1: Panel A displays bank-average Net Interest Margin (NIM), Interest Income Ratio,
Interest Expense Ratio, and the 3-month Treasury rate. The interest income and expense ratios
equal to interest income and expense divided by average earning assets. NIM equals the net
interest income divided by average earning assets. Panel B displays bank-average NIM and
the 3-month and 10-year Treasury rates on two separate y-axes to highlight the variation in
NIM. In this figure, the 3-month and 10-year Treasury rates are annual averages of daily rates.
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Figure 2: The figure shows the bank-average repricing maturities of assets and liabilities, and
the 3-month Treasury rate.
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Figure 3: The figure displays bank-average Net Interest Margin, Interest Income and Expense
Ratios, Return-on-Assets Ratio, and Net Non-Interest Income Ratio for small and large banks.
The group of small (large) banks comprises banks with total assets less than (greater than or
equal to) than $10B.
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Figure 4: Panel A shows the impact of an interest rate scenario shock on the economic value
of equity (EVE) of U.S. commercial banks in aggregate. The interest rate shock is defined as
a 100 bps parallel upward shift in the yield curve. Panel B displays the percentage change
in the present value (PV) of assets and non-maturity deposits (NMD) after the interest rate
scenario shock.
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Figure 5: Panel A displays the shares of asset components for all banks in aggregate. Panel
B shows the repricing maturities of total assets and its components for all banks in aggregate.
Panel C displays non-maturity deposits and time deposits as a percentage of total assets for
all banks in aggregate.
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Figure 6: Panel A shows the impact of the interest rate scenario shock on the economic
value of equity (EVE) of small and large banks in aggregate. The interest rate shock is defined
as a 100 bps parallel upward shift in the yield curve. Panels B.1 and B.2 display percentage
changes in the present value (PV) of assets and non-maturity deposits (NMD) after the interest
rate shock for small and large banks in aggregate.
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Figure 7: Panel A shows the shares of asset components for small and large banks in
aggregate. Panel B displays the repricing maturities of asset components for small and large
banks in aggregate. Panel C shows the repricing maturities of total assets for small and large
banks in aggregate. Panel D displays non-maturity deposits as a percentage of total assets
for small and large banks in aggregate.
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Figure 8: The figure shows the share of available-for-sale (AFS) securities in total securities
(debt securities and MBS) for small and large banks in aggregate.
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Table 1: Descriptive Statistics
The table reports summary statistics on the composition of bank balance sheets and the
repricing maturities of assets and liabilities. The samples in Panels A and B comprise
all U.S. commercial banks and the subset of banks with total assets greater than or equal to
$10B, respectively. The sample period is from 1972Q2 through 2021Q4.

Share of Assets Repricing Maturity Share of Assets Repricing Maturity
(%) (in years) (%) (in years)

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.
Panel A: All banks Panel B: Large banks

Assets 100.0 4.5 2.3 100.0 4.7 2.3
Cash 7.1 7.8 0.0 0.0 7.2 8.3 0.0 0.0
Loans 62.4 16.4 3.6 2.4 63.0 17.1 4.2 2.7
Securities 26.1 16.0 6.0 4.3 20.8 13.0 8.9 5.3

Debt securities 16.3 13.2 5.6 3.9 7.4 9.0 6.1 4.4
MBS 6.2 8.7 7.3 6.6 11.0 8.9 12.2 6.3
Repo securities 3.6 6.9 0.2 0.0 2.3 5.5 0.2 0.0

Other assets 4.3 4.2 0.0 0.0 9.0 6.8 0.0 0.0

Liabilities 89.2 8.0 0.5 0.3 89.0 4.3 0.4 0.3
Deposits 83.7 10.4 0.4 0.2 71.5 15.6 0.3 0.4

Saving deposits 24.1 14.1 0.0 0.0 41.2 21.1 0.0 0.0
Time deposits 35.4 14.9 1.0 0.4 15.6 12.0 1.0 0.5
Other deposits 24.3 12.3 0.0 0.0 14.6 13.7 0.0 0.0

Other int. liab. 4.7 7.3 1.0 1.3 14.5 14.6 0.9 0.7
Other non-int. liab. 0.8 1.9 0.0 0.0 3.1 2.5 0.0 0.0

Equity 11.4 6.9 0.0 0.0 11.2 3.9 0.0 0.0
N of bank-quarter obs. 657,327 8,812
N of banks 11,387 267
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Table 2: Descriptive Statistics: Income and Expense Ratios
The table reports summary statistics on income and expense ratios. The samples in Panels A
and B comprise all U.S. commercial banks and the subset of banks with total assets greater
than or equal to $10B, respectively. The sample period is from 1972Q2 through 2021Q4.

Mean St. Dev. Mean St. Dev.
(%) (%)

1 2 3 4
Mean St. Dev. Mean St. Dev.

Panel A: All banks Panel B: Large banks
NIM 4.0 0.8 3.7 1.0
Interest income ratio 6.0 1.7 5.2 1.9
Interest expense ratio 1.9 1.3 1.5 1.4
ROA 1.0 0.8 1.1 0.8
NNII ratio -2.3 0.8 -1.3 0.6
N of bank-quarters 657,327 8,812
N of banks 11,387 267
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Table 3: Panel Regression Results: Interest Rate Sensitivity of NIM, the Interest
Income Ratio, and the Interest Expense Ratio
The table reports estimates of the sensitivity of NIM, interest income, and interest expense to
changes in the short rate and term spread. The results are from the panel regressions specified
in Equation (4.1). The columns report results for changes in NIM, the Interest Income Ratio,
and the Interest Expense Ratio. All three ratios are expressed in annualized percentage terms.
∆rt−1 denotes a one-period change in the quarterly average 3-month Treasury rate and st−1

is the change in the term spread defined as a difference between the quarterly average 10-year
Treasury rate and the quarterly average 3-month Treasury rate. The row denoted N obs.
reports the number of bank-quarter observations in each regression. The regressions account
for bank fixed effects.

∆NIM ∆IncomeRatio ∆ExpenseRatio
(1) (2) (3)

∆rt−1 0.1304*** 0.4162*** 0.2891***
(0.0016) (0.0016) (0.0009)

∆st−1 0.1074*** 0.1251*** 0.0181***
(0.0014) (0.0015) (0.0007)

Constant -0.0068*** -0.0241*** -0.0169***
(0.0004) (0.0005) (0.0002)

Bank FE Yes Yes Yes
N Obs. 653,261 653,261 653,261
R2 0.0188 0.1282 0.2574
*p < 0.10, **p < 0.05, ***p <0.01
Parentheses report heteroscedasticity-consistent standard errors.
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Table 4: Actual and Fitted NIM Over Different Rate Periods
The table reports the model fit of NIM changes in different interest rate environments in our
data sample. Columns 1 and 2 report the start and end of subperiods identified as peak-to-
trough or trough-to-peak of the short-term interest rate. Column 3 describes directions of
short interest rate changes in subperiods. Columns 4 and 5 reports values of model variables
in subperiods. Column 6 reports the fitted NIM using the values of model variables reported
in Columns 4 and 5. Column 7 and 8 report actual absolute and relative NIM changes.

t − 2 t − 1 Short rate ∆rt−1 ∆st−1 ∆NIMt %∆NIMt

direction fit actual actual
(1) (2) (3) (4) (5) (6) (7) (8)

1997Q1 2021Q3 entire sample -5.15 -0.09 -0.68 -1.48 -31.5

1997Q1 1998Q4 decrease -0.83 -1.07 -0.22 -0.41 -8.7
1998Q4 2000Q3 increase 1.84 -0.61 0.17 0.14 3.2
2000Q3 2004Q1 decrease -5.27 3.39 -0.32 -0.31 -7.1
2004Q1 2006Q3 increase 4.10 -3.22 0.19 0.10 2.4
2006Q3 2009Q2 decrease -4.86 3.29 -0.28 -0.40 -9.5
2009Q2 2015Q3 low rate -0.13 -0.97 -0.12 -0.10 -2.6
2015Q3 2019Q1 increase 2.40 -1.97 0.10 0.16 4.3
2019Q1 2021Q3 decrease -2.39 1.06 -0.20 -0.65 -16.9

46



Table 5: Panel Regression Results: Interest Rate Sensitivity of Asset Maturity
The table reports estimates of the interest rate sensitivity of asset maturity. The results are
from the panel regressions specified in Equation (4.1). Columns 1 and 2 report results for two
measures of asset maturity: value-weighted maturity of assets in years and the share of assets
with maturities less than one year.

∆ Asset maturity ∆ Share of ST assets
1 2

∆rt−1 -0.0787*** 0.0070***
(0.0016) (0.0002)

Constant 0.0256*** -0.0008***
(0.0006) (0.0001)

Bank FE Yes Yes
N Obs. 654,972 657,045
R2 0.0139 0.0102
*p < 0.10, **p < 0.05, ***p <0.01
Parentheses report heteroscedasticity-consistent standard errors.
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Table 6: Panel Regression Results for Small and Large Banks: Interest Rate
Sensitivity of NIM, the Interest Income Ratio, and the Interest Expense Ratio
The table reports estimates of the sensitivity of NIM, interest income, and interest expense
to changes in the short rate and term spread for small and large banks. The group of small
(large) banks comprises banks with total assets less than (greater than or equal to) $10B.
The results are from the panel regressions specified in Equation (4.1). The columns report
results for changes in NIM, the Interest Income Ratio, and the Interest Expense Ratio. All
three ratios are expressed in annualized percentage terms. ∆rt−1 denotes a one-period change
in the quarterly average 3-month Treasury rate and st−1 is the change in the term spread
defined as a difference between the quarterly average 10-year Treasury rate and the quarterly
average 3-month Treasury rate. The row denoted N obs. reports the number of bank-quarter
observations in each regression. The regressions account for bank fixed effects.

∆NIM ∆IncomeRatio ∆ExpenseRatio
(1) (2) (3)

Panel A: Small banks
∆rt−1 0.1309*** 0.4153*** 0.2873***

(0.0016) (0.0016) (0.0009)
∆st−1 0.1080*** 0.1253*** 0.0177***

(0.0014) (0.0015) (0.0007)
Constant -0.0066*** -0.0240*** -0.0170***

(0.0004) (0.0005) (0.0002)
Bank FE Yes Yes Yes
N Obs. 644,477 644,477 644,477
R2 0.0192 0.1287 0.2579

Panel B: Large banks
∆rt−1 0.0887*** 0.4844*** 0.4264***

(0.0179) (0.0193) (0.0111)
∆st−1 0.0615*** 0.1019*** 0.0487***

(0.0150) (0.0166) (0.0088)
Constant -0.0180*** -0.0321*** -0.0141***

(0.0046) (0.0050) (0.0026)
Bank FE Yes Yes Yes
N Obs. 8,772 8,772 8,772
R2 0.0125 0.1149 0.2689
*p < 0.10, **p < 0.05, ***p <0.01
Parentheses report heteroscedasticity-consistent standard errors.
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Table 7: Panel Regression Results: Interest Rate Sensitivity of Asset Maturity
for Small and Large Banks
The table reports estimates of the interest rate sensitivity of asset maturity for small and large
banks. The group of small (large) banks comprises banks with total assets less than (greater
than or equal to) $10B. The results are from the panel regressions specified in Equation (4.1).
Columns 1 and 2 report results for two measures of asset maturity: the value-weighted maturity
of assets in years and the share of assets with maturities less than one year.

∆ Asset maturity ∆ Share of ST assets
1 2

Panel A: Small banks
∆rt−1 -0.0792*** 0.0070***

(0.0016) (0.0002)
Constant 0.0258*** -0.0008***

(0.0006) (0.0001)
Bank FE Yes Yes
N Obs. 646,175 648,234
R2 0.0141 0.0104

Panel B: Large banks
∆rt−1 -0.0308** 0.0026**

(0.0144) (0.0013)

Constant 0.0105** 0.0006
(0.0050) (0.0005)

Bank FE Yes Yes
N Obs. 8,784 8,799
R2 0.0209 0.0102
*p < 0.10, **p < 0.05, ***p <0.01
Parentheses report heteroscedasticity-consistent standard errors.
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Table 8: Panel Regression Results for Small and Large Banks: Sensitivity of ROA
The table reports estimates of the impact of changes in the components of the Return on Assets
(ROA) for small and large banks. The group of small (large) banks comprises banks with total
assets less than (greater than or equal to) $10B. The results are from the panel regressions
specified in Equation (4.1). NIM denotes the net interest income margin, NNII denotes the
ratio of net non-interest income to total assets, Provision denotes the ratio of provisions for
loan and lease losses to total assets. The regressions are at the annual frequency due to the
strong quarterly seasonality of ROA.

∆ROA ∆ROA ∆ROA
1 2 3

Panel A: Small banks
∆NIM 0.4320*** 0.6939*** 0.6548***

(0.0061) (0.0059) (0.0046)
∆NNII 0.8012*** 0.7161***

(0.0075) (0.0057)
∆Provision -0.8514***

(0.0049)
Constant 0.0153*** 0.0046*** 0.0073***

(0.0015) (0.0013) (0.0009)
Bank FE Yes Yes Yes
N Obs. 157,278 157,278 157,277
R2 0.1327 0.3988 0.7197

Panel B: Large banks
∆NIM 0.3473*** 0.5695*** 0.5706***

(0.0401) (0.0320) (0.0237)
∆NNII 0.8742*** 0.7765***

(0.0651) (0.0422)
∆Provision -0.7359***

(0.0405)
Constant 0.0056 0.0030 0.0062

(0.0161) (0.0123) (0.0091)
Bank FE Yes Yes Yes
N Obs. 2,172 2,172 2,172
R2 0.1282 0.5025 0.7229
*p < 0.10, **p < 0.05, ***p <0.01
Parentheses report heteroscedasticity-consistent standard errors.

50


