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Abstract

This study demonstrates that banking organizations with higher AI investments are
exposed to more operational risk. Using comprehensive supervisory data on opera-
tional losses from large U.S. bank holding companies (BHCs) combined with detailed
company-level data on AI-skilled human capital, we show that BHCs with more AI
investments suffer higher operational losses per dollar of total assets. The impact of
AI investments on operational losses significantly varies by loss type and is driven by
external fraud, client-related issues, and system failures. These losses stem not only
from small, frequent incidents but also from severe, tail-risk events. The risk-enhancing
effect of AI is more pronounced for BHCs with weaker risk management practices. Our
findings have important implications for banking performance, risk, and supervision.
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1 Introduction

The rapid advancement and widespread adoption of artificial intelligence (AI) technologies

has fundamentally transformed how firms operate across industries. In the U.S. banking

sector, this transformation has been particularly profound, with financial institutions in-

creasingly deploying AI solutions across their operations — from customer service and fraud

detection to trading and risk management (Adhaen et al., 2024). While a growing body of

research documents various benefits of AI adoption, including enhanced sales (Czarnitzki

et al., 2023; Babina et al., 2024), increased innovation (Cockburn et al., 2018; Babina et al.,

2024), and improved product quality (Fedyk et al., 2022), recent research strikingly finds no

support for AI increasing operational efficiency (Babina et al., 2024). This failure to find

expected efficiency gains suggested by prior literature (e.g., Agrawal et al., 2019; Acemoglu

and Restrepo, 2018) points to potential hidden costs of AI adoption. To shed light on this

puzzle, we examine the U.S. banking industry and study the relation between AI investments

and operational losses at large banking organizations.

Operational losses can be traced to inadequate or failed internal processes, people, and

systems or from external events (Basel Committee on Banking Supervision, 2006). Examples

include losses from fraud, employment practices and workplace safety, unfulfilled obligations

to clients, faulty product design, system failures, process management and transactions

failures, and relations with counter-parties and vendors. Operational risk has emerged as a

critical concern for financial institutions over recent years as large operational losses wreaked

havoc on the banking industry (e.g., Afonso et al., 2019; Berger et al., 2022b). Indeed,

the magnitude of these events can be staggering — for example, JPMorgan Chase’s 2012

“London Whale” trading scandal resulted in losses exceeding $6.2 billion.1 Value-at-risk

models further suggest that the largest U.S. banking organizations face potential multibillion-

1See Bloomberg : “The London Whale” (P. Hurtado, Oct. 16, 2013).
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dollar operational losses in any given quarter (Curti and Mihov, 2021; Curti et al., 2022).

The theoretical relation between AI investments and operational losses at banking or-

ganizations is ex ante uncertain. On one hand, as a prediction technology (Agrawal et al.,

2019; Hansen et al., 2025), AI could reduce operational losses by enhancing efficiency and

accuracy in banking operations. AI technologies can automate both routine and complex

tasks, thereby reducing human errors and increasing processing speed. For example, ma-

chine learning algorithms can detect fraudulent transactions more effectively than traditional

methods, minimizing losses due to fraud. Additionally, AI-driven predictive analytics can

identify potential operational risks before they materialize, allowing banks to implement

preventive measures. The enhanced decision-making capabilities provided by AI can thus

contribute to lower operational losses.

On the other hand, the integration of AI systems could introduce new sources of oper-

ational risk. Complex AI models might suffer from specification errors or biases in training

data, leading to systematic mistakes in decision-making. The increasing reliance on AI sys-

tems also creates potential points of failure through cybersecurity vulnerabilities, system

downtimes, or model degradation over time as market conditions change. The reduced hu-

man oversight in AI-driven processes might delay the detection of novel types of fraud or

operational issues that fall outside the AI system’s training parameters. Additionally, the

transition period during AI implementation could temporarily increase operational losses

as organizations adapt their processes and staff learn to work with new systems. In this

study, we bridge the literatures on AI, operational risk, and risk management by examining

whether investment in AI by financial institutions amplifies or attenuates these organizations’

operational risk outcomes.

A key strength of our research is the use of detailed supervisory data on operational losses,

which large U.S. bank holding companies (BHCs) report to the Federal Reserve System for

regulatory purposes. De Fontnouvelle et al. (2006) and Abdymomunov et al. (2020) note
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that public data sources often exclude major operational loss events. In contrast to the

publicly available data typically used in the operational risk literature, we utilize confidential

supervisory data that are significantly richer and more comprehensive. We pair these data

with Babina et al. (2024)’s novel measure of firm-level AI investments based on firms’ AI-

skilled human capital, which uses Cognism’s extensive resume data to identify AI-skilled

employees.2 Although combining these data restricts our sample to 36 large BHCs, these

institutions account for close to 82% of U.S. banking industry assets as of 2018:Q4.

Our main result is a positive and statistically significant relation between operational

losses (as a share of total assets) and AI investments at banking organizations. A one

standard deviation increase in our AI investments measure is associated with a 24% increase

in quarterly operational losses. In dollar terms, this translates into a $68,416 increase in

quarterly operational losses per $1 billion of BHC assets on average, or $12 million per

quarter for the median BHC in our sample (with $174.373 billion in total assets). To address

concerns regarding unobserved shocks driving both operational losses and AI investments,

we follow Babina et al.’s (2024) instrumental variables (IV) strategy of instrumenting for

firm-level AI investments using variation in banking organizations’ ex-ante exposure to the

subsequent supply of AI talent from universities that are historically strong in AI research.

The core idea is that the scarcity of AI-trained labor is one of the most important constraints

to firms’ AI adoption and universities that are historically strong in AI research have been

able to train more AI-skilled graduates in recent years, enabling firms that historically hired

from those universities to more readily recruit AI talent. The instrument has a strong first

2The heavy reliance of AI on human expertise makes the human-capital-based approach particularly
well-suited in this setting. Specifically, Babina et al. (2024) construct their AI measure by searching for
highly AI-related keywords in each employment record to see if: (1) the job title or description directly
includes AI terms, (2) the person obtained patents with AI terms during that year or the following two
years, or (3) the person had publications or awards with AI terms during that year or the following year. If
any of these conditions are met, that person is classified as an AI-related employee for that firm-year. The
firm-level measure is then calculated as the percentage of a firm’s U.S.-based employees who are classified
as AI-related.
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stage, and we show that the instrumented BHC-level increase in AI investments significantly

predicts operational losses.3

Our additional empirical analyses provide deeper understanding into the relation between

AI investments and operational losses at banking organizations. First, we show that AI in-

vestments are also positively associated with the frequency of tail operational risk events

— those low-probability, high-impact occurrences that can pose significant threats to bank-

ing institutions. Tail risk poses difficulties for banking organization capital planning and

management, and is particularly relevant for the risk of BHC failure.

Second, our granular analysis of loss categories reveals that three categories of loss events

are the principal driver of the relation between operational risk and AI investments: External

Fraud (EF) (e.g., due to new attack vectors created by AI systems and digital infrastruc-

ture); Clients, Products and Business Practices (CPBP) (e.g., due to challenges in ensuring

AI-driven services meet regulatory requirements and customer expectations); and Business

Disruption and Systems Failure (BDSF), indicating increased vulnerability to technical fail-

ures and system outages. In contrast, we find no significant relation between AI invest-

ments and losses from Internal Fraud (IF), Employment Practices and Workplace Safety

(EPWS), Damage to Physical Assets (DPA), and Execution, Delivery and Process Manage-

ment (EDPM).

Third, we document significant interaction effects between AI investments and the quality

of BHCs’ risk management. Specifically, BHCs with weaker risk management frameworks

and internal control systems suffer disproportionately more operational losses associated with

AI investments. This finding indicates that AI may introduce new complexities and risks that

can exacerbate vulnerabilities in institutions lacking strong risk governance. Effective risk

3Beyond the IV strategy, we conduct additional robustness checks to support the validity of our findings.
In Section 5, we show that our results hold under alternative data aggregation, additional controls, and fixed
effects. We further explore the timing of AI investments and operational losses using a distributed lead-lag
model, and find no evidence of pre-trends or reverse causality. Finally, we demonstrate that our results are
robust to controlling for past operational losses and to alternative definitions of key variables.
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management may thus be an important prerequisite for AI deployment, as robust internal

controls enable institutions to curtail risks associated with AI use.

Recent studies document AI’s impact across diverse corporate and financial settings.

These include the introduction of robo-advisers in wealth management (D’Acunto et al.,

2019), the value creation from AI and fintech innovation (Chen et al., 2019, 2024), the

transformation of loan underwriting practices (Fuster et al., 2022), the changing nature

of financial analysis (Grennan and Michaely, 2020; Abis and Veldkamp, 2023; Cao et al.,

2024), the changes in firms’ workforce composition and organization (Babina et al., 2023b),

and spillover effects on entrepreneurship (Gofman and Jin, 2024). Most relevant to our

work, Babina et al. (2024) develop a novel measurement framework using comprehensive

employee data to quantify firm-level AI investments, establishing AI’s role as a general

purpose technology driving economic growth.

An emerging stream of research has also begun to examine the risk implications of AI

adoption. Babina et al. (2025) find that AI reduces the volatility of firm fundamentals—sales,

earnings, and cash flows—consistent with its role as a predictive technology that improves

forecasting accuracy. Similarly, Han et al. (2025) show that AI enhances firms’ resilience

to natural disasters by enabling faster operational recovery. Ebrahimitorki and Kim (2025)

show that AI adoption can improve loan performance by reducing non-performing loans at

commercial banks, suggesting that AI may help mitigate credit risk in traditional lending ac-

tivities. Babina et al. (2023a) document that AI increases firms’ systematic risk by expanding

growth options that amplify market comovement, particularly on the upside. Durongkadej

et al. (2024) find that AI-related incidents at financial institutions trigger negative short-run

stock market reactions and elevate bankruptcy risk. At the macroprudential level, Dańıelsson

et al. (2022) argue that AI may amplify financial instability by introducing novel tail risks,

reinforcing cyclical dynamics, and undermining regulatory effectiveness.

Our paper contributes to this literature by documenting a new distinct risk channel
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through which AI investments affect firms. We find that increased AI adoption at banking

organizations leads to higher operational losses, particularly through external fraud, client-

related issues, and system failures. Our results contribute to the idea that AI’s impact on

firm risk is multifaceted: beyond the risk channels identified in prior research, AI adoption

can introduce significant idiosyncratic operational risks that are particularly concerning for

financial institutions given their potential implications for the risk of organizational failure

and wider spillovers to systemic stability (e.g., Berger et al., 2022b).4 It is important to

highlight, however, that the risk-enhancing effects of AI on operational risk should not be

generalized to other risk domains, as the consequences of AI adoption can vary depending

on the specific functional area in which it is applied (e.g., Ebrahimitorki and Kim, 2025).

Our study also contributes to the literature on operational risk at financial institutions.

Cummins et al. (2006) and Gillet et al. (2010) analyze stock market reactions to operational

loss announcements at financial institutions, while Chernobai et al. (2024) study insider

trading around operational loss announcements. Cope and Carrivick (2013), Abdymomunov

et al. (2020), and Frame et al. (2024) analyze financial industry operational losses during

the global financial crisis and explicitly link operational risk to the state of the macroeco-

nomic environment. Additionally, research by Chernobai et al. (2011), Wang and Hsu (2013),

Abdymomunov and Mihov (2019), and Curti et al. (2023) demonstrates that enhanced corpo-

rate governance, improved risk management, and employee training at financial institutions

lead to a reduction in operational losses. Frame et al. (2025) document that larger and

faster growing banking organizations have higher operational losses per dollar of total as-

sets. Chernobai et al. (2021) show that BHC expansions into non-banking activities result

in more operational risk. Berger et al. (2022a) show that banking organizations exposed

to severe weather events incur elevated operational losses due to damage to physical assets

4More broadly, our research also extends the new literature on financial, economic and technological risks
in the new data economy (e.g., Florackis et al., 2022; Bian et al., 2023; Curti et al., 2024; Gomes et al.,
2024).
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and business disruption. Lastly, Frame et al. (2023) shed light on the adverse operational

risk externalities associated with financial innovation. Our study expands this literature

by proposing AI as an important source of operational risk at large financial institutions.

The staggering size of operational losses, as well as the challenges around measurement and

monitoring of operational risk both within organizations and by outside investors, highlight

the importance of understanding the organizational drivers of operational risk.

The rest of this paper is organized as follows. Section 2 discusses potential channels

through which AI may result in higher operational losses. Section 3 describes our data, the

construction of variables, and descriptive statistics. Section 4 presents our main empirical

results. Section 5 checks for robustness. Finally, Section 6 concludes.

2 Channels for Elevated Operational Losses

While, AI can improve product quality, expand offerings, and help banking organizations

better meet customer expectations, it also creates operational risks. These risks are not

necessarily unique to AI but often amplify traditional operational risks, especially when

banks lack proper internal controls to support the deployment of AI tools and technological

frameworks. We next discuss some specific channels that relate AI to operational risks. Our

intent here is to illustrate and contextualize the link between AI and operational risk.

AI deployment at banks can increase cyber risk (e.g., U.S. Department of the Trea-

sury, 2024; European Central Bank, 2025). By increasing banks’ digital footprints, AI tools

can expose new entry points for cyber threats and external fraud, especially when adver-

saries exploit sophisticated techniques or gain access to compromised data. AI implemen-

tation frequently depends on an extended technology “supply chain,” involving external

data providers, third-party cloud services, or outsourced development teams. These connec-

tions, while valuable for rapid deployment, also expand the network through which breaches,
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manipulated data, or other security lapses can propagate, potentially triggering widespread

operational disruptions and losses (New York State Department of Financial Services, 2024).

AI-driven processes may further increase compliance and regulatory risks. AI algorithms

trained on historical banking data may inadvertently learn and perpetuate existing biases,

leading to unfair or discriminatory outcomes. In credit and lending decisions, this risk is

acute: if the training data reflect past prejudices or structural inequalities, the AI may

systematically favor or disfavor certain groups of customers (e.g., Bartlett et al., 2022; Cook

and Kazinnik, 2024). Biased models expose banks to potentially significant regulatory fines

and legal losses as they may trigger lawsuits and regulatory sanctions under fair lending and

equal opportunity laws (e.g., The Equal Credit Opportunity Act).5

Technical and systemic failures represent another significant risk with poorly designed or

monitored AI. Because of the speed and scale at which automated systems operate, minor

errors can build into catastrophic events quickly. A 2012 Knight Capital incident—when

a single glitch in an automated trading algorithm caused hundreds of millions of dollars in

losses within an hour—provides an illustration.6 This example also underscores the fact that

reliance on intricate automated processes leaves financial institutions less time and fewer re-

sources to correct errors once they begin to unfold. Technical complexity may also arise when

AI tools must integrate with legacy platforms that were never intended to handle advanced

analytics. Integration failures or incompatibilities can lead to system outages and down-

time, halting critical services. Likewise, AI models can degrade as market conditions shift,

performing unreliably outside their trained scope. Reduced human oversight in automated

processes may delay the detection of operational issues.

5For example, the case of Williams v. Wells Fargo Bank consolidates six separate class-action lawsuits
against Wells Fargo. The lawsuits allege that the bank’s algorithm-driven approach to residential mortgage
and refinancing decisions violates the Fair Housing Act and the Equal Credit Opportunity Act. Plaintiffs
argue that Wells Fargo’s automated underwriting system, CORE, operates with minimal human oversight
and that its algorithm and machine learning processes are inherently biased against certain racial groups.
See Tech Policy Press: “AI Lawsuits Worth Watching: A Curated Guide” (B. Barcott, Jul. 1, 2024).

6See Risk.net : “Knight Capital losses spur focus on algo risk management” (C. Davidson, Sep. 6, 2012).
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3 Data Sample and Variable Definitions

3.1 Operational Loss Data

We employ supervisory data on operational losses reported by large banking organizations

in accordance with the FR Y-14Q form requirements (current as of December 2022).7 The

Federal Reserve System gathers and uses these data to assess the capital adequacy of large

firms, to support supervisory stress test models, and continuous monitoring efforts, as well as

to inform the Federal Reserve’s operational decision making in implementing the Dodd-Frank

Wall Street Reform and Consumer Protection Act. Schedule E specifically captures detailed

operational loss event data, requiring institutions to report comprehensive information about

each operational loss above their established collection thresholds.

The data are provided by 35 financial institutions with consolidated assets of $100 billion

or more. We supplement these data with data for five additional institutions (Comerica, CIT

Group, Zions Bancorporation, BBVA USA Bancshares, and SunTrust Banks), which used to

participate in Dodd-Frank Act Stress Tests (DFAST), but no longer do so pursuant to the

Economic Growth, Regulatory Relief, and Consumer Protection Act of 2018 or due to merger

activity. While the original data contains losses from 40 institutions, the availability of data

on firm-level AI human capital discussed in Section 3.3 reduces the number of institutions

in our sample from 40 to 36.

Per FR Y-14Q reporting instructions, BHCs must report a complete history of operational

losses “starting from the point-in-time at which the institution began capturing operational

loss event data in a systematic manner.” These data are subject to significant data quality

checks, including regular data exams conducted by Federal Reserve staff and BHC internal

audit functions. The data are at the individual loss event level and provide information such

7More information about FR Y-14Q reporting requirements, instructions and forms can be found at:
http://www.federalreserve.gov/apps/reportforms/.

9



as loss amounts, loss dates, and loss classifications.

Operational losses are categorized into seven event types consistent with the Basel II

Accord: Internal Fraud (IF), External Fraud (EF), Employment Practices and Workplace

Safety (EPWS), Clients, Products and Business Practices (CPBP), Damage to Physical

Assets (DPA), Business Disruption and System Failures (BDSF), and Execution, Delivery

and Process Management (EDPM). Table 1, Panel A provides definitions of each loss type.

IF losses involve acts of a fraudulent nature by internal staff. EF losses stem from events such

as cyberattacks, theft, or fraudulent activity conducted by third parties. EPWS includes

losses related to employee discrimination, workplace safety violations, and other HR-related

legal exposures. CPBP typically involves violations of regulatory standards, breaches of

fiduciary duty, product misselling, or customer complaints—often resulting in substantial

fines or legal settlements. DPA captures losses due to natural disasters, vandalism, or other

damage to physical assets. BDSF refers to losses arising from system outages, hardware

failures, or technological disruptions. Finally, EDPM covers transaction failures, processing

errors, vendor management breakdowns, and documentation deficiencies.

[Insert Table 1 and Figure 1 about here]

The Basel classification system is relevant for understanding how AI adoption may gener-

ate operational risk. Several loss categories—CPBP, EF, BDSF, and EDPM—are arguably

more exposed to AI-related risks because they reflect areas where AI can amplify vulnerabili-

ties through biased decision-making, increased digital exposure, transaction automation, and

system integration failures. For example, biased outcomes produced by AI-driven credit or

underwriting algorithms may trigger CPBP losses by violating fair lending laws or generat-

ing discriminatory treatment that results in customer complaints, legal action, or regulatory

sanctions. The expanded digital footprint created by AI tools can expose banks to new

cyber threats—such as data breaches—while failures in AI-based fraud detection systems
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can further increase the risk of EF losses. The technical complexity of AI systems and their

integration with legacy infrastructure can lead to system outages or instability, contribut-

ing to BDSF losses. And, automation errors in trading or processing systems may produce

EDPM losses. In contrast, the remaining event types—IF, EPWS, and DPA—are less di-

rectly affected by AI adoption, as they primarily involve misconduct, workplace conditions,

or physical hazards that do not typically arise from AI-based systems. These mappings

guide our empirical analysis by linking specific AI applications to distinct operational risk

channels, allowing us to test whether the effects of AI investments are concentrated in the

more plausibly affected event types.

Figure 1 shows the distribution of operational losses across the seven Basel-defined event

types. CPBP dominates the sample, accounting for 70.2% of total losses (approximately

$128.7 billion), followed by EDPM at 18.6% (or $32.2 billion). The remaining five categories

collectively account for just 12.2% of losses ($22.4 billion). This distribution highlights the

central role of client-facing business practices in driving operational risk at large BHCs. It

also underscores the relevance of this category for understanding how AI adoption may affect

operational risk profiles—particularly in areas such as regulatory compliance and automated

customer interactions, which map closely to CPBP. Notably, many of the most severe and

high-dollar-loss events in our sample also fall under CPBP.

The banking organizations in our sample have different thresholds for collecting individual

operational losses. To mitigate the impact of firm heterogeneity in collection thresholds on

our results, we follow Abdymomunov et al. (2020) and discard operational losses below

$20,000, which is the highest threshold across reporting institutions. We next aggregate loss

data at the BHC-quarter level, where we use the quarter of the date when an operational

loss event occurred (or began) for aggregation purposes. We finally merge loss data with

financial data from FR Y-9C and AI investments data from Babina et al. (2024). Our final

sample has 852 observations from 36 large BHCs over the period 2010:Q1-2018:Q4. While
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our combined data contain losses from only 36 BHCs, these institutions account for the

majority of U.S. banking industry assets (82% as of 2018:Q4).

It is important to note that, for the covered institutions, our data is substantially more

comprehensive than operational loss data offered by private vendors that rely on publicly

available information. For example, Hess (2011) uses loss data from SAS OpRisk Global

Data, which consists of around 7,300 loss events. Chernobai et al. (2011) analyze loss data

from Algo FIRST, which consists of 2,426 events. In contrast, we have 259,408 individual

loss events in our sample. As discussed in de Fontnouvelle et al. (2006), public sources of

data compiled from press accounts omit substantial operational losses otherwise contained

in the supervisory data used in this study. The comprehensive coverage is thus important for

studying AI-related operational risks, which may not always result in public disclosure. The

supervisory data captures operational risk events systematically, which is further useful for

understanding how AI adoption may relate to operational risk across different loss categories

and severity levels.

3.2 Operational Loss Measures

Our main measure of operational risk is the total dollar value of operational losses that occur

at a BHC in a given quarter. We follow Curti et al. (2023), Frame et al. (2025), and other

studies in the literature on bank risk and performance (e.g., James, 1991; Ahmed et al., 1999;

Ellul and Yerramilli, 2013), and scale losses by BHC asset size. In doing so, we use lagged

total assets, but our results are robust to using contemporaneous measurements of losses

and assets. For presentation purposes, we multiply the loss-to-assets ratio by 10,000 and

label it LtA. In some of our regression specifications, we also use log-transformed inflation-

adjusted dollar losses (2020 constant dollars) that occur at an institution in a given quarter

— Log(Loss).
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[Insert Table 2 about here]

Table 2 presents descriptive statistics. On average, the BHCs in our sample lose $181

million or the equivalent of 0.04% of their assets per quarter to operational risk. Further, the

standard deviations of both dollar losses ($645 million) and asset-scaled operational losses

(5.98) are high relative to the means, indicating substantial variation in operational losses.

A well-known property of operational risk is the extremely heavy tails of the empirical

loss distributions (Berger et al., 2022b). Indeed, only a few “catastrophic” operational risk

events account for a large proportion of the total dollar losses in our sample. Thus, while

we focus on quarterly operational losses at BHCs, we also analyze tail operational risk. We

use three measures of tail risk frequency, constructed as follows.

We start with the 259,408 individual loss events in our sample and scale dollar loss

amounts by BHC total assets. We calculate the 90th, 95th, and 99th quantiles of the resulting

empirical distribution and categorize all loss events with severities above the respective

quantiles as “tail losses.” We then “collapse” the sample of losses at the BHC-quarter level

by counting the number of tail events that occur at a given institution during a given quarter

for each tail threshold definition, resulting in the variables N Tail 90, N Tail 95, and N Tail

99. Using the 90th quantile definition, Table 2 shows that a BHC experiences an average of

23.312 tail operational losses per quarter, each representing 0.002% of assets on average. In

contrast, tail losses under the 99th quantile definition are less frequent—averaging 2.580 per

quarter—but more severe, with each loss accounting for 0.012% of assets on average.

To better capture the severity of extreme losses, we also construct three additional

measures—LtA Tail 90, LtA Tail 95, and LtA Tail 99—which sum the dollar losses from

tail events at each BHC-quarter and scale them by BHC total assets (multiplied by 10,000).

While the frequency measures reflect how often extreme events occur, these severity measures

capture their magnitude relative to institution size.
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3.3 Data on Employment Profiles and Job Postings

We adopt the measure of firm-level AI investments introduced in Babina et al. (2024), which

is predicated on the critical role of AI-skilled human capital in AI implementation. In

constructing the measure, Babina et al. (2024) leverage data from two primary sources:

individual worker resumes from Cognism and job postings from Burning Glass Technologies.

The resume data from Cognism comprises approximately 535 million employee resumes

globally. This dataset is widely used for lead generation and client relationship management

services, and includes information derived from publicly available online profiles, collabora-

tions with recruiting agencies, and third-party resume aggregators. The Cognism data are

introduced and described in detail in Fedyk and Hodson (2022). Cognism’s coverage spans

roughly 64% of the U.S. workforce as of 2018, and provides detailed information about em-

ployment histories, including job titles, companies, job descriptions, patents, and awards.

Through machine learning and natural language processing, the resumes are normalized to

ensure accurate association of job roles with specific firms and functional divisions. This

dataset enables the identification of AI workers within U.S. public firms from 2010 to 2018,

capturing about 101 million person-firm-year observations.

Babina et al. (2024) supplement the resume data with over 180 million job postings from

Burning Glass Technologies, spanning the years 2007, 2010, and 2010-2018. These post-

ings are aggregated from over 40,000 online sources and company websites. Burning Glass

processes these postings to extract labor market analytics, including job titles, locations,

employers, and a detailed taxonomy of required skills. This allows for the identification of

specific AI-related skills, which are crucial for tracking AI labor demand within firms. The

job postings dataset represents about 60-70% of all U.S. job vacancies.
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3.4 Measure of BHC-level AI Investments

The firm-level measure of AI investments of Babina et al. (2024) takes advantage of the gran-

ular classification of skills in job postings to empirically identify the terms most associated

with AI roles. As the authors argue, this data-driven method circumvents issues arising from

predefined keyword lists, such as false positives (non-AI jobs being classified as AI) and false

negatives (actual AI jobs being omitted).

The construction of the firm-level AI investments measure involves three main steps.

First, Babina et al. (2024) examine approximately 15,000 unique job skills and compute

their co-occurrence with four core AI-related skills: artificial intelligence, machine learning

(ML), natural language processing (NLP), and computer vision (CV). For each skill s, a

co-occurrence metric wAI is calculated as follows:

wAI
s =

#jobs requiring skill s and (ML, NLP, CV, or AI in required skills/job title)

#jobs requiring skill s
(1)

This co-occurrence metric reflects how often a particular skill appears alongside the key AI

competencies. For instance, as discussed in Babina et al. (2023a) “Long Short-Term Memory

(LSTM)” demonstrates a high co-occurrence measure of 0.971, indicating that 97.1% of job

postings requiring LSTM expertise also specify at least one core AI skill (i.e., “Artificial

Intelligence,” “Machine Learning,” “Computer Vision,” or “Natural Language Processing”).

Conversely, general professional skills like “Microsoft Office” exhibit minimal correlation

with AI skills, with a co-occurrence measure of merely 0.003. This pattern extends to

entirely unrelated skills such as “Snow Removal,” which shows zero co-occurrence with core

AI competencies, thus serving as a useful baseline for skill independence.

In the second step, AI workers within firms are identified using resume data from the

Cognism dataset. Employees whose job titles, job descriptions, or professional achievements

(such as patents, publications, or awards) include AI-related terms are classified as AI-skilled.
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For instance, an employee with the job title “Senior Machine Learning Developer” or one

whose job description includes AI-related tasks is classified as an AI worker.

Finally, these AI-skilled employees are aggregated to the firm level to construct the

AI investments measure. Specifically, Share AI Workers is defined as the proportion of

employees at each firm identified as AI-skilled. Because the AI data is updated annually, we

apply the same value of Share AI Workers to all quarters in a given year for a given BHC

when we merge these data with other BHC data at the quarterly level.

Although operational losses are recorded at quarterly frequency while the measure of

AI investments is updated annually, this frequency mismatch is unlikely to bias our results

in any way. AI adoption is both gradual and strategic, so the composition of AI-skilled

labor changes only slowly within any given year. By contrast, operational losses tend to be

episodic: they can be lumpy and reflect distinct events rather than continuous processes.

Thus, the annual measure of AI investments should meaningfully capture variation in the

intensity of AI adoption across BHCs, and quarterly losses should remain informative for

understanding how intensity of AI usage relates to risk outcomes. We lag the AI measure to

ensure that it precedes the occurrence of operational losses.

Nonetheless, the persistence of the annually updated AI measure across quarters could

potentially inflate the statistical significance of our regression estimates. To address this

concern, we cluster standard errors at the BHC level, which should appropriately capture

within-BHC correlations in AI intensity as well as operational losses. In Section 5.1, we

confirm the robustness of our results to aggregating all data at the annual level.

Table 2 shows the average Share AI Workers for the BHCs in our sample – 0.065, which is

higher than the typical Compustat firm documented by Babina et al. (2024). This difference

can be contributed to two key factors. First, larger firms like BHCs, which accumulate sub-

stantial data through their operations, tend to invest more heavily in AI. Second, the finance

sector has been an early and intensive adopter of AI technology, consistently maintaining
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higher concentrations of AI workers.

3.5 Control Variables

Our multiple regression analysis includes several control variables that capture time varying

BHC characteristics. We follow Curti et al. (2022) and use the logarithm of BHC total assets

(Log(Assets)) to control for organizational size. Larger BHCs may have higher exposure to

operational risk due to factors such as complexity, moral hazard associated with “too-big-too-

fail,” or higher volume of transactions among other reasons. We also include year-over-year

asset growth (Asset Growth) because faster-growing banking organizations tend to experience

higher operational losses (Frame et al., 2025).

To account for differences in business models, we include the non-interest to interest

income ratio (II-to-NII ). As documented by Chernobai et al. (2021), banks focused on tradi-

tional activities (deposit-taking and lending) exhibit different risk profiles compared to those

deriving more income from non-core activities like trading and investment banking. We con-

trol for profitability using return on equity (ROE ), calculated as the ratio of net income to

book value of equity. Higher profitability may enable greater allocation of resources to risk

management; alternatively, as suggested by Jin and Myers (2006), senior management might

be more likely to overlook internal control failures when firms are less financially constrained.

Given that more AI-intensive firms tend to innovate more, and more innovative banking

organizations experience higher operational losses (Frame et al., 2023; Babina et al., 2024), we

control for financial patent innovation using (Log(N Patents)). We also include several risk-

related controls: the proportion of non-performing loans (Non-Performing Loans) to account

for credit risk exposure, which can be related to operational risk (Chernobai et al., 2011);

the ratio of total assets to book value of equity (Leverage); and the log absolute difference

between assets and liabilities that reprice or mature within a year (Maturity Gap). In

Section 5.4, we extend the analysis by adding additional controls and assessing the robustness
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of our results to their inclusion.

4 Regression Results

4.1 Operational Losses

Figure 2 provides an initial look at the relation between AI investments and operational risk.

Each quarter, we sort BHCs into terciles based on Share AI Workers (“Low,” “Medium,”

and “High” AI intensity) and plot the average LtA for each tercile. The figure reveals a clear

positive association: BHCs with greater AI intensity consistently incur higher operational

losses per dollar of assets than their less AI-intensive counterparts.

To more formally examine whether more AI-intensive BHCs have more operational risk,

we next estimate the following regression model:

Operational Lossi,t = βt + β1Share AI Workersi,t−1 + β2Controlsi,t−1 + ϵi,t (2)

where i indexes BHCs and t indexes time periods (quarters). Operational Loss is one of four

operational loss measures: (i) operational losses as a proportion of total assets that occur

at BHC i over a given calendar quarter; (ii) log-transformed operational dollar losses that

occur at the BHC over a given calendar quarter; (iii) frequency of operational losses that

occur at the BHC over a given calendar quarter; or (iv) log-transformed average severity of

operational losses that occur at the BHC over a given calendar quarter. Share AI Workers

measures AI investment intensity at banking organizations, measured in the year prior to the

year of quarter t. Controls represents our previously discussed vector of control variables.

All explanatory variables are lagged.

We include quarter fixed effects (βt) to absorb period-specific shocks common across

all BHCs (e.g., industry-level operational losses). We do not include BHC fixed effects
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because the average AI investment intensity of BHCs is informative about the average level

of operational losses incurred by the BHCs. We deal with potential endogeneity issues

introduced by omitted variables including time-invariant factors relevant to operational losses

that would be absorbed by BHC fixed effects in Section 4.2. Section 5.4 shows, however,

that our results are robust to the inclusion of BHC fixed effects. We cluster standard errors

at the BHC level to account for within-BHC correlation of the regression error terms. Table

3 presents the results.

[Insert Figure 2 and Table 3 about here]

The regression specification in Column (1) uses our main measure of operational losses,

LtA, as the dependent variable. The estimated coefficient on Share AI Workers is positive

and significant at the 1% level, suggesting that banking organizations with more intensive

AI investments experience more operational losses per dollar of assets. The positive relation

continues to hold when we use Log(Loss) as the dependent variable in Column (2), suggesting

the robustness of our results to redefining the operational loss measure. Columns (3) and

(4) decompose operational losses into loss frequency and loss severity components. The

results indicate that AI investments are positively related to both the frequency and severity

of operational losses. Based on Column (1), a one standard deviation increase in Share

AI Workers is associated with a 24% increase in operational losses. In dollar terms, this

translates into a $68,416 increase in quarterly operational losses per $1 billion of BHC assets

on average, or $12 million per quarter for the median BHC in our sample (with $174.373

billion in total assets).

4.2 Instrumental Variables

The relation between AI investments and operational losses at banking organizations poses

significant identification challenges. Banking organizations experiencing higher operational
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losses may be more likely to invest in AI technologies to prevent future losses, creating

reverse causality concerns. Additionally, omitted variables like risk management culture

or regulatory pressure could simultaneously drive both AI adoption and operational loss

patterns, which could bias our ordinary least squares estimates.

To address these identification challenges, we employ an instrumental variables (IV)

approach, utilizing the instrument developed by Babina et al. (2024). Their instrument

exploits variation in firms’ ex-ante exposure to the supply of AI talent from universities that

were historically strong in AI research. Specifically, for each company i, the instrument is

constructed as follows:

IVi =
∑
u

s2010i,u × AI Strongu (3)

where s2010i,u is the share of STEM workers in company i in 2010 who graduated from university

u, and AI Strongu is an indicator equal to one if university u is identified as an AI-strong

university based on pre-2010 publications. Babina et al. (2024) classify a university as AI-

strong if it meets either of two criteria between 2005-2009: (1) the number of AI researchers

is in the top 5% across all universities, or (2) the number of AI researchers is in the top 10%

and the share of AI researchers (relative to all researchers) is in the top 5%. They identify

AI researchers based on publications in AI-specific journals and conferences, using data from

the Open Academic Graph.

The instrument’s relevance stems from the fact that universities with historically strong

AI research programs were better positioned to train AI-skilled graduates when commercial

interest in AI surged in the 2010s. Since firms tend to maintain persistent hiring relationships

with specific universities through alumni networks, firms with stronger pre-existing connec-

tions to AI-strong universities had better access to AI talent. This access to AI-skilled labor

is particularly important given that the scarcity of AI-trained workers has been identified
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as one of the key constraints to firms’ AI adoption (Correlation One, 2019; Babina et al.,

2024).

The identifying assumption (exclusion restriction) requires that a bank’s historical con-

nections to AI-strong universities only affect its operational losses through the channel of

AI investments. Several institutional features support this assumption. First, commercial

interest in AI only became widespread around 2012, while AI research in universities had

flourished for decades prior. This temporal separation suggests that banks’ pre-2010 hiring

networks with AI-strong universities were unlikely to be driven by their anticipated need

for AI talent. Second, Babina et al. (2024) focus on connections through STEM graduates

broadly, rather than specifically AI-related hires, making the networks more likely to reflect

general university relationships rather than targeted AI recruitment.

[Insert Table 4 about here]

Table 4, Columns (1) reports the first-stage estimation results. The estimated coefficient

of the instrumental variable is positive and highly significant. The ex-ante exposure to the

supply of AI talent from universities is relevant for the proportion of AI-skilled labor at

banking organizations. The adjusted R2 is relatively high, and the F -statistic is above the

threshold of 10 prescribed by Stock et al. (2002). This result suggests our estimations do

not suffer from a weak-instrument problem. Columns (2) presents second stage results and

shows that the estimated coefficient on Share AI Workers retains its positive sign and is

significant at the 1% level. These findings suggest that the results in the previous section are

robust to accounting for endogeneity and reverse causality concerns, confirming the positive

relation between BHC AI investments and operational losses.

To address potential violations of the exclusion restriction, we conduct several robustness

checks. First, we control for bank organizations’ exposure to computer science (CS)-strong

universities using an analogous measure of firms’ ex-ante exposure to CS-strong universities
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(
∑

u s
2010
iu × CS Strongu, where CS strongu measures the university’s strength in non-AI

computer science research). This addresses concerns that AI-strong universities might excel

in broader computer science education, and that computer science capabilities at banking

organizations may affect their operational risk through general technology-driven channels

distinct from AI—such as increased technological infrastructure complexity, greater reliance

on automated processing systems, and expanded digital banking services. Second-stage

results remain robust as reported in Table 4, Column (3).

Next, we account for the possibility that AI-strong universities might be concentrated in

regions with particular labor market characteristics by controlling for a set of commuting

zone attributes. These controls include the share of workers in IT-related occupations,

the proportion of college-educated workers, log average wages, the percentage of foreign-

born workers, and the share of workers in finance and manufacturing industries. As shown

in Column (4), our results again remain robust after incorporating these regional labor

market controls. To address concerns about persistent unobservable firm characteristics that

might correlate with both operational risk profiles and historical university connections, we

introduce controls for pre-period operational losses spanning 2000-2009. This control helps

account for the possibility that banks with historically higher operational losses might have

systematically different relationships with universities. Results remain robust as reported in

Column (5). We further extend our analysis by controlling for U.S. Census Bureau geographic

divisions to account for banking organization’s broader regional labor market conditions.8

The results, shown in Column (6), demonstrate that our findings are not driven by regional

heterogeneity.

Finally, Column (7) presents our most stringent specification, which simultaneously in-

cludes all previously mentioned controls: CS-strong university exposure, commuting zone

8The nine distinct divisions are New England, Middle Atlantic, East North Central, West North Central,
South Atlantic, East South Central, West South Central, Mountain, and Pacific.
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characteristics, pre-period operational losses, and geographic divisions. The persistence of

our main findings across this battery of robustness checks strengthens our confidence in a

causal interpretation of the relation between AI investments and operational losses. The

stability of our results across these various specifications suggests that our instrumental

variable approach successfully isolates the effect of AI investments on operational risk from

potentially confounding factors.9

4.3 Operational Loss Types

Operational risk is an amalgamation of various types of subcomponent risks. The Basel

Committee on Banking Supervision categorizes operational risk into seven distinct event

types: Internal Fraud (IF), External Fraud (EF), Employment Practices and Workplace

Safety (EPWS), Clients, Products and Business Practices (CPBP), Damage to Physical As-

sets (DPA), Business Disruption and System Failures (BDSF), and Execution, Delivery and

Process Management (EDPM). While our earlier analysis established a strong relation be-

tween total operational losses and AI investments at the BHC level, examining each category

separately may reveal important variations in how AI relates to different types of operational

risk. To investigate these potential differences, we re-estimate Equation 2 for each of the

seven event types and present our findings in Table 5.

[Insert Table 5 about here]

The positive coefficient of Share AI Workers in Column (2), significant at the 1% level,

indicates that the relation between AI investments and operational losses is particularly pro-

9A less plausible concern regarding our instrument is that BHCs that anticipated the surge in demand
for AI may have started building their connections to AI-strong universities before 2010, making BHC-
university hiring networks in 2010 endogenous to BHCs’ demand for AI-trained students. However, this idea
runs counter to the lack of both commercial interest in AI by firms and AI-skilled graduates by universities
prior to 2010. Furthermore, Babina et al. (2024) present evidence that firms associated with strong AI
universities in 2010 did not increase their share of new graduate hires from those institutions between 2005
and 2010 (see Babina et al.’s Appendix Table A.2).
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nounced in EF, supporting the interpretation that AI systems may create new attack vectors

for external actors through, for example, increased digital infrastructure complexity and new

technological vulnerabilities. The strong relation may reflect heightened exposure to sophis-

ticated cyber attacks targeting AI systems, innovative fraud schemes exploiting automated

processes, and opportunities for malicious actors to manipulate AI-driven operations.

We similarly find that CPBP losses increase significantly with AI investments, as evi-

denced by a positive coefficient of Share AI Workers in Column (4), significant at the 5%

level. This relation potentially reflects challenges in ensuring AI-driven services meet regu-

latory requirements and customer expectations. For example, the complexity of AI systems

may create difficulties in maintaining transparency, managing algorithmic biases, and ad-

equately disclosing AI use to customers. Finally, BDSF losses also show a positive and

significant, at the 10% level, relation with Share AI Workers in Column (6). This finding

indicates that greater AI adoption may increase vulnerability to technical failures and system

outages. For example, as AI systems get deployed in banking operations, disruptions from

model failures, integration issues with legacy systems, or AI system degradation may create

more severe operational impacts.

In contrast, we find no significant relation between AI investments and losses from IF,

EPWS, and DPA. The coefficient of Share AI Workers is indistinguishable from zero in

Columns (1), (3), and (5). These losses originate from employee misconduct, inadequate

workplace practices, or physical asset damage due to natural disasters, and are less likely to

be related to AI technologies. Contrary to our discussion in Section 3.1, we find no significant

relation between AI investments and EDPM losses. While the coefficient of Share AI Workers

is positive, it is statistically insignificant at conventional levels (p-value = 0.176). Overall,

these findings have important implications for risk management and regulatory oversight.

The heterogeneous effects across loss categories suggest that banks and regulators may focus

their AI-related risk management efforts on specific operational vulnerabilities rather than
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applying uniform approaches across all risk types.

4.4 Tail Operational Losses

Our earlier analysis focused on the relation between AI investments and the conditional

average of asset-scaled operational losses. However, the distribution of operational losses is

highly right-skewed, with a small number of extreme events representing potentially greater

threats to institutional stability than routine losses. Distinguishing between elevated but

stable operational losses and infrequent tail events is important. While persistently higher

operational losses can erode profitability, they are more predictable and therefore easier

to anticipate and provision for. In contrast, tail operational losses—more rare but severe

events—are harder to forecast and reserve against, posing challenges for capital management

and contributing more directly to failure risk.

As described in Section 3.2, we construct three measures of quarterly tail loss frequency

based on different severity thresholds: N Tail 90, N Tail 95, and N Tail 99. We then test

whether AI-intensive banking organizations experience a higher incidence of such events

using a multivariate framework analogous to Equation 2. Because the dependent variables

are event counts, we estimate Negative Binomial (NB) regressions.

[Insert Table 6 about here]

Table 6, Columns (1)–(3) show that BHCs with greater AI intensity experience signifi-

cantly more tail operational loss events. The coefficients on Share AI Workers are positive

and statistically significant at the 1% level for all three tail definitions. The economic mag-

nitudes are sizable: a one–standard deviation increase in Share AI Workers from its mean

is associated with a 22–30% increase in the number of quarterly tail events, relative to the

sample mean. Columns (4)–(6) confirm these results using alternative measures—LtA Tail—

that emphasize the size rather than frequency of tail losses. In every case, Share AI Workers
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remains positive and significant. Overall, these findings indicate that AI investments are

associated not only with higher average operational losses, but also with a greater incidence

of extreme loss events that are more likely to materially affect institutional stability.

4.5 Risk Management

Risk management functions play a crucial role in assessing, managing, and monitoring risks

at banking organizations to ensure they remain within the limits set by management and

boards of directors. Prior research has demonstrated that weak risk controls and lack of

independence in risk management functions are associated with increased risk exposures at

large BHCs (e.g., Ellul and Yerramilli, 2013; Abdymomunov and Mihov, 2019; Frame et al.,

2020).10 Given this established relation between risk management quality and risk outcomes,

we examine whether strong risk management practices help banking organizations mitigate

the risk-enhancing effects of AI.

To investigate this question, we utilize the risk management index (RMI) developed by

Ellul and Yerramilli (2013). The RMI provides a continuous measure of the organizational

strength and independence of risk management functions at large banking organizations.

It is constructed as the first principal component of seven measures capturing BHC risk

management quality, including whether an institution has a designated risk officer to manage

enterprise-wide risk and how effectively quantitative and qualitative risk information flows

10The Wells Fargo cross-selling scandal, in which inadequate internal controls coupled with aggressive
sales targets and incentive structures allowed employees to create millions of unauthorized accounts, further
illustrates the importance of risk management quality for managing operational risk. The misconduct re-
sulted in significant operational losses for Wells Fargo, including $3 billion in penalties, substantial litigation
costs, and severe reputational damage. The banking organization’s supervisors also imposed a restriction
preventing it from expanding its assets beyond 2017 levels (ultimately lifted in June 2025) until it addressed
the underlying risk governance and controls issues. See Federal Reserve System: “Responding to widespread
consumer abuses and compliance breakdowns by Wells Fargo, Federal Reserve restricts Wells’ growth until
firm improves governance and controls. Concurrent with Fed action, Wells to replace three directors by April,
one by year end” (Feb. 02, 2018); U.S. Department of Justice: “Wells Fargo Agrees to Pay $3 Billion to
Resolve Criminal and Civil Investigations into Sales Practices Involving the Opening of Millions of Accounts
without Customer Authorization” (February 21, 2020).
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between business segments and senior management. Higher values of the index indicate more

robust risk management practices.

The RMI data is available at an annual frequency from the beginning of our sample period

through 2013 and covers 17 of the 36 BHCs in our baseline sample. To preserve sample size,

and motivated by the view that risk management practices are relatively persistent over time

(e.g., Fahlenbrach et al., 2012), we carry forward each BHC’s 2013 RMI value through the

end of the sample period in 2018. To reconcile the annual frequency of the RMI data with our

quarterly analysis, we assign the annual RMI value to all quarters within the corresponding

year. We then re-estimate our baseline regression model, augmented to include both the

RMI term and its interaction with Share AI Workers. Table 7 presents the results.

[Insert Table 7 about here]

Column (1) shows that the coefficient estimate on this interaction term, Share AI Work-

ers × RMI, is negative and significant at the 5% level, indicating that more AI-intensive

BHCs with strong risk management functions tend to incur fewer operational losses. The

economic magnitude is substantial — increasing Share AI Workers by one standard devia-

tion while simultaneously increasing RMI by one standard deviation (i.e., improving BHC

risk management quality) decreases LtA by 9% relative to its unconditional mean.

To ensure robustness, we also examine these patterns using a simplified binary version

of the RMI measure. We create an indicator variable equal to 1 for RMI values above the

sample median and 0 otherwise. The interaction between this binary measure, RMI (0/1),

and Share AI Workers maintains its negative sign and statistical significance at the 5% level.

Collectively, these findings provide strong evidence that robust risk management serves as

an important moderating factor, helping banking organizations contain the operational risks

that emerge from increased AI adoption. This suggests that strengthening risk management

frameworks may be an important prerequisite for banks seeking to expand their use of AI
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technologies.

5 Robustness Checks

This section explores the robustness of our main empirical findings through multiple angles.

We confirm that the positive relation between AI investments and operational losses holds

under annual data aggregation, distributed lead-lag models, controls for past losses, BHC

fixed effects, additional control variables, and alternative variable definitions.

5.1 Data Aggregation at Annual Level

A potential concern in our analysis is the discrepancy in measurement frequency across

variables. Our primary AI investments variable, Share AI Workers, is measured annu-

ally, whereas operational losses and control variables are measured quarterly. Given the

slow-moving nature of Share AI Workers over time, this difference is unlikely to introduce

substantial mismeasurement.

Nonetheless, to address this potential issue, we conduct a robustness test in which all vari-

ables are aggregated to the annual frequency and our baseline regressions are re-estimated.

Quarterly operational losses are summed within each year for each BHC. Control variables

are aggregated by summing “flow” variables and taking year-end values for “stock” variables,

while Share AI Workers remains unchanged. This procedure ensures that operational losses

and controls are measured on the same temporal scale as Share AI Workers, mitigating the

risk that frequency differences drive our results.

[Insert Table 8 about here]

Table 8 presents the results of this analysis and shows that our main findings remain ro-

bust in this annual aggregation framework. Specifically, the coefficient on Share AI Workers
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remains positive and statistically significant, confirming that higher AI investment intensity

is associated with greater operational losses at the annual frequency.

5.2 Distributed Lead-lag Model

In this section, we examine the temporal dynamics of operational losses around AI invest-

ments to strengthen our causal interpretation and explore whether the observed effect is

transitional or persistent. Specifically, we investigate three possibilities: (i) reverse causality,

where banks experiencing higher operational losses adopt AI in response; (ii) pre-existing

differences in loss trajectories between high- and low-AI BHCs; and (iii) whether the ob-

served increase in losses represents a short-lived adjustment or a longer-term shift in the

bank’s operational risk profile.

To do so, we estimate the following distributed lead-lag model (adapted from Aghion

et al., 2020; Babina et al., 2024):

LtAi,t = βt + βi + β1∆Share AI Workersi,[t−12,t−8]+

β2∆Share AI Workersi,[t−8,t−4] + β3∆Share AI Workersi,[t−4,t]+

β4∆Share AI Workersi,[t,t+4] + β5∆Share AI Workersi,[t+4,t+8] + ϵi,t

(4)

where ∆Share AI Workersi,[t−k−4,t−k] represents the annual change in the share of AI work-

ers. We include quarter fixed effects to control for period-specific shocks common across

all BHCs. We show specifications with and without BHC fixed effects that absorb BHC-

specific time-invariant factors. This model enables us to detect both anticipatory trends

and post-adoption effects. The lag coefficients (β1, β2, β3) measure the post-investment im-

pact, and their evolution provides insight into whether the effect is short-lived (e.g., due

to AI learning curves) or persistent. The lead coefficients (β4, β5) test for reverse causality

and pre-trends—if BHCs that eventually invest in AI already exhibit increasing operational
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losses beforehand, we would expect significant positive coefficients. Following Babina et al.

(2024), we adopt the distributed lead–lag approach because AI investments are typically

phased in over time rather than made as large, discrete commitments in a single period,

making standard event-study designs with sharply defined pre- and post-treatment windows

less suitable.

Table 9 presents the results. Among the lagged terms, only β2 is positive and statistically

significant. This indicates that operational losses tend to rise about one year after a bank

increases its AI investments. In contrast, the other lag terms (β1 and β3) are statistically

insignificant, suggesting that the effect does not persist beyond this one-year window. Im-

portantly, both lead coefficients (β4 and β5)—which measure whether future increases in AI

investments predict current operational losses—are indistinguishable from zero. This pattern

rules out reverse causality, where higher losses would trigger AI adoption, and also suggests

that AI-intensive banking organizations were not already on an upward trajectory of losses

before investing in AI. Together, the insignificance of the lead terms and the delayed timing

of the loss increase support for a causal interpretation.

[Insert Table 9 about here]

These dynamics further clarify the nature of the observed losses. The one-year lag be-

tween AI investments and higher losses is consistent with transitional risks—ranging from

implementation frictions, integration with legacy systems, and human–AI coordination chal-

lenges to data pipeline instability or inaccurate inputs during early deployment, workflow

disruptions, regulatory issues and compliance breaches, and vulnerabilities introduced in ini-

tial rollouts. The lack of persistence in the post-investment period—i.e., the insignificant

β1 coefficient estimate—suggests that the increase in operational losses does not reflect a

permanent elevation in risk exposure. Rather, AI adoption appears to trigger a temporary

uptick in operational losses before institutions adapt and stabilize. This finding complements
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our earlier results, indicating that while AI adoption is associated with increased operational

risk, its concentration in the first year after investment suggests it can be mitigated if banks

anticipate the adjustment period and invest in adequate risk controls.

5.3 Additional Evidence Against Reverse Causality

Our IV regression results in Section 4.2 and distributed lead–lag model estimates in Section

5.2 indicate that reverse causality is unlikely to explain the positive relation between BHC

operational losses and AI investments. In this section, we reinforce this conclusion with

additional tests that assess whether banks’ historical operational loss experiences influence

subsequent AI adoption and whether controlling for past losses alters our main findings.

We begin with visual evidence examining whether past operational losses drive subse-

quent AI investments. Figure 3 presents bar charts of the change in the share of AI-skilled

employees from 2010 to 2018 for BHCs sorted into terciles based on past operational losses

(LtA), averaged over three different time windows: [2010:Q1-2010:Q4], [2008:Q1-2010:Q4],

and [2006:Q1-2010:Q4]. If BHCs systematically respond to operational losses by increasing

their AI investments as a risk mitigation strategy, we should observe institutions with higher

historical losses subsequently exhibiting greater AI investments. Contrary to this prediction,

BHCs in the tercile with the highest historical operational losses do not exhibit the highest

subsequent AI investments over the sample period and are overall similar to those of BHCs

in the lowest past-loss tercile. These patterns are inconsistent with the notion that past

operational losses are a primary driver of AI investment decisions.

We complement this visual analysis with more formal regression tests that augment our

baseline model from Equation 2 with controls for trailing operational losses measured over

one-year [t-4, t-1], three-year [t-12, t-1], and five-year [t-20, t-1] periods. This approach

directly tests whether including past operational loss measures affects the core documented

relation between AI investments and (current) operational losses.
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[Insert Table 10 about here]

Table 10 presents these results. Controlling for past operational losses has little effect

on the coefficient of Share AI Workers, which remains positive and statistically significant

across all three specifications. The coefficients on the past loss measures themselves are

consistently positive, although not robustly significant across all specifications, indicating

that past operational losses have predictive power for current risk outcomes during our

sample period. Collectively, these analyses provide consistent additional evidence against

reverse causality as an explanation for our main findings.

5.4 Fixed Effects, Additional Controls, and Alternative Measures

Our baseline analysis controls for a set of observable BHC characteristics and includes quarter

fixed effects to absorb time-specific shocks common to all BHCs. However, it omits BHC fixed

effects to allow for cross-sectional variation in AI investment intensity to explain differences

in operational loss outcomes. In this section, we demonstrate that our results are robust

to including BHC fixed effects, as well as to controlling for specific additional time-varying

factors that could influence both AI investments and operational risk.

To assess the role of time-invariant unobserved heterogeneity, we re-estimate the four

baseline regressions from Table 3, now including BHC fixed effects. As shown in Table 11,

Columns (1)-(4), the coefficient on Share AI Workers remains positive and statistically signif-

icant in all specifications. This indicates that the documented relation between AI intensity

and operational losses holds even after absorbing persistent BHC-specific characteristics.

[Insert Table 11 about here]

Next, we incorporate additional time-varying control variables. First, we account for

risk management quality using the risk management index from Ellul and Yerramilli (2013),
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introduced in Section 4.5. Although this significantly reduces our sample due to data avail-

ability, the coefficient on Share AI Workers remains positive and significant, suggesting that

AI-related risks are not simply driven by differences in risk management quality (Column

(5)).

We then examine business complexity, which may simultaneously drive AI adoption and

increase operational risk due to coordination challenges or internal control breakdowns.

While our baseline specifications already include the ratio of interest to non-interest income—

a proxy for business complexity (e.g., Chernobai et al., 2021)—we introduce two additional

measures: (i) a Herfindahl-Hirschman Index (HHI) based on the distribution of subsidiaries

across four-digit NAICS codes, and (ii) the number of distinct business segments, defined by

four-digit NAICS codes, in which a BHC operates subsidiaries. Results presented in Table

11, Columns (6) and (7), show that the coefficient on Share AI Workers remains statistically

significant and is unaffected by the inclusion of these complexity proxies.

We also evaluate the robustness of our results to controlling for corporate governance

proxies. Weak governance may lead managers to pursue complex or high-risk (AI) technology

investments that are not aligned with shareholder interests. We include three standard

governance indicators: the share of institutional ownership, the proportion of independent

directors, and an indicator for CEO–Chair non-duality. Re-estimating our baseline model

with these controls (Table 11, Columns (8)-(10)), we find that the positive relation between

AI intensity and operational losses persists, suggesting that corporate governance measures

do not explain our main findings.

Lastly, we examine whether banks’ revenue models captured by the proportion (relative to

total revenue) of interest income on loans and leases, interest income on investment securities,

income from fiduciary activities, trading revenue, income from investment banking, advisory,

brokerage and underwriting fees, venture capital revenue, securitization income and servicing

fees revenue explain the positive relation between AI investments and operational losses. We
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include these detailed revenue controls in Table 11, Column (11), and again find that the

coefficient on Share AI Workers remains positive and statistically significant.

In addition to incorporating fixed effects and richer controls, we conclude this section

by evaluating the robustness of our results to alternative operational risk measures. One

concern is that our main operational risk measure—operational losses scaled by total assets

(LtA)—may conflate the effects of AI investments on losses with its potential effects on the

size of banking organizations. Specifically, if AI investments influence both the numerator

(losses) and the denominator (assets), the observed association between AI intensity and

LtA could be partially driven by denominator dynamics rather than a genuine link between

AI and operational risk.11

We mitigate this concern by redefining LtA and holding the denominator—BHC total

assets—fixed at its value in 2010:Q1, the beginning of our sample period. This alternative

measure eliminates the possibility that time-varying firm size mechanically influences the

loss ratio, helping to assess whether the association between AI investments and operational

losses holds when firm scale is held constant. We also construct two additional normalized

loss measures by scaling operational losses by total expenses and non-interest expenses, also

fixed as of 2010:Q1. These definitions compare losses to a bank’s initial cost structure rather

than its evolving asset base.

As shown in Table 11, Columns (12)-(14), the positive relation between Share AI Workers

and operational losses persists under all three alternative definitions. This observation is also

consistent with earlier results in Table 3, Columns (2)-(4), which indicate the robustness of

our results to using non-scaled operational loss metrics such as log-transformed dollar losses

and loss event frequency, as used in prior studies such as Chernobai et al. (2011), Chernobai

11In untabulated results, we find that (log) total assets are not significantly related to Share AI Workers
in regression specifications similar to Equation 2. Moreover, although the association is statistically insignif-
icant, the estimated coefficients are positive. This direction of association—if anything—should attenuate
the positive relation between LtA and Share AI Workers, since larger total assets in the denominator would
reduce the LtA ratio.
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et al. (2021), and Abdymomunov et al. (2020). Overall, these results suggest that the risk-

increasing effect of AI adoption is not driven by BHC total asset dynamics.

6 Conclusion

This paper examines the relation between AI investments and operational risk at large U.S.

banking organizations. Using comprehensive supervisory data on operational losses and a

measure of AI investments based on AI-skilled human capital, we find that banking orga-

nizations with higher AI investments tend to experience larger operational losses per dollar

of assets. This finding is robust to accounting for endogeneity concerns through an instru-

mental variables approach based on banks’ historical connections to AI-strong universities,

as well as numerous additional robustness checks.

Our analysis reveals several important nuances in how AI investments relate to oper-

ational risk. First, AI investments affect not only the average level of operational losses

but also increase the frequency of tail risk events that can affect bank capital and stability.

Second, the impact varies across different types of operational losses, with significant effects

observed in external fraud, client-related issues, and system failures. This heterogeneity

suggests AI adoption may create new vulnerabilities through, for example, increased digital

infrastructure complexity, challenges in regulatory compliance, and greater exposure to tech-

nical failures. Third, strong risk management practices attenuate these risks, highlighting

the important role of risk governance in mitigating AI-related operational vulnerabilities.

These findings have important implications for banking organization management and

supervision. While prior research has documented various benefits of AI adoption, including

improved productivity and innovation, our results suggest that these benefits come with

meaningful operational risks that need to be carefully managed. Banking organizations may

benefit from evaluating and enhancing their risk management frameworks as they increase
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their AI investments, while supervisors might consider incorporating AI-related operational

risk into existing monitoring frameworks, particularly for institutions with less robust risk

management practices or historically elevated operational losses.
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Figure 1: Operational Losses by Event Type
This figure presents the percentage allocation of losses among the seven operational risk event type
categories. Losses in each category are first averaged within bank holding companies (BHCs) and
then averaged across BHCs. The nomenclature for event types is as follows: Internal Fraud (IF),
External Fraud (EF), Employment Practices and Workplace Safety (EPWS), Clients, Products and
Business Practices (CPBP), Damage to Physical Assets (DPA), Business Disruption and System
Failures (BDSF), and Execution, Delivery and Process Management (EDPM). The sample includes
852 operational losses incurred by 36 large U.S. BHCs over the period [2010:Q1-2018:Q4].
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Figure 2: Operational Losses by AI Investment Groups
This figure presents a bar chart of the average ratio of operational losses to (lagged) total assets
(multiplied by 10,000), LtA, for bank holding companies (BHCs) sorted in terciles based on share
of AI-skilled employees: “Low”, “Medium,” and “High”. The chart presents the average LtA for
each tercile. The sample comprises an unbalanced panel of 852 quarterly observations of 36 large
U.S. BHCs over the period [2010:Q1-2018:Q4].
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Figure 3: AI Investments and Past Operational Losses
This figure presents bar charts of the change in the share of AI-skilled employees from 2010 to 2018
for bank holding companies (BHCs) sorted in terciles (“Low”, “Medium,” and “High”) based on
past operational losses, LtA, measured over different time windows. LtA is defined as the ratio
of operational losses to (lagged) total assets (multiplied by 10,000). In Panel A, LtA is averaged
over [2010:Q1, 2010:Q4]. In Panel B, LtA is averaged over [2008:Q1, 2010:Q4]. In Panel C, LtA is
averaged over [2006:Q1, 2010:Q4]. The sample comprises observations from 36 large U.S. BHCs.
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Table 1: Operational Loss Event Type and Variable Definitions
This table presents operational loss event type definitions according to Basel Committee on Banking Supervision (2006) in Panel
A and variable definitions in Panel B.

Panel A: Operational Loss Event Types

Event Type Category Short Description

Internal Fraud IF Acts of a type intended to defraud, misappropriate property or
circumvent regulations, which involves at least one internal party

External Fraud EF Acts of a type intended to defraud, misappropriate property or
circumvent the law, by a third party

Employment Practices and Workplace Safety EPWS Acts inconsistent with employment, health or safety laws or agree-
ments, from payment of personal injury claims, or from diversity
/ discrimination events

Clients, Products and Business Practices CPBP An unintentional or negligent failure to meet a professional obli-
gation to specific clients, or from the nature or design of a product

Damage to Physical Assets DPA Damage to physical assets from natural disasters or other events

Business Disruption and System Failures BDSF Disruption of business or system failures

Execution, Delivery and Process Management EDPM Failed transaction processing or process management, from rela-
tions with trade counterparties and vendors
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Panel B: Variable Definitions

Variable Definition

Operational Risk Variables

Avg Sev The average severity of operational losses that occur at a BHC
over a given calendar quarter in millions of U.S. Dollars

Loss Operational losses that occur at a BHC over a given calendar
quarter in millions of U.S. Dollars

LtA Operational losses that occur at a BHC over a given calendar
quarter as a proportion of the BHC’s lagged total assets, multiplied
by 10,000

LtA2010 Operational losses that occur at a BHC over a given calendar
quarter as a proportion of the BHC’s total assets measured as of
2010:Q1, multiplied by 10,000

LtE2010, LtNIE2010 Operational losses that occur at a BHC over a given calendar
quarter as a proportion of either the BHC’s total expenses or the
BHC’s non-interest expenses measured as of 2010:Q1, multiplied
by 10,000

LtA Tail (90, 95, 99) Tail operational losses at the 90th, 95th, or 99th percentile, re-
spectively, that occur at a BHC over a given calendar quarter as a
proportion of the BHC’s lagged total assets, multiplied by 10,000

N Evts The number of operational losses that occur at a BHC over a given
calendar quarter

N Evts Tail (90, 95, 99) The frequency of total assets-scaled tail operational losses at the
90th, 95th, or 99th percentile, respectively, that occur at a BHC
over a given calendar quarter

AI and Baseline Control Variables

Share AI Workers The share of a BHC’s AI-skilled employees relative to total number
of BHC employees

Assets BHC total assets in billions of U.S. Dollars

Asset Growth Year-over-year growth in BHC consolidated total assets

II-to-NII The ratio of BHC interest income to non-interest income

Leverage The ratio of BHC total assets to book value of equity

Maturity Gap A natural log transformation of the absolute difference between all
assets that either reprice or mature within a year and all liabilities
that reprice or mature within a year

Non-Performing Loans Loans 90 days or more past due as a proportion of total loans

46



Variable Definition

N Patents The number of (successful) financial patent applications by a BHC

ROE BHC return on equity, defined as the ratio of net income to book
value of equity

RMI (0/1) RMI is the risk-management index developed by Ellul and Yer-
ramilli (2013). RMI (0/1) is an indicator variable equal to 1 if
RMI is greater than the sample median, and 0 otherwise

Additional Control Variables

CEO Non-Duality An indicator variable equal to 1 if the CEO of the BHC is different
than the Board Chair

Fiduciary Activities Income from fiduciary activities (as a proportion of total income)

HHI Business Segments A Herfindahl-Hirshman index defined as the sum of squared shares
of subsidiaries in distinct business segments (4-digit NAICS indus-
try codes), where the shares are expressed as a percentage of total
number of subsidiaries

Independent Directors The number of independent directors divided by total Board mem-
bers defined in percent

Institutional Ownership Total institutional ownership as a percent of the total shares out-
standing

Investment Banking Income from investment banking, advisory, brokerage and under-
writing fees (as a proportion of total income)

Investment Securities Interest income on investment securities (as a proportion of total
income)

Loans and Leases Interest income on loans and leases (as a proportion of total in-
come)

N Business Segments Number of distinct business segments (4-digit NAICS industry
codes) of subsidiaries owned by the BHC

Securitization Securitization income (as a proportion of total income)

Servicing Fees Revenue from servicing fees (as a proportion of total income)

Trading Trading revenue (as a proportion of total income)

Venture Capital Venture capital revenue (as a proportion of total income)
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Table 2: Descriptive Statistics
This table presents variable descriptive statistics. The sample includes 852 quarterly observations
of 36 large U.S. bank holding companies (BHCs) over the period [2010:Q1-2018:Q4] for which
requisite data is available. The definitions of all variables are reported in Table 1, Panel B.

Mean SD P25 P50 P75 N

Op Risk Variables:

LtA 2.811 5.980 0.454 0.964 2.242 852

Loss ($M) 181.385 644.672 6.496 20.755 115.371 852

N Evts 252.288 370.721 36.500 86.000 271.000 852

Avg Sev 0.774 2.252 0.128 0.228 0.493 852

N Tail 90 23.312 21.450 12.000 17.000 26.000 852

N Tail 95 11.851 11.566 6.000 9.000 13.000 852

N Tail 99 2.580 3.030 1.000 2.000 3.000 852

LtA Tail 90 2.619 5.949 0.340 0.762 1.998 852

LtA Tail 95 2.534 5.938 0.282 0.687 1.892 852

LtA Tail 99 2.299 5.898 0.109 0.460 1.525 852

Other Variables:

Share AI Workers 0.065 0.107 0.000 0.028 0.089 852

Assets ($B) 504.212 687.214 118.137 174.373 385.799 852

Asset Growth 0.037 0.104 -0.013 0.027 0.069 852

II-to-NII 1.791 2.443 0.625 1.547 2.255 852

ROE 0.018 0.024 0.010 0.019 0.027 852

N Patents 0.352 0.732 0.000 0.000 0.000 852

Leverage 0.884 0.025 0.870 0.886 0.899 852

Non-Performing Loans 0.297 0.409 0.074 0.173 0.351 852

Maturity Gap 18.119 1.239 17.336 17.845 18.723 852
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Table 3: Operational Losses and Share of AI-Skilled Employees
This table reports coefficients from panel regressions of operational losses on the share of AI-skilled
employees and control variables. The sample includes 852 quarterly observations of 36 large U.S.
bank holding companies (BHCs) over the period [2010:Q1-2018:Q4] for which requisite data is
available. The definitions of all variables are reported in Table 1, Panel B. Columns (1), (2), and
(4) are estimated with Ordinary Least Squares regressions. Column (3) is estimated with a Negative
Binomial regression. All specifications include quarter fixed effects. The error terms are clustered
at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4)

LtA Log(Loss) N Evts Log(Avg Sev)

Share AI Workers 6.394∗∗∗ 2.445∗∗∗ 1.440∗∗∗ 1.166∗∗

(0.000) (0.001) (0.000) (0.030)

Log(Assets) 0.660 1.139∗∗∗ 0.793∗∗∗ 0.335∗∗

(0.100) (0.000) (0.000) (0.018)

Asset Growth 3.065 0.227 −0.077 0.233

(0.314) (0.745) (0.711) (0.729)

II-to-NII −0.095 −0.018 0.002 −0.029

(0.115) (0.360) (0.780) (0.272)

ROE 9.523 5.692∗ 5.929∗∗∗ −0.391

(0.332) (0.052) (0.000) (0.808)

Log(N Patents) 0.041 0.155 0.273∗∗∗ −0.157∗

(0.872) (0.116) (0.000) (0.096)

Leverage −8.954 −5.342 −7.604∗∗∗ 1.303

(0.376) (0.121) (0.000) (0.663)

Non-Performing Loans −0.110 −0.157 −0.468∗∗∗ 0.306∗∗∗

(0.912) (0.405) (0.000) (0.003)

Maturity Gap 0.056 0.150 0.108∗∗ 0.055

(0.834) (0.325) (0.012) (0.635)

N Obs 852 852 852 852

Adj R2 0.07 0.67 0.17

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Instrumental Variables
This table reports results of instrumental variables regressions of operational losses on the share of AI-skilled employees and control
variables. We instrument the share of AI-skilled employees with BHCs’ ex-ante exposure to the subsequent supply of AI talent
from universities that are historically strong in AI research. The sample includes 852 quarterly observations of 36 large U.S.
bank holding companies (BHCs) over the period [2010:Q1-2018:Q4] for which requisite data is available. The definitions of all
variables are reported in Table 1, Panel B. Control variables (Log(Assets), Asset Growth, II-to-NII, ROE, Log(N Patents), Leverage,
Non-Performing Loans, and Maturity Gap) are included, but their coefficient estimates are omitted for brevity. All specifications
include quarter fixed effects. The error terms are clustered at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4) (5) (6) (7)

Share AI Workers LtA LtA LtA LtA LtA LtA

IV 0.281∗∗∗

(0.000)

Share AI Workers 12.841∗∗∗ 11.993∗∗∗ 9.619∗ 11.178∗∗ 17.159∗∗ 11.464∗∗∗

(0.004) (0.009) (0.072) (0.013) (0.013) (0.009)

Baseline Controls Y es Y es Y es Y es Y es Y es Y es

CS-Strong University No No Y es No No No Y es

Commuting Zone Attributes No No No Y es No No Y es

Loss 2000-2009 No No No No Y es No Y es

Division Fixed Effects No No No No No Y es Y es

N Obs 852 852 852 675 802 852 633

Adj R2 0.41 0.02 0.02 0.02 0.02 0.02 0.01

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Operational Loss Types
This table reports coefficients from panel regressions of operational losses on the share of AI-skilled employees and control variables.
The sample includes 852 quarterly observations of 36 large U.S. bank holding companies (BHCs) over the period [2010:Q1-2018:Q4]
for which requisite data is available. The definitions of all variables are reported in Table 1, Panel B. Operational losses are
categorized into seven categories: Internal Fraud (IF), External Fraud (EF), Employment Practices and Workplace Safety (EPWS),
Clients, Products and Business Practices (CPBP), Damage to Physical Assets (DPA), Business Disruption and System Failures
(BDSF), and Execution, Delivery and Process Management (EDPM). The definitions of operational loss event types are presented
in Table 1, Panel A. Control variables (Log(Assets), Asset Growth, II-to-NII, ROE, Log(N Patents), Leverage, Non-Performing
Loans, and Maturity Gap) are included, but their coefficient estimates are omitted for brevity. All specifications include quarter
fixed effects. The error terms are clustered at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4) (5) (6) (7)

LtA LtA LtA LtA LtA LtA LtA

IF EF EPWS CPBP DPA BDSF EDPM

Share AI Workers 1.178 1.612∗∗∗ −0.064 2.236∗∗ −0.027 0.065∗ 1.395

(0.313) (0.005) (0.161) (0.047) (0.294) (0.086) (0.176)

Controls Y es Y es Y es Y es Y es Y es Y es

N Obs 852 852 852 852 852 852 852

Adj R2 0.00 0.03 0.06 0.06 0.11 0.05 0.04

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

51



Table 6: Tail Operational Losses
This table reports coefficients from panel regressions of tail operational losses on the share of AI-skilled employees and control
variables. The sample includes 852 quarterly observations of 36 large U.S. bank holding companies (BHCs) over the period [2010:Q1-
2018:Q4] for which requisite data is available. The definitions of all variables are reported in Table 1, Panel B. Columns (1)-(3) are
estimated with Negative Binomial regressions and Columns (4)-(6) are estimated with Ordinary Least Square regressions. Control
variables (Log(Assets), Asset Growth, II-to-NII, ROE, Log(N Patents), Leverage, Non-Performing Loans, and Maturity Gap) are
included, but their coefficient estimates are omitted for brevity. All specifications include quarter fixed effects. The error terms
are clustered at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4) (5) (6)

N Evts N Evts N Evts LtA LtA LtA

Tail 90 Tail 95 Tail 99 Tail 90 Tail 95 Tail 99

Share AI Workers 1.823∗∗∗ 2.204∗∗∗ 2.450∗∗∗ 6.112∗∗∗ 5.979∗∗∗ 5.358∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Controls Y es Y es Y es Y es Y es Y es

N Obs 852 852 852 852 852 852

Adj R2 0.06 0.06 0.05

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Risk Management Quality
This table reports coefficients from panel regressions of operational losses on the share of AI-skilled
employees, measures of risk management quality, their interactions and control variables. The
sample includes 852 quarterly observations of 36 large U.S. bank holding companies (BHCs) over
the period [2010:Q1-2018:Q4] for which requisite data is available. The definitions of all variables are
reported in Table 1, Panel B. Control variables (Log(Assets), Asset Growth, II-to-NII, ROE, Log(N
Patents), Leverage, Non-Performing Loans, and Maturity Gap) are included, but their coefficient
estimates are omitted for brevity. All specifications include quarter fixed effects. The error terms
are clustered at the BHC level. p-values are presented in parentheses.

(1) (2)

LtA LtA

Share AI Workers 38.806∗∗ 4.320∗∗∗

(0.014) (0.006)

Share AI Workers × RM −45.000∗∗

(0.030)

RMI −0.551

(0.697)

Share AI Workers × RMI (0/1) −13.649∗∗

(0.048)

RMI (0/1) 0.368

(0.476)

Controls Y es Y es

N Obs 486 486

Adj R2 0.07 0.07

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Data Aggregation at the Annual Level
This table reports coefficients from panel regressions of operational losses on the share of AI-skilled
employees and control variables. The sample includes 216 annual observations of 36 large U.S.
bank holding companies (BHCs) over the period [2010-2018] for which requisite data is available.
The definitions of all variables are reported in Table 1, Panel B. Columns (1), (2), and (4) are
estimated with Ordinary Least Squares regressions. Column (3) is estimated with a Negative
Binomial regression. All specifications include quarter fixed effects. The error terms are clustered
at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4)

LtA Log(Loss) N Evts Log(Avg Sev)

Share AI Workers 19.497∗∗∗ 2.213∗∗∗ 0.878∗∗ 1.286∗∗

(0.000) (0.001) (0.017) (0.035)

Controls Y es Y es Y es Y es

N Obs 216 216 216 216

Adj R2 0.17 0.74 0.23

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Distributed Lead-Lag Model
This table reports coefficients from distributed lead-lag panel regressions of operational losses on (lead and lag) changes in the
share of AI-skilled employees. The sample includes 852 quarterly observations of 36 large U.S. bank holding companies (BHCs)
over the period [2010:Q1-2018:Q4] for which requisite data is available. The definitions of all variables are reported in Table 1,
Panel B. Columns (1) and (4) use 3 lag terms. Columns (2) and (5) use 2 lead terms. Columns (3) and (6) use 5 lead-lag terms.
Columns (1)–(3) include quarter fixed effects, while Columns (4)–(6) include both quarter and BHC fixed effects. The error terms
are clustered at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4) (5) (6)

LtA LtA LtA LtA LtA LtA

∆Share AI Workers [t− 12, t− 8] −5.467 −6.168 −12.566 −11.988

(0.425) (0.571) (0.128) (0.180)

∆Share AI Workers [t− 8, t− 4] 38.525∗∗∗ 33.978∗∗∗ 33.809∗∗ 30.585∗∗∗

(0.009) (0.006) (0.021) (0.009)

∆Share AI Workers [t− 4, t] −5.778 −10.825 −12.679 −13.653

(0.635) (0.293) (0.367) (0.270)

∆Share AI Workers [t, t+ 4] 21.847 15.960 13.622 13.101

(0.114) (0.107) (0.307) (0.185)

∆Share AI Workers [t+ 4, t+ 8] −3.976 −3.013 −8.277 −6.078

(0.690) (0.741) (0.515) (0.605)

N Obs 770 733 729 770 732 728

Adj R2 0.06 0.06 0.06 0.06 0.06 0.06

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Controlling for Past Operational Losses
This table reports coefficients from panel regressions of operational losses on the share of AI-skilled
employees, controls for past operational losses and other control variables. The sample includes 852
quarterly observations of 36 large U.S. bank holding companies (BHCs) over the period [2010:Q1-
2018:Q4] for which requisite data is available. The definitions of all variables are reported in Table
1, Panel B. All specifications include quarter fixed effects. The error terms are clustered at the
BHC level. p-values are presented in parentheses.

(1) (2) (3)

LtA LtA LtA

Share AI Workers 5.463∗∗∗ 5.198∗∗∗ 5.549∗∗∗

(0.000) (0.000) (0.000)

LtA [t− 4, t− 1] 0.172

(0.234)

LtA [t− 12, t− 1] 0.297∗∗∗

(0.000)

LtA [t− 20, t− 1] 0.240∗∗∗

(0.002)

Controls Y es Y es Y es

N Obs 852 852 852

Adj R2 0.07 0.08 0.07

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Robustness Checks
This table reports coefficients from panel regressions of operational losses on the share of AI-skilled employees and control variables.
The sample includes 852 quarterly observations of 36 large U.S. bank holding companies (BHCs) over the period [2010:Q1-2018:Q4]
for which requisite data is available. The definitions of all variables are reported in Table 1, Panel B. Control variables (Log(Assets),
Asset Growth, II-to-NII, ROE, Log(N Patents), Leverage, Non-Performing Loans, and Maturity Gap) are included, but their
coefficient estimates are omitted for brevity. All specifications include quarter and BHC fixed effects. The error terms are clustered
at the BHC level. p-values are presented in parentheses.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

LtA Log(Loss) N Evts Log(Avg Sev) LtA LtA LtA LtA LtA LtA LtA LtA2010 LtE2010 LtNIE2010

Share AI 4.306∗∗ 1.078∗∗∗ 0.570∗∗∗ 0.546∗ 4.695∗∗∗ 4.284∗∗ 4.650∗∗ 4.872∗∗ 4.252∗∗ 4.409∗∗ 4.308∗∗ 6.299∗∗∗ 576.138∗∗∗ 781.406∗∗∗

Workers (0.022) (0.001) (0.000) (0.075) (0.000) (0.036) (0.017) (0.013) (0.023) (0.017) (0.032) (0.010) (0.004) (0.003)

Controls Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es

N Obs 852 852 852 852 486 852 852 766 850 852 824 840 835 835

Adj R2 0.06 0.71 0.26 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.07

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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