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Abstract

Investment in cybersecurity within the interconnected banking sector exhibits public good
properties, where positive externalities can lead to systemic underinvestment. Using confiden-
tial supervisory data from the European Central Bank (ECB), we analyze the 2024 ECB Cyber
Resilience Stress Test (CyRST), a novel supervisory initiative with no capital implications and
no public disclosure, as a quasi-natural experiment. We follow a two-step procedure. First, we
identify “laggard banks” as those banks that systematically underinvest relative to their cyber
risk profile. Second, using a difference-in-difference approach, we show that the CyRST induced
laggard banks to increase their cybersecurity investments by 34% relative to their non-laggard
peers. This response is driven by a “scrutiny channel,” as the effect is mainly concentrated
among laggards under high-intensity supervision, who exhibit an additional investment increase
of 57%. Our findings provide the first causal evidence that targeted supervisory scrutiny is an

effective tool for resolving coordination failures and disciplining cyber risk.
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1 Introduction

Cyber risk has emerged as a principal operational and, increasingly, systemic threat to the fi-
nancial system. High-profile incidents, such as the ransomware attack that disrupted ICBC’s
access to the U.S. Treasury market! and the data loss at the service provider CloudNordic,?
illustrate how localized attacks can propagate rapidly across financial networks. This res-
onates with classic models of financial contagion (Allen and Gale, 2000; Acemoglu et al.,
2015), yet cyber risk introduces unique challenges. The resilience of the financial system
may be dictated by its “weakest link,” where under-defended institutions serve as entry
points for shocks with cascade effects (e.g., Duffie and Younger, 2019; Gogolin et al., 2021;
Eisenbach et al., 2022). Amid these concerns, public attention to cyber-related risks has
grown exponentially, as shown by the Google search dynamics in Figure 1.

While cybersecurity has strong private good elements, its systemic dimension, where
one bank’s failure can create an externality for the entire network, exhibits the features of a
classic public good problem. A bank’s cybersecurity investment creates positive externalities
for all its counterparties. Consequently, banks have incentives to underinvest and free-ride
on the efforts of others (see, e.g., Kashyap and Wetherilt, 2019; Anand et al., 2024), a market
failure that provides a strong rationale for regulatory intervention.?

This paper provides, to the best of our knowledge, the first causal evidence that targeted
supervisory scrutiny, implemented through a non-capital-based stress test, can effectively
discipline under-investment and correct this coordination failure. We analyze the European
Central Bank’s 2024 Cyber Resilience Stress Test (CyRST), a novel exercise designed to
assess a bank’s ability to respond to and recover from a sophisticated cyberattack.* The
unique characteristics of the CyRST create a quasi-natural experiment.® First, the exercise
was purely qualitative, with no direct implications for Pillar 2 capital requirements.® This

neutralizes the “capital channel” common in traditional stress tests (e.g., Acharya et al.,

LCyber attacks reveal fragility of financial markets, Financial Times, 2024

2Cyber Tzar Planet: Threat dashboards reveal growing systemic risk, Financial Times, 2025

3See, e.g., World Economic Forum (2024), “Global Cybersecurity Outlook 2024,” which highlights the
persistent gap between cybersecurity needs and budget allocation. Formally, Bouveret (2018) models this as
an agency problem within the firm.

4The initiative was a direct outcome of the ECB’s 2024-2026 Supervisory Priorities, which established
strengthening banks’ operational resilience as a key strategic objective. See ECB Banking Supervision:
Supervisory Priorities for 2024-2026.

5The CyRST was first signaled to the public on March 9, 2023, by the Chair of the ECB Supervisory
Board, which serves as our primary treatment announcement (see Section 3). This announcement was widely
reported by major financial news outlets, serving as a key public signal of supervisory intent.

6The Pillar 2 requirement is a bank-specific capital requirement that supplements the minimum capital
requirement. The ECB gave explicit public assurances of no direct capital impact. See ECB to stress test
banks’ ability to recover from cyberattack, ECB Press Release, January 3, 2024.


https://www.ft.com/content/a8b8de58-8691-4ece-ade3-5b7be63dbef2
https://www.ft.com/content/9ee8ad1f-65e9-49ea-a3a4-ead3a0c0da25
https://www.bankingsupervision.europa.eu/banking/priorities/html/ssm.supervisory_priorities_20231208.en.html
https://www.bankingsupervision.europa.eu/banking/priorities/html/ssm.supervisory_priorities_20231208.en.html
https://www.bankingsupervision.europa.eu/press/pr/date/2024/html/ssm.pr240103~2a7217521c.en.html
https://www.bankingsupervision.europa.eu/press/pr/date/2024/html/ssm.pr240103~2a7217521c.en.html
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Figure 1: Public Attention to Cyber Risk and Cybersecurity.

The upper panel presents normalized Google Trends search activity for cybersecurity-related topics from
January 2004 to July 2025. The solid black line displays a composite cyber risk index—averaging three
normalized series: “cyber” “cyber incidents”, and “cyber risk”. A vertical line marks March 2023, corre-
sponding to the public announcement of the cyber stress test initiative. The lower panel plots the indexed
performance of the Swiss Re Cat Bond Index (left), alongside the Euribor-OIS 3-month spread (right), from
February 2020 to August 2025. The series reflect investor sentiment toward insurance-linked securities and
interest rate risk, respectively.
Source: Google Trends and Bloomberg, (authors’ calculations).

2018b; Gropp et al., 2019). Second, individual bank results were kept confidential, thereby
muting the “disclosure channel” through which markets discipline banks (Goldstein and
Leitner, 2018; Flannery, 2018). The CyRST design thus allows us to isolate a third, less-
studied channel: the “scrutiny channel,” where the credible threat of direct examination
compels behavioral change (Kok et al., 2023).

To guide our empirical work, we develop a stylized theoretical framework that shows how
targeted scrutiny can shift the banking system from a vulnerable, low-investment equilibrium
to a Pareto-superior, high-investment one. The model delivers two important and testable
predictions: the policy announcement leads to an increase in aggregate investment, and this

effect is driven by banks that were underinvesting pre-policy, which we term “laggards.”



To test these predictions, we implement a two-step methodology using a unique confiden-
tial supervisory dataset. First, using only pre-treatment data, we model the expected level
of cybersecurity investment for each bank, conditional on a rich vector of its characteristics.
We then classify banks as laggards if their average investment residual over the 2020-2021
period falls below the median of the sample distribution. Second, we exploit the 2023 public
announcement of the CyRST in a difference-in-differences framework.

Our main empirical specification employs a Difference-in-Differences approach in the con-
text of a Poisson Pseudo-Maximum Likelihood (PPML) model, which is robust to the skewed,
non-negative nature of investment data. Our results show that the CyRST announcement
acted as a coordinating signal, inducing an average investment increase of around 45% across
all banks. We find that this effect is driven by laggard banks, which increased their cyber-
security investments by a statistically and economically significant 34% relative to their
non-laggard peers. Exploiting variation in oversight intensity within the CyRST design, our
triple-difference estimate reveals that this response is concentrated among laggards subjected
to high-intensity supervision, who exhibit an additional investment increase of 57%. This
provides strong evidence for the scrutiny channel.

The credibility of our findings is confirmed by a battery of robustness tests that rule out
alternative explanations. Our main coefficient of interest remains stable when we include a
rich set of additional bank-level controls and demanding fixed effects. The results are also
robust to using alternative measures of supervisory scrutiny and more stringent definitions of
laggard banks. Furthermore, placebo tests show no effect in non-treatment periods, and we
provide evidence that the policy induced a persistent shift in investment behavior. Overall,
our results remain very similar, which gives us additional confidence that we are picking up
the right effect.

This paper makes three main contributions. First, we provide the first causal evidence
on the effects of a cyber stress test. This unique setting allows us to isolate a pure “scrutiny
channel,” showing it is a strong driver that compels under-investing “laggard” banks to
reallocate resources toward cyber resilience. Second, our findings offer direct implications
for regulators, showing that targeted, qualitative supervision is a powerful tool for enhanc-
ing systemic stability in the face of growing cyber-related risks. Third, we offer empirical
evidence to the work of Anand et al. (2024), which state that regulatory intervention is
necessary to move the financial system from a fragile, low-investment equilibrium to a more
resilient one.

The remainder of the paper is organized as follows. Section 2 presents the related litera-
ture. Section 3 provides an overview of the ECB’s CyRST. Section 4 presents our theoretical

model. Section 5 describes our data. Section 6 details the econometric approach. Section 7



presents our findings. Section 8 provides concluding remarks.

2 Related Literature

This paper connects to three active streams of research: the economics of cybersecurity as
a systemic financial risk, the real effects of bank stress testing, and the broader impacts of
banking supervision. We contribute to each by providing the first evidence, to the best of
our knowlege, on how targeted, non-capital-based supervisory scrutiny can discipline under-

investment in a critical non-financial risk area: cyber.

Cybersecurity as a Systemic Financial Risk. Our paper contributes primarily to
the literature that conceptualizes cybersecurity not as an idiosyncratic IT issue, but as
a first-order threat to financial stability. A burgeoning body of research documents the
channels through which cyber shocks propagate, identifying direct operational linkages, such
as payment systems (Eisenbach et al., 2022), and indirect contagion through corporate supply
chains (Crosignani et al., 2023). These disruptions can be amplified by second-round effects
on confidence, potentially triggering liquidity events that transform an operational incident
into a financial crisis (Duffie and Younger, 2019; Gogolin et al., 2021).

This literature converges on a core market failure: cybersecurity in the financial sector
exhibits strong public good characteristics. Anand et al. (2024), in particular, provide a
relevant theoretical framework, modeling the sector as a network where the incentive to
free-ride on others’ security investments can lead to a fragile, low-investment equilibrium.
Complementing this view, Ahnert et al. (2024) model how under-investment also arises from
a principal-agent problem, where the unobservability of security investment by clients gives
firms an incentive to under-invest. While this work provides a robust theoretical rationale for
regulatory intervention, the effectiveness of specific policy tools remains an open empirical
question. Our paper provides the first test of this framework’s predictions in the context of
a major supervisory intervention. We empirically validate the existence of under-investing
firms (our “laggards”) and show that targeted supervision can, as their model suggests, act

as a coordination device to shift the system to a more resilient state.

The Real Effects of Stress Testing. Second, we inform the extensive literature on
the real effects of bank stress tests. This research has traditionally focused on large-scale,
disclosure-based exercises with direct capital consequences, such as the U.S. Comprehensive
Capital Analysis and Review (CCAR). A parallel and extensive body of work has examined
the effects of the EU-wide stress tests, similarly finding that public disclosure leads to market



discipline and balance sheet adjustments by participating banks (see, e.g., Petrella and Resti,
2013; Schéfer et al., 2016). Seminal studies find that these programs induce banks to de-risk
their balance sheets, adjust lending policies, and increase capitalization (e.g., Acharya et al.,
2018b; Goldstein and Leitner, 2018). Our work departs from this literature by analyzing a
fundamentally different type of supervisory exercise, one focused on operational resilience,
with no public disclosure of firm-level results and no ex-ante link to capital requirements.
This unique institutional setting allows us to isolate the "scrutiny channel." The efficacy of
such non-capital tools is supported by recent theory; for example, Ahnert et al. (2024) show
that imposing minimum investment standards or firm liability for breaches can resolve under-
investment problems. While Kok et al. (2023) find that the supervisory scrutiny embedded
within traditional stress tests has a disciplining effect, their analysis cannot disentangle this
channel from the simultaneous threat of capital add-ons and market reactions. We show
that the scrutiny channel is strong enough to shift firm behavior even in the absence of such
threats.

The Real Effects of Banking Supervision. Finally, our research contributes to the
literature examining how day-to-day banking supervision shapes the internal operations of
financial institutions. Prior work has shown that regulatory scrutiny can prompt tangible
organizational changes, such as the hiring of more skilled risk-management personnel in
response to poor supervisory ratings (Schneider et al., 2025). Our paper provides supporting
evidence for this channel and traces the bank-level response to regulatory pressure in granular
detail, quantifying a large investment response to a purely qualitative supervisory exercise.
In doing so, we provide an empirical counterpart to theoretical models like Ahnert et al.
(2024), where such supervisory mandates are shown to directly correct the market failures

that lead to under-investment in security.

3 Institutional Framework

This section details the institutional design of the European Central Bank’s (ECB) 2024
Cyber Resilience Stress Test (CyRST). This initiative was a direct outcome of the ECB’s
2024-2026 Supervisory Priorities, which, in response to the rapid digitalization of the banking
sector, established strengthening banks’ operational resilience as a key strategic objective.”

The key objective of the CyRST was to assess a bank’s ability to respond to and recover

from a sophisticated cyberattack, a deliberate shift in focus from prevention to resilience. The

"See ECB Banking Supervision (2023), “ECB supervisory priorities for 2024-2026,” December; and ECB
(2024), “ECB concludes cyber resilience stress test,” Press Release, 26 July 2024.



exercise simulated a disruptive scenario in which an attacker compromises a bank’s critical
IT systems, inducing the institution to activate its emergency protocols and demonstrate
it could restore core operations from backups within a specified timeframe. The test was
designed to isolate the effects of pure supervisory scrutiny by explicitly neutralizing the two

other channels common in stress testing:

1. No Direct Capital Channel: The CyRST was a purely qualitative exercise. It did not
involve calculations of capital depletion or a pass/fail threshold, and the ECB gave explicit
public assurances that there would be no direct impact on bank-specific Pillar 2 capital

guidance.® ?

2. No Market Discipline Channel: No bank-level results or rankings were publicly disclosed.
The ECB released only a high-level, anonymized summary of aggregate findings, shield-
ing individual institutions from market reactions. However, the confidential findings for
each bank were incorporated into its annual Supervisory Review and Evaluation Process
(SREP). This is the crucial channel for enforcement; significant deficiencies identified in
the CyRST could lead to future supervisory measures, including higher Pillar 2 Require-
ments (P2R), thereby making the exercise a credible threat.'”

The exercise included all 109 Significant Institutions (Sls), the largest banking groups
in the euro area under the ECB’s direct supervision. All participants completed a granu-
lar, 395-item self-assessment questionnaire covering their I'T architecture, governance, and
contingency planning. A subset of 28 banks was selected for an enhanced assessment, with
selection based on factors including systemic importance and business model diversity. This
feature represents the key source of variation for our mechanism tests.

Banks in the enhanced-assessment cohort were subjected to significantly more intensive
and intrusive supervisory oversight. While the standard assessment relied on the bank’s
own attestations, the enhanced assessment involved direct verification by supervisory teams.

This included On-Site Quality Assurance Reviews (OSQARs), supervisory deep dives to

SECB (2024), “ECB to stress test banks’ ability to recover from cyberattack,” Press Release, 3 January
2024. The official statement reads: “This predominantly qualitative exercise will not have an impact on
capital through the Pillar 2 guidance.”

9Importantly, while the CyRST was explicitly designed as a qualitative exercise with no direct capital
implications or pass/fail outcomes, the confidential supervisory findings were integrated into the annual
SREP. This implies that, although there was no mechanical capital depletion channel, the exercise could have
had marginal second-order effects via adjustments in the operational risk element of Pillar 2 Requirements
(P2R). Our empirical analysis focuses on the direct scrutiny channel, but we acknowledge this indirect
pathway.

10The SREP is the core process of European banking supervision, where the ECB assesses a bank’s
strategies, processes, and risks, and decide on any necessary supervisory measures, such as firm-specific
capital requirements (P2R and P2G) and other qualitative actions.



validate internal procedures, and a live I'T recovery test, which required banks to physically
demonstrate their ability to restore critical systems from backups.

The CyRST was first signaled to the public on March 9, 2023, by the Chair of the
ECB Supervisory Board, which serves as our primary treatment announcement.'! The full

timeline is detailed in Figure 2.

[ Mar 9, 2023 — ECB announcement in Enria interview (public signal) J

[ Jul 2023 — First industry workshop; draft methodology and high level scenario shared }

[ Aug 15, 2023 — Deadline for banks’ feedback on draft materials j

)
—

Nov 2023 — Individual notification of group classification (standard/enhanced)

[ Jan 3, 2024 — Official scenario release and stress test launch }
[ Mar—Apr 2024 — OSQAR inspections for enhanced banks }
[ Jul 2024 - Supervisory assessments disseminated privately j
[ Jul 26, 2024 — ECB publishes high-level public summary j

Figure 2: Timeline of the ECB 2024 Cyber Resilience Stress Test

This timeline underpins our identification strategy. The sequence of events—mnamely, the
CyRST policy announcement in March 2023, the confidential notification of high-intensity
scrutiny assignments in November 2023, and the formal launch of the CyRST in January 2024
with its associated supervisory engagement, creates a well-defined quasi-experimental setting.
It enables us to empirically separate the market-wide behavioral adjustments following the
general announcement from the targeted responses of banks subjected to the most intrusive

supervisory examination.

1 Interview with Andrea Enria, Chair of the Supervisory Board of the ECB, ECB 2023. The announcement
was widely reported by major financial news outlets (e.g., Reuters, ECB to test banks for cyber resilience,
March 9, 2023), serving as a key public signal of supervisory intent.


https://www.bankingsupervision.europa.eu/press/interviews/date/2023/html/ssm.in230309~5f39ac5267.en.html

4 Conceptual Framework

This section develops a stylized theoretical framework that provides microfoundations for
our empirical analysis by formalizing the coordination failure inherent in cybersecurity in-
vestment. Our analysis of strategic interaction draws upon several key ideas: the concep-
tualization of systemic cyber risk as a public good problem with free-rider incentives, as
in Anand et al. (2024); the broader literature on financial externalities and regulatory re-
sponses, like in Stein (2012); and the role of policy as a coordinating device or focal point,
following Schelling (1980). We model how targeted supervision can act as an equilibrium
selection device to resolve this system-wide cyber problem. We outline the main economic

intuitions here; the Appendix contains all formal proofs and derivations.

4.1 The Main Setting and Pre-Policy Equilibrium

We model an economy with a continuum of risk-neutral banks, indexed by 7 € [0,1]. Each
bank privately observes its cost, ¢; € [cr, cy|, of implementing a critical cybersecurity mea-
sure, represented by the investment decision e; € {0,1}. The cost ¢; is private information
to the bank and is drawn from a common knowledge distribution with support bounded by
a minimum cost, ¢z, and a maximum cost, cy. System-wide resilience, €, is a “weakest-link”
public good: the system is secure (2 = 1) if and only if all banks invest, an outcome that
yields a shared benefit, B, to every institution.
2= min {e:} (1)

This weakest-link assumption, while stylized, captures the essence of a regulator’s concern
about contagion, where a single compromised institution can serve as an entry point that
threatens the entire network. This premise reflects stated concerns from financial regula-
tors that systemic cyber risk is determined not by the strongest defenses but by the most
vulnerable point of entry (Financial Stability Board, 2018; New York State Department of
Financial Services, 2020).

A bank’s utility depends on its investment choice, the collective outcome, and any regu-
latory penalty, P, imposed if it is inspected (I; = 1) and found to be non-compliant (e; = 0).
The bank’s utility function is thus:

This setup creates strong incentives to free-ride. Under a baseline supervisory regime with



a low, uniform probability of inspection, ¢, no single bank can ensure the public good is
provided. Given that the private cost of investing, ¢;, exceeds the expected penalty from not
investing, qoP, for all bank types (see Assumption A3 in the Appendix), the market failure

is acute, leading to the following pre-policy equilibrium.

Proposition 1 (Pre-Policy Free-Rider Equilibrium). Under the baseline supervisory regime,
the unique Bayesian Nash Equilibrium is for no bank to invest (e*(c) = 0 for all types c),

resulting in system-wide vulnerability (Q =0).

4.2 Supervisory Intervention as an Equilibrium Selection Device

To resolve this coordination failure, the supervisor introduces a policy of targeted scrutiny.
The supervisor operates under asymmetric information, being unable to perfectly observe a
bank’s cost ¢; or its investment action e;, but obtains a noisy signal of its type, s;'* = ¢; +¢;.
This signal allows for a policy where the inspection probability is conditional on the bank’s
likely propensity to underinvest. Banks with signals suggesting higher costs face an increased
probability of inspection, giarges > qo. The resulting type-dependent inspection probability,
q(c), is given by:

q(¢) = Grarget — (Grarger — 90)P(p(s — ¢)) (3)

where s is the supervisor’s signal threshold and p = 1/0 is the precision of its monitoring
technology.

The policy announcement acts as a focal point (Schelling, 1980), altering the strategic
environment. Each bank must now assess whether the policy is potent enough to induce all
other banks to invest. If so, its own action becomes pivotal for the provision of the public

good. In this pivotal state, the net utility of investing becomes:

AUposi(c) = (B—¢)  + q(c)P (4)

—_——— ——
Private Net Benefit  Avoided Expected Penalty

The supervisor’s policy design problem is to set the targeting parameters (s, ¢rarget) t0 ensure
that AUpest(c) > 0 for all bank types, making universal investment an equilibrium. A
key insight from our model is a “Precision Paradox”: supervisory monitoring that is too
precise can be counterproductive. If the inspection probability function ¢(c) becomes too
steep, it can generate strategic uncertainty and support multiple equilibria, as highly precise

monitoring may make low-cost banks overly confident that they will not be inspected.'? A

12This result echoes the finding in the global games literature that excessively precise public information
can hinder coordination (Morris and Shin, 2002). For the policy to be effective, a degree of “constructive
ambiguity” in supervision can be optimal. The formal condition is derived in the Appendix.

10



well-designed policy must be sufficiently targeted to incentivize laggards without creating

strategic instability:.

Proposition 2 (Policy-Induced Disciplined Equilibrium). A supervisory policy that credibly
increases the inspection probability for high-cost (laggard) banks can uniquely implement a

Pareto-superior equilibrium where all banks invest (e*(c) = 1 for all types c).

Figure 3 illustrates this mechanism. The policy intervention, through the threat of a
higher expected penalty ¢(c)P, shifts the net utility of investing from being universally

negative to non-negative, making investment the individually rational choice for all banks.

AU(c) (Net Utility of Investing)

AUpost(c) =B —c+q(c)P >0

Disciplined Equilibrium

¢ (Bank’s Private Cost)

crL, cH
A[]pre(c) < 0

Free-Rider Equilibrium

Figure 3: Mechanism of the Policy-Induced Equilibrium Shift
This figure illustrates how supervisory scrutiny resolves the underinvestment equilibrium. The horizontal
axis captures a bank’s private cost of investment, ¢. The vertical axis is the net utility from investing, AU (c).
In the pre-policy state (red line), the net utility is negative for all types, leading to a universal free-rider
equilibrium. The policy intervention, by increasing the type-dependent expected penalty for non-compliance,
q(c)P, shifts the utility curve upward (blue line), making investment individually rational (AUpest(c) > 0)
and shifting the system to the Disciplined Equilibrium.

4.3 Testable Predictions

Our theoretical framework generates two key predictions that we take to the data. The
model’s unobservable high-cost types (¢; — cy) map to the banks we empirically classify
as "laggards' in Section 6. The policy announcement corresponds to the 2023 CyRST an-

nouncement.

P1 (Aggregate Investment): The announcement of the cyber stress test leads to an

increase in cybersecurity investment across the banking sector.

11



P2 (Heterogeneous Effects): The increase in cybersecurity investment is disproportion-

ately larger for laggard banks compared to their more compliant peers.

We test both predictions. Our theoretical model implies that the treatment effect of the
CyRST announcement should be concentrated in the laggard group, for whom the upward

shift in expected regulatory penalties provides the decisive incentive to invest.

5 Data, Variables, and Summary Statistics

5.1 Data Sources and Sample Construction

Our empirical analysis leverages a proprietary supervisory panel dataset constructed at the
ECB, which provides a uniquely granular view into the operational risk and investment
decisions of euro area banks. The sample covers the universe of 109 Significant Institutions
(SIs) under the ECB’s direct supervision that participated in the 2024 Cyber Resilience Stress
Test. The annual data span from 2019 to 2024. We define 2019-2021 as the pre-treatment
period and 2023-2024 as the post-treatment period. To ensure our estimates are not biased
by policy anticipation effects, we exclude all data from the year 2022, a methodological choice
detailed further in Section 6. We require banks to be continuously classified as SIs and have
complete data for our variables, which yields a final balanced panel of 96 banks and 475

bank-year observations.'® This dataset integrates four distinct sources:

1. ECB IT Risk Questionnaire (ITRQ). The foundation of our analysis is the ITRQ,
a mandatory and non-public annual data collection. Each wave is administered in the first
quarter of a given year, but refers to banks’ IT risk management, governance, and expen-
diture indicators for the preceding year. Its supervisory nature allows us to peer inside
the “black box” of bank operational risk management, providing uniquely granular coverage
across multiple dimensions. The ITRQ reports, for example, banks” normalized I'T security
expenditures (our dependent variable), the number and severity of cyberattacks, IT staffing
intensity, vacancy and turnover in cyber teams, and preparedness indicators such as de-
tection and recovery times. It also includes forward-looking variables on cyber insurance
contracts, innovation project activity, legacy IT risks (e.g., end-of-life systems), as well as
IT system complexity and infrastructure exposure measures such as the number of I'T sys-

tems. Furthermore, we as well utilize two proxies to quantify misalignment between banks’

13The reduction from the full universe of 109 SIs is due to banks that were not classified as SIs for the
entire sample period or had incomplete data for our main variables. A comparison of key pre-treatment
characteristics (e.g., size, profitability) reveals no statistically significant differences between the banks in
our final sample and those excluded.

12



self-assessment and the supervisor’s benchmark assessment, and further allow us to track
whether banks systematically over- or under-estimate their cybersecurity position relative to

supervisory benchmarks.

2. 2024 CyRST Archive. We use confidential supervisory records from the ECB’s 2024
CyRST. These archives provide two key sets of information. First, they contain the ex-
ante assignment of each bank to either an enhanced or a standard assessment group. This
classification, which was not revealed to banks until November 2023, generates the quasi-
experimental variation in supervisory intensity that is central to our identification strategy.
Second, the archive offers granular data on the deficiencies uncovered during the exercise.
For each bank, we observe (i) the full set of findings, each rated on a four-point severity
scale (from 1=low to 4=critical), and (ii) the set of data-quality flags raised by supervisors,
coded as either Amber or Red. From these raw data, we construct weighted severity scores
for both findings and flags, which we then use to create the binary indicators hsti sevfind
and hsti_sevflag via a median split. Appendix I provides a detailed description of the
construction of these variables. This approach allows us to create a clean proxy of supervisory
pressure that reflects both the formal intensity of the review and the qualitative depth of

SUPETVisSoTy concerns.

3. ECB Supervisory Bank Dataset. We merge the ITRQ data with regulatory reports
(FINREP and COREP). These filings provide harmonized, audited data on bank financials,

allowing us to control for a rich set of time-varying bank characteristics.

5.2 Variable Definitions

A key empirical challenge is that a bank’s propensity to underinvest is unobservable. Our
strategy is to proxy for this latent characteristic by first modeling the expected level of
cybersecurity investment conditional on a bank’s risk profile and fundamentals. Banks that
systematically invest below this benchmark are classified as laggards.

Table 1 provides detailed definitions for the comprehensive set of variables we use to
construct this first-stage model. Our main dependent variable is investment, defined as
a bank’s annual IT security expenditures in Euros. For our first-stage classification and
robustness checks, we use its natural logarithm. The granular ITRQ data allows us to
precisely measure this outcome.

The rich breadth of the ITRQ data allows us to use a set of explanatory variables, which
we use to comprehensively model the economic determinants of optimal cybersecurity spend-
ing. The first group, Cyber Risk Exposure and Controls, captures the threat environment

and the bank’s operational capacity. This includes direct measures of past risk realization
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(attack and attack_losses) and key indicators of resilience (detectiontime, recoverytime). We
also include detailed metrics on human capital and governance, such as the three lines of
defense IT staff structure, the I'T staff vacancy and turnover rates, as well as the share of I'T
permanent staff share. Importantly, we as well have access to data in terms of the bank’s
self-reported control and risk levels score and the benchmark score derived from supervisory
reference, which serves us as a proxy for risk control (effort or resources dimension) and risk
level (outcome or vulnerability dimension) misalignment.

The second group, Cyber Insurance, captures reliance on external risk transfer as a com-
plement or substitute for internal spending. We observe the extensive margin—whether a
bank holds a policy (insurance d), and the intensive margin via the direct monetary outlay
for coverage (insurancecontractsdirectcosts) and the policy’s retained loss through the de-
ductible (insurancecontractsdeductibleamount). Together, these variables map the decision
to insure and the depth of coverage, allowing us to test whether insurance crowds out, or
layers on top of, cybersecurity investment.

The third group, Cyber Innovation, reflects forward-looking risk-management strategy.
We record whether the bank reports any innovation initiative in the I'T/cyber domain (inno-
vationprojects _d) and the scale/intensity of that pipeline—planned projects (innovationpro-
jectstobeimplemented) and projects under execution (innovationprojectsongoing). Economi-
cally, these variables proxy for modernization of detection, response, and recovery capabilities
that may not show up one-for-one in contemporaneous operating expenditure.

The fourth group, Legacy Infrastructure and Risk, captures structural frictions that
heighten vulnerability and absorb resources. We include the log number of critical IT change
programs (log_n__criticalprojects) and their spending (log_ criticalprojectsezp), plus indica-
tors of technical obsolescence: the stock of end-of-life systems (log_numbereolsystems), the
planned remediation share (share_eol to be_replaced), and the planning gap (share with-
out a remediation plan, share_eol gap_ratio). These measures capture both the scale of

transformation work and the execution risk that can crowd out discretionary cyber invest-

Yy m_RC_DT: IT risk control level distance (bank-regulator gap). This variable measures the gap be-
tween the bank’s reported control maturity in detection/recovery (RC/DT dimensions) and the regulator’s
benchmark/control expectation. In practice, it is constructed as the difference between the bank’s self-
reported control score and the benchmark score derived from supervisory reference levels. A positive gap
indicates that the bank assesses its control environment more favorably than the benchmark, while a neg-
ative gap suggests under-reporting of control strength. It serves as a proxy for risk control misalignment.
y_m_RR_DT_reb: IT residual risk distance (bank-regulator gap). This variable captures the misalignment
in perceived residual risk (post-control risk exposure). It is built analogously, taking the bank’s reported
residual risk levels and subtracting the regulator’s reference risk levels. A higher positive distance implies
that the bank perceives lower residual risk than the regulator (possible underestimation of vulnerability),
while a negative distance suggests the bank perceives higher residual risk. It functions as a proxy for risk
level misalignment. See Figures 9 and 10.
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ment. Finally, we include a set of Controls to absorb differences in size, complexity, and
financial capacity: the log count of IT systems (log_numberitsystems), the log of total as-
sets (log_TotalAssets), an I'T complexity ratio (itcomplezityratio), leverage and profitability
(LeverageRatio, ROE), operating efficiency ( CIR), and capital adequacy (C_CET1CapitalRatio).
These ensure our laggard classification is not picking up level effects unrelated to cyber risk
management per se. Taken together, the ITRQ’s breadth—spanning insurance, innovation,
legacy constraints, and core controls—enables a first-stage model of expected cybersecurity
spending that is tightly conditioned on risk exposure, organizational capacity, and balance-
sheet fundamentals. This richness, unavailable in public sources, is central to credibly iden-
tifying residual underinvestment and, hence, cybersecurity laggards.

Our specification is saturated with a standard vector of bank Controls from regulatory
filings to account for size, profitability, leverage, and efficiency. The final column in Table 1

("Group") serves as an internal classification for organizing the variables in our estimation

procedures.
Table 1: Variable Definitions
Variable Definition Intuition Group
Dependent Variable
norm__itsecurityexp Normalized IT security expenditure (e.g., Log(inv Dependent variable (investment behavior) dependent

Cyber Risk Ezposure and Controls
attack

attack_ losses
itpermstaffintens
itvacancyrate
itturnindex

ftellod

fte2lod

fte3lod
recoverytime
detectiontime
y_m_RC_DT
y_.m_ RR DT reb

Cyber Insurance

insurance_ d
insurancecontractsdirectcosts
insurancecontractsdeductibleamount

Cyber Innovation
innovationprojects_ d
innovationprojectstobeimplemented
innovationprojectsongoing

Legacy Infrastructure and Risk
log_numbercriticalprojects
log__criticalprojectsexp
log__criticalprojectseol

log_ criticalprojectseolexp
sd__numbereolsystems
sd__share__eol__to__be_replaced
sd__eol_gap_ ratio

Controls
log__numberitsystems
logA_TotalAssets
LeverageRatio

ROE

CIRatio
C__CETI1CapitalRatio

+1), as % of OPEX, IT Running Ezpenses or IT Run-
ning and IT Change Ezpenses)

Count of successful cyberattacks

Losses due to successful attacks

IT /cybersecurity staff intensity

Cyber/IT job vacancy rate

Turnover index for IT/cyber staff

IT First Line of Defense FTEs share

IT Second Line of Defense FTEs share

IT Third Line of Defense FTEs share
Average time to fully recover from incidents
Average time to detect incidents

IT risk control level distance (bank-regulator gap)
IT residual risk distance (bank-regulator gap)

Dummy: bank has cyber insurance
Direct cost of insurance contracts
Deductible amount

Dummy: any innovation project
Planned cyber innovation projects
Ongoing cyber innovation projects

Log of # of critical infra projects

Log of critical infra investment

Log of EOL-tagged projects

Log of EOL infra spending

Standardized # of EOL systems

Share of EOL systems to be replaced (std.)
Share of EOL systems without plan (std.)

Log of total IT systems

Log of total assets

Tier 1 capital / total exposure measure
Return on Equity

Cost-to-Income ratio

Common Equity Tier 1 capital ratio

Exposure to realized cyber risk
Severity of past realized risk
Proactive investment in risk resources
Indicator of resourcing gaps
Organizational friction, staff churn
Frontline cyber risk management staff
Risk oversight staffing
Audit/assurance capacity

Key preparedness indicator

Key preparedness indicator

Risk control misalignment proxy

Risk level misalignment proxy

Risk transfer strategy
Monetary investment in risk transfer
Depth of coverage (self-insurance)

Strategic innovation indicator
Forward-looking cyber maturity
Execution of strategic change

Baseline IT criticality

Resource allocation to critical IT
Legacy risk indicator

Attempted mitigation of legacy risk
Intensity of legacy risk
Remediation planning intensity
Gap in strategic IT planning

System complexity & infrastructure exposure
Proxy for bank size and scale

Capital adequacy and risk buffer

Bank profitability

Operational efficiency

Core solvency metric

baseline__vars
baseline__vars
baseline_ vars
baseline__vars
baseline__vars
baseline_ vars
baseline_vars
baseline__vars
baseline_ vars
baseline__vars
baseline__vars
baseline_ vars

insurance_ vars
insurance_ vars
insurance_ vars

innovation_ vars
innovation__vars
innovation_ vars

legacy_ vars
legacy_vars
legacy__vars
legacy vars
legacy vars
legacy__vars
legacy_vars

control__vars
control_vars
control__vars
control__vars
control_vars
control__vars
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5.3 Descriptive Statistics

Table 2 reports the summary statistics for our sample, providing a first look at the stylized
facts that motivate our analysis. The table also reflects some confidentiality requirements:
for sensitive variables we suppress absolute values and instead present two disclosure-safe
measures, i.e. the coefficient of variation (CV), which captures relative dispersion, and an
indexed measure of levels, which normalizes the pre-treatment average to 100 and expresses
the post-treatment mean relative to this baseline. This approach allows us to highlight
cross-sectional heterogeneity and any potential temporal shifts while safeguarding the raw
data.

In the pre-treatment period (2019-2021), banks devoted substantial resources to cyber-
security, with I'T security spending normalized to an index value of 100. Variation across
institutions was pronounced, with CVs exceeding 2.0 in several key metrics. Cyber incidents
were frequent, as reflected in the baseline level of successful cyberattacks and lengthy detec-
tion times. Organizational indicators such as IT staff intensity, vacancy rates, and turnover
further illustrate uneven preparedness, pointing to capacity constraints in parts of the sector.
Financially, the average bank exhibited a modest return on equity (ROE) of 4.85% and a
CET1 capital ratio close to 19%, suggesting that the sector entered the period in reasonably
solid condition.

The post-treatment period (2023-2024) displays a marked shift in resource allocation.
Cybersecurity spending rises by more than 40 percent, along with higher IT staff intensity
and a reduction in vacancy rates. These developments indicate that the additional outlays
were channeled into building internal capacity rather than simply inflating budgets. Im-
portantly, the improvement in inputs coincides with a modest decline in realized threats:
the index of successful cyberattacks falls to 86.5, and recovery times lengthen less than pro-
portionally, consistent with greater resilience. Insurance markets also reflect the shift, with
higher uptake of cyber insurance and a more than doubling of average deductible amounts.

Finally, these unconditional means must be interpreted in context. The post-treatment
period was characterized by a stronger macroeconomic and financial environment, with bank
profitability nearly doubling (e.g. ROE rising to 9.75%) and efficiency ratios improving
materially. Distinguishing the effect of supervisory pressure from these favorable external
conditions is thus the key challenge of our empirical strategy. The descriptive evidence
is nonetheless consistent with a sector that reallocated resources toward cybersecurity in
response to supervisory scrutiny, while simultaneously benefiting from a more supportive

macro-financial backdrop.
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Table 2: Summary Statistics

Period Variable Mean SD P10 P90 CV Index
IT Security Expenses (EUR) — — — — 230 100
Log IT Security Expenses — — — —  0.32 100
IT Security Exp. to OPEX 0.0123 0.0382  0.0011 0.0181 — —
IT Security Exp. to IT Running Exp. 0.0911 0.2236  0.0149 0.1430 — —

IT Security Exp. to IT Running & Change Exp.  0.0580 0.1553  0.0087 0.0813 — —
— — — — 1.68 100

Successful Cyberattacks

Cyberattack Losses (EUR) 4.72 100
IT Staff Intensity 0.0944 0.0562  0.0396 0.1692 — —
IT Vacancy Rate 0.0711 0.0871  0.0002 0.1627 — —
IT Turnover Index 0.3031 0.3581 0 0711 — —
1st Line of Defense FTE Share 0.0620 0.0645 0.0018 0.1429 — —
2nd Line of Defense FTE Share 0.0003  0.0008 0 0.0008 — —
3rd Line of Defense FTE Share 0.0016 0.0036  0.0001 0.0028 — —
Pre Recovery Time (days) — — — — 349 100
re Detection Time (days) — — — — 3.23 100
(2019-2021)  Perceived Control Misalignment 0.2600 0.2445 0.0571 05143 — —
Residual Risk Misalignment -0.4766 0.4729  -1.100 0.0286 — —
Cyber Insurance (Dummy) 0.753  0.432 0 1 — —
Cyber Insurance Cost (EUR) — — — — 216 100
Insur. Deductible (EUR) — — — — 3.92 100
Innovation Flag (Dummy) 0.919  0.274 1 1 — —
Planned Innovation Projects 18.739  46.009 0 35 — —
Ongoing Innovation Projects 27.537 63.775 0 66 — —
Std. Dev. of No. EolL Systems 0.0597  1.199 -0.3081 0.3121 — —
Log No. Critical Projects 2933  1.220 1.386  4.344 — —
Log Total Critical Exp. 16.450  4.607  14.403 19.696 — —

Log EoL Project Count 1.293 1.107 0 2.773
Log EoL Project Exp. 11.769  7.398 0 18.421 — —
Log No. IT Systems 6.665  1.647 4.644  8.536 — —
Log Total Assets 25256  1.322  23.372 27.297 — —
Leverage Ratio 0.0688 0.0238  0.0430 0.1083 — —
ROE 0.0485 0.0431  0.0002 0.1029 — —
Cost-to-Income Ratio 0.6057 0.1509  0.4005 0.8011 — —
CET1 Capital Ratio 0.1923 0.0642 0.1379 0.2927 — —
IT Security Expenses (EUR) — — — — 1.79 141.72
Log IT Security Expenses — — — — 0.22 108.81
IT Security Exp. to OPEX 0.0136  0.0102  0.0027 0.0261 — —
IT Security Exp. to IT Running Exp. 0.0921 0.0602  0.0305 0.1640 — —
IT Security Exp. to IT Running & Change Exp.  0.0558 0.0344  0.0160 0.0989 — —
Successful Cyberattacks — — — — 221 86.51
Cyberattack Losses (EUR) — — — — 6.04 45.25
IT Staff Intensity 0.1160 0.0631  0.0431 0.1970 — —

IT Vacancy Rate 0.0656 0.0708  0.0011 0.1456
IT Turnover Index 0.2997 0.3114 0.0357 0.6720 — —
1st Line of Defense FTE Share 0.0861 0.0749  0.0059 0.1866 — —
2nd Line of Defense FTE Share 0.0003  0.0006 0 0.0009 — —
3rd Line of Defense FTE Share 0.0016 0.0024  0.0003 0.0031 — —
Post Recovery Time (days) — — — — 2.85 150.18
08 Detection Time (days) — — — — 2.85  96.23
(2023-2024)  Perceived Control Misalignment 0.2630 0.2477  0.0571 05143  — —
Residual Risk Misalignment -0.4900 0.4872  -1.114 0.0286 — —
Cyber Insurance (Dummy) 0.833  0.374 0 1 — —
Cyber Insurance Cost (EUR) — — — — 144 209.80
Insur. Deductible (EUR) — — — — 220 226.72
Innovation Flag (Dummy) 0.938  0.243 1 1 —
Planned Innovation Projects 21.922  50.287 0 40 — —
Ongoing Innovation Projects 29.635 67.698 1 66 — —
Std. Dev. of No. EoL Systems -0.0877  0.592 -0.3081 0.2130 — —
Log No. Critical Projects 3.333  1.201 1.946  5.011 — —
Log Total Critical Exp. 17.487  2.864 15.607 20.026 — —
Log EoL Project Count 1.575  1.189 0 3.045 — —
Log EoL Project Exp. 13.541  6.473 0 18.636 — —

Log No. IT Systems 7.532  2.126 4.949 10.402
Log Total Assets 25.335 1.329  23.464 27.356 — —
Leverage Ratio 0.0726  0.0229  0.0474 0.1106 — —
ROE 0.0975 0.0467  0.0355 0.1662 — —
Cost-to-Income Ratio 0.4981 0.1310 0.3174 0.6686 — —
CET1 Capital Ratio 0.1963 0.0597  0.1454 0.2696 — —

Note: This table reports descriptive statistics for the key variables used in our analysis. For variables deemed sensitive,
we suppress the raw values of the mean, standard deviation, and percentiles. Instead, we report two confidentiality-safe
measures: (i) coeflicient of variation (CV), defined as the ratio of the standard deviation to the mean (SD/Mean), which
captures relative dispersion independent of levels; and (ii) an indexed measure of levels, constructed by normalizing the
pre-treatment (2019-2021) average to 100 and expresdifig the post-treatment (2023-2024) average relative to this baseline.



6 Empirical Strategy

Our analysis aims to estimate the effect of the ECB’s Cyber Resilience Stress Test (CyRST)
on banks’ cybersecurity investment. A key identification challenge we confront comes from
the fact that a bank’s classification as a “laggard” is not randomly assigned but is instead
the result of endogenous strategic choices shaped by (un)observables such as managerial risk
preferences and corporate culture. These same factors are plausibly correlated with a bank’s
responsiveness to supervisory scrutiny, creating a classic selection bias problem.

To tackle this challenge, we implement a two-stage empirical strategy that exploits the
CyRST announcement as a quasi-natural experiment. The first stage constructs a time-
invariant, pre-determined proxy of a bank’s latent propensity to underinvest in cybersecurity;
the second stage embeds this classification in a difference-in-differences (DiD) framework to

estimate the effect of the policy shock.

6.1 Identification Strategy

Our source of exogenous variation is the March 2023 public announcement of the CyRST, a
novel supervisory exercise focused on operational resilience, with neither capital implications
nor public disclosure of bank-level results. This design explicitly neutralizes the “capital”
and “market discipline” channels that dominate the stress-testing literature,'® allowing us
to isolate a “scrutiny channel” in which the credible threat of intrusive examination alters
bank behavior.!

A key institutional feature is the data-collection calendar: 2022 observations were col-
lected in early 2023, overlapping with the policy announcement. To eliminate contamination
from anticipatory adjustments or strategic reporting, we exclude all 2022 data from our main
analysis. The pre-treatment period is therefore defined as 2019-2021, and the post-treatment
period begins in 2023. This ensures strict temporal separation between treatment-group as-
signment and the policy intervention, bolstering internal validity. Robustness checks in
Section 7.5 confirm that our results are robust alternative sample definitions and placebo

tests!?

6.2 First Stage: Identifying Laggards

We define “laggards” as banks that systematically underinvest in cybersecurity relative to

the level predicted by their observable fundamentals and risk profile. To operationalize

15See, e.g., Acharya et al. (2018b) and Goldstein and Leitner (2018).
16See Section 3 for a detailed overview of the CyRST’s design and implementation.
1"Figure 7 illustrates the temporal structure of our identification strategy.
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this, we decompose observed investment into an “expected” component and an orthogonal
residual capturing discretionary deviations from that benchmark. Formally, we estimate the

following two-way fixed effects model on the pre-treatment panel (2019-2021):
log(Investmenty;) = a; + A\ + X, 8 + €4, (5)

where o; and \; absorb time-invariant bank heterogeneity and common shocks, respectively,
and X;; includes detailed controls for cyber risk exposure, operational capacity, technological
sophistication, and financial condition. The residuals £;; measure the discretionary compo-
nent of investment. Averaging over 2020-2021 yields a stable pre-treatment type measure,
g = %ng%%m £;r. We classify bank ¢ as a laggard if &; falls below the median of the sample
distribution:

Laggard, = 1[¢; < P50(¢)] . (6)

While a persistently negative residual could, in principle, reflect unobserved efficiency
or a simpler business model, several factors make these alternative interpretations unlikely.
First, our model for X;; is saturated with operational, technological, and governance con-
trols, including business model fixed effects, that directly account for these observable drivers.
Second, as we demonstrate in Section 7.2, laggards in the pre-treatment period are statisti-
cally indistinguishable from non-laggards on key financial dimensions but display materially
weaker cyber-resilience metrics (e.g., longer detection times), consistent with genuine un-
derinvestment. Finally, the fact that this specific group exhibits the largest post-CyRST

investment surge provides strong ex-post validation of our underinvestment interpretation.

6.3 Second Stage: Estimation of the Treatment Effect
6.3.1 A Note on the Two-Stage Estimation Procedure

Our two-stage procedure intentionally employs different estimators for each task, a choice
dictated by the distinct objective of each stage. The first stage is a classification exercise
designed to rank banks and generate a proxy for their latent type. For this purpose, the
log-linear OLS model in Equation (5) is a standard and effective tool, as its residuals provide
an intuitive, percentage-based measure of relative underinvestment. We do not interpret the
coefficients of this first stage causally.

The second stage, in contrast, is a causal estimation exercise. Here, the primary objective
is to obtain a consistent and unbiased estimate of the treatment effect parameter, Sarr.
For this task, the choice of estimator is paramount, leading us to use the Poisson Pseudo-
Maximum Likelihood (PPML) model in a DiD framework.
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6.3.2 Model: Poisson Pseudo-Maximum Likelihood

We estimate the second-stage DiD model using the PPML estimator. PPML models the
conditional mean in multiplicative form, accommodates heteroskedasticity, and retains zero-
expenditure observations without ad-hoc transformations, thereby avoiding the well-documented

biases of log-linear OLS models in this context.!®

6.3.3 Baseline Difference-in-Differences Specification

Our baseline specification is:
E[Investment;|c;, A, Xi1_1] = exp (ocz- + A + Barr - (Laggard, x Post,) + th,lé) , (1)

where (477 measures the average treatment effect on laggards post-CyRST, interpreted as a
semi-elasticity, (exp(Barr) — 1) x 100%. Standard errors are clustered two-ways at the bank

and year level.

6.3.4 Triple-Difference Specification for the Scrutiny Channel

To provide a direct test of the scrutiny channel, we exploit the cross-sectional variation
in supervisory intensity inherent in the CyRST design. We construct a time-invariant in-
dicator, HighScrutiny,, to capture substantive supervisory pressure that extends beyond
the formal assessment track. This composite indicator equals one if a bank meets at
least two of the following three baseline conditions: (i) assignment to the CyRST’s high-
intensity enhanced assessment track; (ii) an above-median weighted severity of supervisory
findings hsti_sevfind=1; and (iii) an above-median weighted severity of data-quality flags
hsti__sevflag=1. The rationale here is to create a robust measure that identifies banks facing
pervasive supervisory concern, thereby mitigating the risk that our classification is driven
by a single, potentially noisy, dimension of the assessment. This indicator combines the
regulator’s intended scrutiny (ex-ante track assignment) with the realized scrutiny stemming
from the discovery of significant substantive deficiencies and data governance issues. As de-
tailed in Appendix 8, all three components are determined using information from the stress
test exercise itself and are therefore pre-determined with respect to our post-announcement
outcome variable. By interacting this HighScrutiny, indicator with our Laggard, classifi-
cation and the Post; dummy, we implement a triple-difference (DDD) specification to test

our central hypothesis: whether the investment response of laggard banks was dispropor-

18See Silva and Tenreyro (2006) for the seminal critique of log-linear models and Silva and Tenreyro (2011)
for evidence on PPML performance.
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tionately stronger when they faced the most intense supervisory examination. Our baseline

specification is therefore the following:

E[Investmenty|-] = exp(a; + Ay + 51(Laggard; x Post;) + (2 (HighScrutiny, x Post;)
+ ps(Laggard; x HighScrutiny,) + Sppp(Laggard; x Post; x HighScrutiny,)
+ X5 419). (8)
Our main coefficient of interest is Sppp, which captures the additional effect for laggard

banks subjected to high-intensity scrutiny, isolating the causal impact of the scrutiny channel.

6.3.5 Event Study and the Parallel Trends Assumption

The key identifying assumption of our DiD model is that of parallel trends. We provide strong
corroborating evidence by estimating a PPML event-study specification. For this assumption
to be violated, a confounding shock contemporaneous with the CyRST announcement must
have differentially affected laggards for reasons unrelated to the stress test, an eventuality

for which we find no institutional evidence. The specification is:

2
E[Investment|-] = exp (ai +X+ Y. B (Laggard, x 1[t = E+ k]) + X;t_lé) :
k=—3,k#—2
(9)

normalizing 5_o (year 2021) to zero. The coefficients Sy serve as a falsification test; as
shown in Section 7.3, their statistical insignificance supports the parallel trends assumption.

The Bi>o coefficients trace the dynamic post-announcement investment response.

7 Main Results

This section presents the main empirical findings on the real effects of the ECB’s CyRST. We
proceed in four steps. First, we establish the aggregate impact of the policy announcement
on bank investment using a before-after analysis. Second, we validate our classification
of “laggard” banks, our empirical proxy for firms with a high propensity to underinvest.
Third, we present our main difference-in-differences estimates, supported by an event-study
analysis, to test the paper’s central hypothesis on heterogeneous effects (P2). Fourth, we
provide robust evidence for the supervisory “scrutiny channel” as the primary mechanism

and conduct a series of tests to corroborate our findings.
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7.1 Before-After Analysis: Aggregate Investment Response

We begin by testing our first theoretical prediction (P1), which posits that the announcement
of the cyber stress test can act as a powerful coordinating signal, shifting industry norms
and prompting a broad-based increase in cybersecurity investment. This test provides a
baseline measure of the policy’s overall impact before we explore the heterogeneous effects
at the heart of our study.*’

Table 3 reports the results. The coefficient on the Post indicator is positive and statis-
tically significant across all specifications, providing strong initial evidence of a sector-wide
increase in investment following the CyRST announcement. As we progressively saturate
the model with controls and fixed effects, the estimate remains stable in magnitude and
significance. Our most demanding specification (Column 6), which includes a full suite of
fixed effects and controls, yields a coefficient of 0.370. This estimate implies that, on average,

0-370 1) following

banks increased their cybersecurity investment by approximately 45% (e
the announcement. This response provides clear support for Prediction 1. The economic
magnitude of this effect suggests that the supervisory initiative acted as a strong focal point,
sufficient to overcome institutional inertia and trigger a significant reallocation of resources

toward managing cyber risk across the European banking sector.

Table 3: Aggregate Effect of the Policy on Investment (Before-After)

(1) (2) 3) (4) (5) (6)

Dependent variable: Investment

Post 0.349* 0.366*** (0.435*** (.433*** (.415%** (.370%**
(0.188) (0.119)  (0.141)  (0.103)  (0.148)  (0.050)
Bank Controls No Yes Yes Yes Yes Yes
Country FE No No Yes Yes No Yes
Business Model FE No No No Yes No Yes
Bank FE No No No No Yes Yes
Observations 475 475 475 475 465 465

Note: This table shows the effect of the ECB Cyber Stress Test announcement (Post) on cy-
bersecurity investment using a PPML model. Column (1) is the baseline. Columns (2)—(6)
progressively add controls and fixed effects. Bank controls include log(Total Assets), Leverage
Ratio, ROE, Cost-to-Income Ratio, and CET1 Capital Ratio. Robust standard errors clustered
by bank in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The specification is a panel fixed-effects model estimated via PPML: E[Investment;;|-] = exp(a; + A +
B - Post; + X!, _,8), where the coefficient of interest, 3, captures the average change in investment in the
post-announcement period (2023-2024), controlling for bank fixed effects («;), year fixed effects (\;), and a
vector of lagged, time-varying bank controls (X;;—1).
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7.2 First Stage: Validation of Laggards

Our empirical strategy hinges on a credible, ex-ante classification of banks based on their un-
derlying cybersecurity investment posture. To this end, we construct a proxy for banks that
systematically underinvest relative to their peers and risk profiles. We classify a bank as a
Laggard if its cybersecurity spending, averaged over the 20202021 pre-treatment period, falls
below the median of residuals from a benchmark investment model.?° This first-stage model
is designed to partial out the component of investment attributable to a set of observable
IT risk, operational, and financial characteristics, thereby isolating a stable, pre-treatment

measure of a bank’s discretionary investment policy.

20We test more stringent, quartile-based definitions in Section 7.5.1.
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Table 4: Determinants of Normalized Cybersecurity Investment (Residual Benchmark
Model)

Variable Coefficient  (Std. Error)
Cyber Risk and Exposure
Number of cyberattacks 0.098 (0.065)
Log attack losses -0.019 (0.018)
Staffing and Governance
IT staffing intensity 0.452 (7.879)
IT vacancy rate -1.657 (3.423)
IT turnover index 0.060 (0.397)
FTE 1st line of defense —3.885 (4.302)
FTE 2nd line of defense 27.179 (111.643)
FTE 3rd line of defense —-109.904* (61.708)
Preparedness and Misalignment
Recovery time —0.000 (0.001)
Detection time 0.002 (0.001)
Risk control misalignment 1.532 (20.059)
Residual risk misalignment 0.329 (18.958)
Insurance
Insurance coverage (dummy) 1.095 (0.794)
Insurance direct cost —0.000 (0.000)
Insurance deductible amount 0.000 (0.000)
Innovation
Innovation project (dummy) -1.376* (0.796)
Projects to be implemented 0.002 (0.006)
Ongoing innovation -0.001 (0.005)
Legacy Infrastructure Risk
EOL systems (std. dev.) —0.587 (0.598)
Log number of critical projects 0.721 (0.488)
Log critical project expenditure -0.016 (0.092)
Log EOL systems —-0.190 (0.301)
Log EOL project spend 0.053 (0.045)
Financial and Scale Controls
Log total assets 1.153 (1.790)
Leverage ratio 30.471** (13.574)
Return on equity (ROE) 3.239 (3.584)
Cost-income ratio -1.204 (1.899)
CET1 capital ratio -16.075* (9.288)
Log number of IT systems 0.136 (0.147)
Constant ~15.001 (42.988)
Observations 464
R-squared 0.706

Notes: This table reports estimates from the first-stage OLS model used to generate investment residuals,
estimated on the 2019-2021 panel. The dependent variable is the natural logarithm of IT security
expenditure. All specifications include bank and business model fixed effects (not reported). Standard
errors are clustered at the bank level. *** p<0.01, ** p<0.05, * p<0.10.
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Table 4 reports the results for this benchmark model, estimated on the pre-treatment
panel. With an R? of 0.706, the model explains a substantial portion of the variation in
cybersecurity spending. Notably, direct measures of past risk realization, such as the number
of prior cyberattacks, are not statistically significant predictors. This finding suggests that
investment policies are driven less by reactive responses and more by deep-seated, structural
factors related to governance and strategic priorities. The model’s strong explanatory power
provides confidence that the resulting residuals are not mere statistical noise but a meaningful
measure of discretionary spending choices. Figure 4 visually supports this: as controls are
added, the dispersion of the residuals tightens considerably, indicating our model effectively

isolates the idiosyncratic component of investment policy.

Residual Distributions — Model Progression

Baseline Baseline + Insurance
R?=0.680 R?=0.688

%)

Share of Banks (
Share of Banks (%)

T T T T T T T T T T T T T T
15 -10 5 0 5 10 15 -15 -10 5 0 5 10 15
Residual Residual
Baseline + Insurance + Innovation Full Model (+ Legacy IT)

R2=0.691 R2=0.607

Share of Banks (%)
Share of Banks (%)

Residual Residual

Figure 4: Distribution of Residualized Cybersecurity Investment. Each panel shows
the histogram of residuals from the benchmark model predicting IT security investment. The models incre-
mentally add controls. The narrowing dispersion of the residuals illustrates how our model explains variation
in banks’ investment, supporting the robust identification of cybersecurity laggards for our causal analysis.

An important aspect of our research design is that the Laggard indicator isolates a strate-
gic choice regarding operational risk, not merely differences in financial health. Table 77?7
confirms this. In the pre-treatment period, Laggard and non-laggard banks are statistically
indistinguishable across key financial dimensions, including size, profitability, and capital-
ization.Formal tests for differences in means confirm this visual inspection. We find no

statistically significant pre-treatment differences for key financial ratios such as the Leverage
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Ratio, ROE, or CET1 Capital Ratio, whereas operational metrics like ‘Detection Time* show
a statistically significant divergence. This financial equivalence mitigates concerns that our
results are driven by confounding factors such as pre-existing financial constraints. While
financially similar, these groups exhibit stark operational differences. Prior to the CyRST,
Laggards invested only half as much in IT security (€19.8 million vs. €39.2 million) and
displayed materially weaker resilience, with significantly longer average times to detect cy-
ber incidents (45.1 vs. 35.5 days). This combination of financial similarity and operational
divergence provides strong supportive evidence that our Laggard indicator is a meaningful

proxy for pre-policy underinvestment.

Table 5: Summary Statistics by Laggard Status: Pre- and Post-Treatment Periods

Note: This table reports descriptive statistics for the key variables used in our analysis. For variables deemed sensitive, we
suppress the raw values of the mean, standard deviation, and percentiles. Instead, we report two confidentiality-safe measures:
(i) coeflicient of variation (CV), defined as the ratio of the standard deviation to the mean (SD/Mean), which captures
relative dispersion independent of levels; and (ii) indexed measure of levels, constructed by normalizing the pre-treatment
(2019-2021) average to 100 and expressing the post-treatment (2023-2024) average relative to this baseline.

Not Laggard (Pre) Laggard (Pre) Not Laggard (Post) Laggard (Post)
Variable Mean SD CV  Index Mean SD CV  Index  Mean SD CV  Index Mean SD CV  Index
IT Security Expenses (EUR) — — 2.05 100 — — 2.49 100 — — 1.80 114.80 — — 1.74  165.15
Log IT Security Expenses 0.19 100 0.39 100 0.18  102.45 0.26 112.73
IT Security Exp. / OPEX 0.0161 0.0514 — — 0.0089 0.0183 — — 0.0139 0.0111 — — 0.0132 0.0093 — —
IT Security Exp. / IT Run. Exp. 0.1286 0.3125 — — 0.0565 0.0450 — — 0.0929 0.0614 — — 0.0914 0.0599 — —
IT Security Exp. / IT Run.+-Change  0.0820 0.2178 — — 0.0358 0.0292 — — 0.0550 0.0348 — — 0.0567 0.0345 — —
Successful Cyberattacks — — 1.70 100 — — 1.64 100 — — 2.10 96.75 — — 2.36 73.12
Cyberattack Losses (EUR) 4.30 100 5.29 100 4.08  40.82 8.05  52.60
IT Staff Intensity 0.0880 0.0554 — — 0.1012 0.0569 — — 0.1093 0.0585 — — 0.1233 0.0673 — —
IT Vacancy Rate 0.0667 0.0812 0.0759 0.0932 0.0670 0.0802 0.0649 0.0613
IT Turnover Index 0.303 0.423 — — 0.306 0.283 — — 0.289 0.301 — — 0.309 0.325 — —
1st Line of Defense FTE Share 0.0593 0.0562 — — 0.0634 0.0719 — — 0.0840 0.0672 — — 0.0874 0.0826 — —
2nd Line of Defense FTE Share 0.00023  0.00045  — — 0.00040  0.00107  — — 0.00032  0.00058  — — 0.00027  0.00064  — —
3rd Line of Defense FTE Share 0.00183  0.00456 — — 0.00145  0.00251 — — 0.00189  0.00327 — — 0.00139  0.00115 — —
Recovery Time (days) 3.31 100 3.67 100 2,62 176.34 3.20  121.32
Detection Time (days) — — 3.29 100 — — 3.15 100 — — 3.16  77.38 — — 2.65 108.30
Perceived Control Misalignment 0.272 0.296 0.254 0.182 0.278 0.301 0.253 0.182
Residual Risk Misalignment -0.476 0.552 — — -0.488 0.384 — — -0.500 0.575 — — -0.491 0.385 — —
Cyber Insurance (Dummy) 0.701 0.460 — — 0.797 0.403 — — 0.830 0.378 — — 0.833 0.375 — —
Cyber Insurance Cost (EUR) — — 2.06 100 — — 2.25 100 — — 1.38  196.89 — — 1.54  223.10
Cyber Insurance Deductible (EUR) — — 2.98 100 — — 3.33 100 — — 2.21  682.43 — — 2.26  120.81
Innovation Flag (Dummy) 0.942 0.235 0.895 0.307 1.000 0.000 0.875 0.332
Planned Innovation Projects 17.2 42.5 — — 20.7 49.6 — — 214 46.9 — — 22.8 54.1 — —
Ongoing Innovation Projects 23.1 49.6 324 75.2 30.6 66.9 29.2 69.4
Std. Dev. of No. EoL Systems 0.195 1.523 — — -0.065 0.767 — — -0.024 0.661 — — -0.212 0.194 — —
Log No. Critical Projects 2.93 1.23 — — 2.93 1.22 — — 3.44 1.17 — — 3.18 1.19 — —
Log Total Critical Exp. 16.08 5.31 — — 16.72 3.83 — — 17.52 3.33 — — 17.40 2.34 — —
Log EoL Project Count 1.24 1.22 — — 1.33 0.98 — — 1.45 1.27 — — 1.65 1.06 — —
Log EoL Project Exp. 10.69 7.94 — — 12.92 6.60 — — 12.47 7.19 — — 14.47 5.57 — —
Log No. IT Systems 6.49 1.85 — — 6.81 1.41 — — 7.79 2.24 — — 7.20 1.92 — —
Log Total Assets 25.26 1.39 25.20 1.23 25.33 1.39 25.30 1.24
Leverage Ratio 0.0711 0.0245 — — 0.0670 0.0229 — — 0.0756 0.0238 — — 0.0703 0.0215 — —
ROE 0.0478 0.0435 0.0487 0.0431 0.104 0.047 0.091 0.046
Cost-to-Income Ratio 0.598 0.149 — — 0.612 0.154 — — 0.480 0.128 — — 0.513 0.132 — —
CET1 Capital Ratio 0.194 0.067 — — 0.191 0.062 — — 0.194 0.061 — — 0.200 0.058 — —

7.3 The Heterogeneous Effect of the CyRST on Investment

Having established the validity of our Laggard classification, we now test our main hypothesis
(Prediction 2): the investment response to the CyRST is concentrated among laggard banks.

Table 6 reports the results from our main DiD specification.
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The estimates provide strong evidence in support of our hypothesis. Across all specifi-
cations, the coefficient on the interaction term, Post x Laggard, is positive and statistically
significant. Our most comprehensive specification is presented in Column (6), which includes
bank, year, business model, and country fixed effects, alongside a full battery of controls. The
coefficient of 0.290 indicates that the CyRST announcement induced Laggard banks to in-
crease their cybersecurity investment by about 34% relative to their non-laggard peers. This
represents a substantial and targeted reallocation of resources, providing powerful support
for our second prediction. The finding aligns perfectly with the equilibrium-switching mech-
anism in our theoretical model, wherein the supervisory intervention provides the decisive

incentive for high-cost types to abandon their free-riding strategy.

Table 6: The Effect of Cyber Stress Tests on Laggard Bank Investment (DiD)

(1) (2) 3) (4) (5) (6)

Dependent variable: Investment

Post x Laggard 0.364* 0.350* 0.347* 0.361* 0.360* 0.290%*
(0.192) (0.192) (0.195) (0.195) (0.207) (0.168)
Post 0.137 0.158 - 0.163* — -
(0.123) (0.127) - (0.086) — -
Laggard -0.684  -0.450*  -0.449* - -
(0.460) (0.262) (0.262) - -
Bank Controls No Yes Yes Yes Yes Yes
Year FE No No Yes No Yes Yes
Bank FE No No No Yes Yes Yes
Business Model FE No No No No No Yes
Observations 470 470 470 470 470 470

Note: This table presents our main DiD estimation using the PPML model. The dependent variable
is the level of IT security investment. Column (1) presents the raw DiD. Columns (2) through (6)
progressively add controls and fixed effects. Our preferred specification is Column (6). The main
Laggard effect is absorbed by Bank FE in Columns (4)-(6); the main Post effect is absorbed by Year
FE in Columus (3), (5), and (6). Robust standard errors clustered by bank in parentheses. *** p<0.01,
** p<0.05, * p<0.1.

To provide further support for a causal interpretation and to trace out the policy’s dy-
namic effects, we estimate an event-study model. Figure 5 plots the dynamic coefficients.
The point estimates for the pre-treatment periods are economically small and statistically
indistinguishable from zero, providing strong visual support for the parallel trends assump-
tion. In stark contrast, we observe a sharp structural break beginning precisely in 2023, the
year of the announcement. The coefficient becomes positive and grows in magnitude into
2024. The absence of pre-treatment anticipation, combined with the timing and persistence

of this break, powerfully corroborates a causal interpretation of our DiD estimates.
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Event Study (PPML): Laggard x Year Effect on Cyber Investment
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Figure 5: Investment Response to ECB Cyber Resilience Stress Test (PPML).
This figure presents year-specific semi-elasticity estimates of being a cybersecurity laggard on investment,
relative to the baseline year 2021, from a PPML model with bank fixed effects and controls. Coefficients are
reported as percentage changes (100 x (exp(8) —1)). The flat pre-trend followed by a sharp increase in 2023
supports a causal interpretation. The shaded area represents 95% confidence intervals.

7.4 Mechanism: The Supervisory Scrutiny Channel

Having established a large and heterogeneous investment response, we now test the under-
lying mechanism. We argue that the effect was not driven by the public announcement
alone, but by the “scrutiny channel”, a behavioral change induced by the credible threat of
intensive, direct supervisory examination (Kok et al. (2023)). To test this, we exploit cross-
sectional variation in supervisory intensity by using a composite indicator, HighScrutiny,. As
explained in Section 6, this variable is designed to identify banks facing substantively higher
pressure and equals one if a bank meets at least two of the following three pre-determined
conditions: (i) assignment to the enhanced assessment track; (ii) an above-median weighted
severity of findings (hsti_sevfind = 1); and (iii) an above-median weighted severity of
data-quality flags (hsti_sevflag = 1). In our sample, 32 of the 48 laggard banks fall into
this high-scrutiny group. This composite design creates a strong measure of supervisory pres-
sure, and as detailed in Appendix I, all its components are determined at baseline, ensuring

exogeneity.
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Table 7 presents the results of the DDD. The analysis reveals that the entire treatment
effect is concentrated among laggard banks subjected to high-intensity scrutiny. The key
coefficient of interest is on the triple-interaction term, Post x Laggard x High Scrutiny.
Across all specifications, this coefficient is positive and statistically significant. In our most
demanding model (Column 6), the coefficient of 0.452 implies that laggard banks under
intense oversight had an additional investment increase of 57%.

The power of this research design lies in interpreting the lower-order interaction terms as
important placebo tests. The coefficient on Post x Laggard (0.043 and statistically insignifi-
cant in Column 6) captures the effect for laggards in the low-scrutiny group. This null result
is a key finding: laggards who did not face the imminent prospect of direct examination
did not react. Similarly, the coefficient on Post x High Scrutiny (0.076 and insignificant)
measures the effect for non-laggards in the high-scrutiny group. This shows that merely
being under intense oversight was not sufficient to trigger a differential investment response.
Taken together, these results confirm that the CyRST’s main impact was to force the weakest
links within the most closely-watched group to increase their investment, providing strong

evidence for the scrutiny channel.?!

Table 7: Mechanism: Triple-Difference Estimates of High-Intensity Scrutiny (PPML)

(1) (2) (3) (4) (5) (6)

Dependent variable: Investment

PostxLaggardxHigh_ Scrutiny 0.733*** (0.524** 0.518** 0.642** 0.643** 0.452**
(0.235)  (0.225) (0.228) (0.251) (0.271) (0.192)

Post x Laggard -0.067 0.068 0.071 -0.009 -0.008 0.043
(0.129) (0.109) (0.110) (0.112) (0.112) (0.101)
PostxHigh_Scrutiny -0.009 0.073 0.073 0.044 0.053 0.076
(0.198) (0.174) (0.182) (0.163) (0.195) (0.173)
Laggard x High Scrutiny -2.668%F*F  _0.941*%*F  -0.939** - -
(0.749) (0.413) (0.412) - -
Bank Controls No Yes Yes Yes Yes Yes
Year FE No No Yes No Yes Yes
Bank FE No No No Yes Yes Yes
Business Model FE No No No No No Yes
Observations 470 470 470 460 460 460

Note: This table presents PPML triple-difference estimates. All regressions cluster standard errors at
the bank level. Column specifications follow the same progressive inclusion of controls and fixed effects
as in Table 6. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

21To address the concern that assignment to the high-scrutiny group was not random, we conduct a
balancing test comparing the pre-treatment characteristics of banks across both groups. The test, reported in
Appendix Table A.1, reveals no evidence of systematic, pre-existing differences on key financial or operational
dimensions, lending strong support to the validity of our triple-difference design.
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7.5 Robustness and Additional Evidence

To verify the robustness of our main findings, we conduct a series of additional tests. We
confirm that our results are not an artifact of our specific classification of laggards by testing
more stringent definitions. We also provide evidence on the persistence of the behavioral

change we document.

7.5.1 Alternative Definition of Laggards

To ensure our results are not driven by the specific median-split threshold, we test more
stringent definitions of laggards that isolate the extremes of the investment distribution.
Table 8 presents DiD estimates comparing banks in the bottom investment residual quartile
(Q1, the most severe laggards) against those in the top quartile (Q4, the most proactive
investors). The result is a stark contrast. The interaction term for the Q1 vs. Q4 comparison
is 0.683 and highly significant, implying a substantial 98% relative increase in investment for
the most extreme laggards. In contrast, when comparing moderately underperforming banks
(Q2) against their moderately overperforming peers (Q3), the coefficient is economically

small and statistically insignificant.

Table 8: DiD Estimates with Alternative Laggard Definitions

(1) (2)
Q1 vs. Q4 Q2 vs. Q3
(Ezxtreme Laggards) (Moderate Laggards)

Post x Laggard (Quartile) 0.683*** -0.208

(0.274) (0.184)
Bank & Year FE Yes Yes
All Controls Yes Yes
Observations 225 235

Note: This table reports PPML DiD estimates using the most saturated specification
(equivalent to Column 6 in Table 6). Column (1) defines the treatment group as banks
in the bottom quartile (Q1) of residual investment and the control group as banks
in the top quartile (Q4). Column (2) compares banks in the second quartile (Q2) to
those in the third (Q3). Robust standard errors clustered by bank in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

The event study in Figure 6 visually corroborates this non-linearity. The center panel
(Q1 vs. Q4) shows a flat pre-trend followed by a dramatic post-announcement surge in
investment. The right panel (Q2 vs. Q3) remains flat throughout the sample period. To-
gether, these results reveal that the policy did not induce a uniform response among all
under-investors; rather, its disciplinary force was precisely targeted at the most extreme

laggards. This confirms that our findings are not driven by an arbitrary cutoff but by a gen-
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uine behavioral shift among the banks with the most significant pre-existing vulnerabilities,

consistent with our theoretical predictions.

Event Study (PPML): Cyber Investment Effects by Laggard Severity
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Figure 6: Event Study Panels — Cyber Investment Effects by Laggard Sever-
ity (PPML). This figure presents three event study specifications estimating the dynamic effect of the
CyRST on cybersecurity investment. The left panel shows the baseline median-split result. The center panel
contrasts the most severe laggards (Q1) against top performers (Q4). The right panel isolates moderate
underperformers (Q2) from their peers (Q3). The effect is clearly concentrated among the most extreme
laggards. All specifications include bank fixed effects and a full set of controls.

7.5.2 Persistence of Post-policy Investment

A key question is whether the supervisory intervention induced a persistent change in in-
vestment strategy or merely a temporary response. A Probit model confirms that the stress
test catalyzed meaningful and lasting adjustments for the majority of laggards, showing a
high and statistically significant unconditional exit probability of about 71%.

Interestingly, Table 9 reveals heterogeneity in this dynamic. While the most extreme
laggards (Q1) exhibit very high exit rates regardless of scrutiny intensity (over 80%), a
different pattern emerges for moderately underperforming laggards (Q2). For this group,
those receiving high scrutiny were substantially less likely to exit laggard status than their
low-scrutiny peers (44.4% vs. 66.7%). This suggests a complex interaction between su-
pervision and firm capacity. For the most severe laggards, the path to compliance is clear
(i.e., spend more). For moderately underperforming banks, however, intensive scrutiny may
uncover deeper, more persistent structural deficiencies that require multi-year remediation
plans. Thus, while these banks increase investment, the discovery of more complex issues

may mechanically lower their short-term “exit” rate from the laggard classification.
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Table 9: Descriptive Statistics on Exit from Laggard Status

Pre-Treatment Quartile Supervisory Scrutiny ‘ Stayed Laggard Exited Laggard Total ‘ Exit Rate (%)

Q1 (Lowest) No 2 9 11 81.8
Yes 2 11 13 84.6
Q2 No 5 10 15 66.7
Yes 5 4 9 44.4
Total \ 14 34 48 | 70.8

Notes: This table reports the share of banks initially classified as cybersecurity laggards (based on 2020-2021 data) that exited laggard status by

2024, conditional on pre-treatment severity (Q1 vs. Q2) and the intensity of supervisory scrutiny.

8 Conclusion

Investment in cybersecurity within the interconnected banking system presents a classic
public good problem, where network externalities create incentives for firms to free-ride,
leading to systemic underinvestment and “weakest link” vulnerabilities. This paper provides,
to the best of our knowledge, the first causal evidence that supervisory action, distinct from
traditional capital regulation or market discipline, can resolve this coordination failure. We
exploit the 2024 ECB CyRST as a quasi-natural experiment. The exercise’s design with no
direct capital implications and no public disclosure of individual results provides a unique
opportunity to empirically test the effect of a pure “scrutiny channel” on banks’ investments.

We find that targeted supervisory scrutiny is a remarkably effective tool for correcting
this market failure. Using confidential supervisory data, we first identify a set of “laggard”
banks that systematically underinvested in cybersecurity relative to their risk profiles prior
to the intervention. Our DiD estimates show that in response to the CyRST, these laggard
institutions increased their cybersecurity investment by 34% relative to their non-laggard
peers. This strong response is not driven by the policy announcement alone. Exploiting
variation in supervisory intensity within a triple-difference framework, we show the effect
is mainly concentrated among laggards subjected to high-intensity scrutiny, who exhibit an
additional investment increase of 57%. For laggard banks facing only low-intensity oversight,
we find no statistically significant effect, confirming the scrutiny channel as the key mecha-
nism. Thus, our findings suggest that the increase in laggards’ investments is driven by the
credible threat of direct examination.

From a policy perspective, our results show that “soft” supervisory tools can have “hard”
real effects, quantifying a large corporate investment response to a non-public, qualitative
assessment. Moreover, our results provide a blueprint for a new class of regulatory inter-
ventions that extend far beyond banking. The qualitative stress test model we analyze is a
transferable regulatory technology. Authorities in other jurisdictions and sectors facing sim-

ilar coordination failures (e.g., energy grids, telecommunications, and critical supply chains)
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can adapt this approach to strengthen resilience against systemic threats. Our findings
show that focusing supervisory resources on the identified “weakest links” could be a highly
effective and efficient strategy.

As finance becomes intertwined with technology, the sources of systemic risk will continue
to evolve. Our findings show that regulation must also evolve, shifting from its historical
reliance on capital requirements towards more targeted, scrutiny-based interventions that can
directly shape banks’ incentives. While our results document a strong immediate response,
assessing the long-term persistence of these behavioral changes and their ultimate effect on

financial stability remains an important avenue for future research.
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Figure 7: Timeline.

This figure illustrates the temporal structure of our identification strategy. The pre-
treatment period (2019-2021) is followed by the exclusion of 2022, which coincided with
the preparation of the stress test. The post-treatment period begins with the CyRST policy
announcement in March 2023, continues with the confidential allocation of banks to high-
intensity scrutiny in November 2023, and covers the launch (January 2024) and completion
(July 2024) of the CyRST exercise. The lower panel reports the annual delivery of the
ECB’s IT Risk Questionnaire (ITRQ), which provides the reference year inputs for our out-
come variables.
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Actual vs. Predicted Cyber Investment by Residual Quartile
Separate for 2020 and 2021

Actual Normalized IT Investment

0 5 10 15 20
Predicted IT Investment

& 202101 & 202102 & 202103 2021 Q4

2021 Fit & 2020 Q1 & 202002 0z0Q3 202004 — — — 2020F

Figure 8: Residuals normalized IT security investment and predicted IT security
investment.

Actual vs. predicted normalized IT investment for European banks, split by quarter in 2020
(blue, dashed fit) and 2021 (green, solid fit). Each point shows a bank-residual quartile;
the fit lines indicate the model’s predicted cyber investment accuracy by year, highlighting
residual variation that defines under- or over-investing banks.
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Appendix I: Variable Definitions

« Construction of Severe Findings Dummy (hsti_sevfind): This indicator is
constructed to identify banks subject to a high degree of supervisory concern, as ev-
idenced by the substantive findings from the CyRST. The construction is a two-step

process.

Step 1: Weighted Severity Score. First, we create a continuous index of supervi-
sory concern for each bank 2. We use the confidential CyRST findings database, which
assigns a severity score s;; € {1,2,3,4} to each finding j. We compute the weighted

score for bank ¢ as the linear sum of its findings’ severities:

wt__severity_finding; = Z Sij-
j€findings of bank 14
This transparent specification ensures the score captures both the frequency of deficien-
cies (the number of terms in the sum) and their criticality (the value of each s;;). For
example, a bank with one minor (score=1) and one critical (score=4) finding receives

a total score of 5.

Step 2: Binary Classification. Second, we create the binary indicator by classifying
banks based on a non-parametric median split of the scores across the entire sample.
This method is robust to outliers in the distribution of the weighted scores. The

indicator is formally defined as:
hsti_sevfind, = W {wt_severity finding; > median(wt_severity finding)} .

Thus, hsti_sevfind, = 1 identifies banks in the top half of the sample distribution of

findings severity at baseline.

« Construction of Severe Data-Quality Flags Dummy (hsti_sevflag):

Step 1: Weighted Flag Score. The raw data for this measure are the supervisory
flags (Red or Amber) assigned during the CyRST. We map these qualitative assess-
ments to numerical severity weights, s;,, setting Red=2 and Amber=1. The composite

score for bank i is the aggregate of these weights:

wt_ severity_flag, = Z Sig-
g€flags of bank ¢

This index quantifies the overall severity of a bank’s data governance weaknesses. For

instance, a bank with one Red flag (weight=2) and three Amber flags (weight=1 each)
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receives a total score of 5.

Step 2: Binary Classification. This continuous score is then dichotomized to create
the final binary variable. A bank is classified as having high data-quality concerns if

its score lies above the median of the cross-bank distribution:
hsti_sevflag, = ¥ {wt_severity flag, > median(wt_severity flag)}.

Accordingly, hsti_sevflag, = 1 denotes a bank with a baseline level of data-quality

issues in the upper half of its peer group.

e LoglInv;;: The natural logarithm of I'T security investment for bank ¢ in year ¢. This
is the primary outcome variable in our DiD and event-study models. The underlying

measure, Investment, is a bank’s total annual expenditure on I'T security in Euros.

o Laggard;: A binary indicator equal to 1 if bank ¢ was classified as a cybersecurity lag-
gard. The classification is based on its average investment residual from the prediction
model (Equation 5) over the 20202021 pre-treatment period, as formally defined in
Equation 6.

o Post;: Anindicator equal to 1 for years 2023 and 2024, capturing the post-announcement
period of the Cyber Resilience Stress Test (CyRST). The pre-treatment period is
2019-2021.

« Bank Controls (X;;_1): A vector of lagged, time-varying bank-level controls, includ-

ing:
— logA_TotalAssets: Logarithm of total assets.

— LeverageRatio: Tier 1 leverage ratio.

ROE: Return on equity.

— CIRatio: Cost-to-income ratio.

C_CET1CapitalRatio: Common Equity Tier 1 capital ratio.

— log_numberitsystems: Logarithm of the total number of IT systems.

o Cyber Risk, Governance, and Operations: A comprehensive set of controls from

the ITRQ data source, grouped as follows:

— Cyber Risk Exposure and Controls: attack, attack_losses, itpermstaffintens,
itvacancyrate, itturnindex, ftellod, fte2lod, fte3lod, recoverytime, detectiontime,
y_m_RC DT, y_m RR_DT_reb.
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— Cyber Insurance: insurance_d, insurancecontractsdirectcosts, insurancecontractsdedu

— Cyber Innovation: innovationprojects_d, innovationprojectstobeimplemented,
innovationprojectsongoing.

— Legacy Infrastructure and Risk: log_numbercriticalprojects, log_criticalprojectsexp,
log_criticalprojectseol, log_criticalprojectseolexp, sd_numbereolsystems,

sd_share_eol_to_be_replaced, sd_eol_gap_ratio
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Appendix II: Theoretical Model: Complete Framework

and Derivations

This appendix provides the complete theoretical framework, including all assumptions, for-

mal derivations, and proofs for the conceptual model presented in Section 4.

II.1 The Economic Environment and Model Primitives

Agents and Actions. The economy consists of a continuum of risk-neutral banks, indexed
by i € [0,1], and a single, risk-neutral Supervisor. Banks simultaneously choose an invest-
ment action, e; € {0, 1}, where e; = 1 denotes investing in a critical cybersecurity measure
and e; = 0 denotes not investing. The Supervisor chooses a policy to implement the full-
investment equilibrium at minimum inspection cost. This objective is aligned with maximiz-
ing social welfare—defined as W = B-Q— [ c¢-e(c¢)g(c)dc—(Total Inspection Costs)—provided
the public benefit B is sufficiently large relative to the average investment cost E[c|. Each

inspection incurs a cost K > 0.

Information Structure. Each bank ¢ is characterized by a private cost of investment, ¢;,
which is its "type." The cost ¢; is private information to bank ¢ and is drawn independently
and identically from a common knowledge distribution with a continuous probability density
function (PDF) g(c¢) > 0 and a cumulative distribution function (CDF) G(c) on the support

lcr, ], where 0 < ¢, < cg.

Systemic Externality and Payoffs. System-wide cybersecurity integrity, €2, is modeled
as a "weakest-link" public good. This is a standard approach for capturing acute systemic
risk where the failure of one critical component can compromise the entire system (e.g., in
clearing houses or interbank networks). While stylized, this assumption captures the essence

of a regulator’s concern about contagion from a single point of failure. Formally:
Q2 = min {e;}. 10
ig%g)g}{e } (10)
A secure system (§2 = 1) generates a public benefit B > 0 that accrues to all banks, regardless
of their individual investment choice. An insecure system ({2 = 0) provides no such benefit.
Due to the weakest-link structure, if any single bank i chooses e¢; = 0, then 2 = 0. A bank i
that shirks (e; = 0) also faces a regulatory penalty P > 0 if it is inspected. Let I; € {0,1}

be an indicator variable for an inspection of bank ¢. The ex-post utility for a bank of type
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¢; is given by:

UB<€1,Q,H7J|Q):QB—€1Cl—(l—el)ﬂlP (11)

Parametric Assumptions. To ensure a well-defined pre-policy coordination failure and

a non-trivial policy problem, we impose the following standard assumptions:

Assumption A1l (Insufficient Private Benefit) B < c;. The social benefit B is insuf-

ficient to motivate even the lowest-cost bank to invest unilaterally.

Assumption A2 (Sufficiently High Penalty) P > cy. The penalty for non-compliance

is large enough to deter any bank type, provided inspection is certain.

Assumption A3 (Pre-Policy Coordination Failure) B+qoP < cr. Under the baseline
supervisory regime with a low, uniform inspection probability g, the net utility from
investing is negative even for the lowest-cost bank, regardless of its beliefs about being

pivotal.

I1.2 Equilibrium Analysis and Proofs

The solution concept is Bayesian Nash Equilibrium (BNE). A bank’s pure strategy is a
mapping from its type to its action, e : [cf, cy] — {0, 1}.

I1.2.1 Pre-Policy Equilibrium (Proof of Proposition 1)

Proposition 3 (Pre-Policy Free-Rider Equilibrium). Under Assumptions A1-A3, the unique

Bayesian Nash Equilibrium is for all banks to shirk, i.e., e*(c) = 0 for all ¢ € [cp, chl.

Proof. A bank of type ¢ chooses e € {0,1} to maximize its expected utility. A bank’s action
is pivotal if and only if all other banks invest; let this event be £_;.

The expected utility from investing (e = 1) is:
E[Ug(e=1)|c]=E[Q-B—c=Pr(€;)-B—c (12)

The expected utility from not investing (e = 0), which implies an insecure system (2 = 0),

is based solely on the expected penalty from being found non-compliant:
E[Up(e = 0) | ] = E[-I- P] = —goP (13)
The net utility of investing is the difference between these two expected utilities:
AU(c) =E[Ug(e=1) | ] —E[Ug(e =0) | ¢ = Pr(€-;) - B —c+ qoP. (14)
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To find a dominant strategy, we consider the most favorable belief for investing, which is

that the bank is certain to be pivotal, i.e., Pr(€_;) = 1. In this case, the net utility is:
Avaivotal<c) =B+ q0P —C. (15)

By Assumption A3, B + qoP < cr. Since ¢, < ¢ for all types in the support, it follows that
AUpivotal(c) < 0 for all ¢ € [cr,cy]. As the net utility of investing is strictly negative even
under the most optimistic beliefs about being pivotal, not investing (e = 0) is the strictly

dominant strategy for every bank type. Thus, the unique BNE is e*(¢) = 0 for all c. O

I1.2.2 Post-Policy Equilibrium (Proof of Proposition 2)

Proposition 4 (Policy-Induced Disciplined Equilibrium). A supervisory policy P* = (8", @}yryer)
that credibly increases the inspection probability for high-cost banks can uniquely implement

the Pareto-superior equilibrium where all banks invest (e*(c) =1 for all types c).

Proof. The proof proceeds by construction. We define the Supervisor’s policy instruments
and optimization problem, solve for the optimal policy, and show that it uniquely implements

the full-investment equilibrium.

1. Type-Dependent Inspection Probability. The Supervisor commits to a policy
P = (5, Garget) based on a noisy signal of each bank’s type, s;'* = ¢;+¢;, where ; ~ N(0, 0?).

The ex-ante probability of inspection for a bank of type c is:

Q<C; S, qtarget) =4qo- Pr(siup <s ’ Ci = C) + Grarget * Pr(sjup > S ’ Ci = C) (16)
=qo - Pr(e; < s —¢) + Grarget - [1 — Pr(e; < s —¢)] (17)

Letting p = 1/0 denote the signal’s precision and ®(-) be the standard normal CDF:

4(6; 5, Grarger) = GoP(P(5 = €)) + Grarger[1 = P(p(s = ¢))] (18)
= Qtargct - (Qtargct - QO)(p(p(S - C)) (19)

2. Supervisor’s Optimization Problem. The Supervisor solves the following cost-

minimization problem:

cH
min C<S7 qtarget> = K/ Q(C, S, qtarget)g(c)dc7 (20)
crL

S,qtarget

subject to two constraints:
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1. Incentive Compatibility (IC): To induce full investment, the net utility from investing

must be non-negative for all types, assuming each bank believes it is pivotal:

A[]post(c) =B—-c + Q(C; S, Qtarget)P Z 0 Ve S [CL, CH]- (21)

2. Uniqueness: To ensure the full-investment equilibrium is unique, the net utility function

AU,ost(c) must be strictly decreasing in ¢. Taking the derivative with respect to c:

d d

- AUpos(¢) = =L+ P==q(¢) (22)
=—1+ P;ZC [Qtarget - (qmrget - CIO)(I)(P(S o C))] (23)
=—1+P [_(Qtarget - QO)¢(P(5 - C))(_p)] (24>
=—1 + Pp(qmrget - QO)(b(p(S - C)) (25>

For uniqueness, we require £ AUy (c) < 0, which implies Pp(rarget — q0)@(p(s — ¢)) < 1.
3. Solving the Supervisor’s Problem. To solve for the cost-minimizing policy param-
eters, we first satisfy the constraints. The IC constraint (21) must hold for all types, so it
must hold for the highest-cost type, cy. To minimize cost (and thus gg,g4et), the Supervisor

sets the policy such that this constraint binds for cy:

CH—B
P .

B — CH + Q(CH; S, Qtarget)P =0 = Q(CH; S, Qtarget) = (26)

Substituting the expression for ¢(c) from (19) into (26) yields the cost-minimizing targeted

inspection rate, g, .., as a function of the threshold s:

. _ (eu = B)/P — qo®(p(s — cu))
Qtarget(s) - 1— (ID(p(s _ CH)) :

(27)

Next, consider the uniqueness constraint. The term ¢(p(s — ¢)) is maximized when its
argument is zero, i.e., at ¢ = s, where the standard normal PDF ¢(0) = 1/v/2n. The

condition is therefore tightest at this point and becomes:
V2T .

1
Ppo(qreet(S) —@0)——= <1 = p< . =p". 28
(t gt( ) O)v27T P(qtarget(s)_QO) ( )

This "Precision Paradox" condition requires that signal precision p be bounded from above.

If monitoring is too precise, the incentive gradient becomes too steep around the threshold s,
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which can create non-monotonicities in a bank’s net utility of investing and lead to multiple
equilibria. Bounding precision ensures the incentive to invest is well-behaved. The Supervisor
chooses the optimal threshold s* by substituting ¢;; .. (s) into the cost function (20) and

solving % = 0.

4. Conclusion of Proof. An optimal policy P* = (8% Gfue:(s")) solves this cost-
minimization problem. By construction, it satisfies the IC constraint for the highest-cost
type ¢, such that AUy (cy) = 0. The uniqueness condition (p < p*) ensures that AUpes;(c)
is strictly decreasing in c¢. Therefore, for any bank with cost ¢; < cp, its incentive to invest
is strictly positive: AUpost(¢i) > AUpost(cr) = 0. Since AUpesi(c) > 0 for all ¢ € [c, cy] and

the equilibrium is unique, investing (e = 1) is the optimal action for every bank type. O

11.2.3 Derivation of the Heterogeneous Treatment Effect

The model directly motivates the paper’s focus on heterogeneous treatment effects. To
illustrate this, we can relax Assumption A3 such that B + ¢qoP > c¢;. In this case, an

equilibrium with partial investment can exist, where low-cost banks successfully coordinate.

Illustrative Case: A Pre-Policy Equilibrium with Partial Investment. In such an
equilibrium, banks that invest must believe they are pivotal. The net utility from investing
is AUpivotal(¢) = B + qoP — ¢, which defines an investment threshold ¢, = B + ¢oP. The

pre

pre-policy strategy profile is:

L ife <,

0 ife>cf, (Free-Riding Banks)

pre

(Compliant Banks)
epre(C) =

Post-Policy Equilibrium and Treatment Effect. As proven above, the optimal policy
P* induces epost(c) = 1 for all ¢ € [cp, cy]. The change in investment strategy for a bank of

type ¢ is Ae(c) = epost(¢) — epre(c). This change is:

Aele) 1-1=0 ifec<c,
e(c) =
1-0=1 ife>c,

This confirms the core hypothesis: the policy’s causal effect on investment behavior, Ae(c), is

concentrated entirely among the high-cost banks (c > cf,.) that were free-riding pre-policy.
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Appendix III: Alternative Results and Figures

m_RC_BKvs m_RC_ECB {m_RC_DT)

2.5+

m_RC_BK
1

25

Figure 9: Supervisory Misalignment in Risk Control Perception: Risk Control
Misalignment.

This scatterplot compares banks’ average self-assessed cyber risk control scores (m__RC _BK)
with those assessed by the ECB (m__RC _ECB). Both scores are constructed by reversing
original risk control indicators (from 1 = strong to 4 = weak) to ensure higher values denote
stronger control setups, and then averaged across all relevant items (the ITRQ collects 35
IT Risk Control Sub-Scores). Points above the 45-degree line reflect banks that perceive
their controls to be stronger than the ECB does (m_RC_DT > 0), signaling potential
overconfidence or governance opacity. Marker shapes and colors denote overconfident (pink
triangles), underconfident (light blue dots), and aligned (blue circles) bank-year observations.
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m_RE_BEK_reb vs m_RR_ECE_reb (m_RE_DT_reh)

m_RR_BK_reb

m_RE_ECE_reb

Figure 10: Supervisory Misalignment in Risk Level Perception: Risk Level Mis-
alignment.

This scatterplot depicts banks’ perceived residual IT risk (m_RR_BK reb) against the
ECB’s assessment (m_RR_FECB_reb). Residual risk is defined as the difference between
perceived risk level and risk control, rescaled to range from 0 (low residual risk) to 8 (high
residual risk). The variable m_RR_DT reb captures the distance between these two risk
perceptions. Observations where m_RR DT reb > 0 indicate banks that underestimate
their residual cyber risk relative to the ECB’s view. These gaps are central to our empirical
strategy as proxies for governance misalignment.
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Actual vs. Predicted Cyber Investment by Residual Quartile
Separate for 2020 and 2021 (Excl. Zero Investment)
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Figure 11: Actual and Predicted Cyber Security Investment by Residual Quartile.
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Figure 12: Residuals of Cyber Investment vs. Predicted Level.
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