Discussion of:

Barbiero, Sheremirov, Silva, Stein

U.S. Firms' Exposure to Tariffs

Andrei Levchenko

November 2025

Goal:

Understand the impact of Trump tariffs on the US economy

- Micro variation across firms/sectors
- Macro GDP, welfare

Goal:

Understand the impact of Trump tariffs on the US economy

- Micro variation across firms/sectors
- Macro GDP, welfare

This paper: impact of tariff shocks on COMPUSTAT firms in both 2018 and 2025

Examine empirically multiple channels of tariff propagation

- Imported intermediates directly and indirectly
- Retaliation in foreign markets
- Protection from import competition

Understanding the micro results: Sales vs. COGS

Demand and price, firm f, sector j, country c:

$$q_{fjct} = q_{fjct}(p_{ft})$$
 $p_{ft} = m_{ft}c_{ft}$

Understanding the micro results: Sales vs. COGS

Demand and price, firm f, sector j, country c:

$$q_{fjct} = q_{fjct}(p_{ft}) \qquad p_{ft} = m_{ft}c_{ft}$$

Sales and COGS:

$$SALES_{ft} = m_{ft}COGS_{ft}$$

Therefore:

$$\frac{d \ln SALES_{ft}}{d \ln c_{ft}} = \frac{d \ln m_{ft}}{d \ln c_{ft}} + \frac{d \ln COGS_{ft}}{d \ln c_{ft}}$$

Dixit-Stiglitz, Melitz: $\frac{d \ln m_{ft}}{d \ln c_{ft}} = 0$

Taking coefficients at face value: $\frac{d \ln m_{ft}}{d \ln c_{ft}} \approx -0.2 \ {\rm to} \ -0.5$

Understanding the micro results: COGS elasticity

Demand and price, firm f, sector j, country c:

$$q_{fjct} = \frac{X_{jct}}{P_{jct}^{1-\sigma}} p_{ft}^{-\sigma} \qquad p_{ft} = m_{ft} c_{ft}$$

Understanding the micro results: COGS elasticity

Demand and price, firm f, sector j, country c:

$$q_{fjct} = \frac{X_{jct}}{P_{jct}^{1-\sigma}} p_{ft}^{-\sigma} \qquad p_{ft} = m_{ft} c_{ft}$$

COGS:

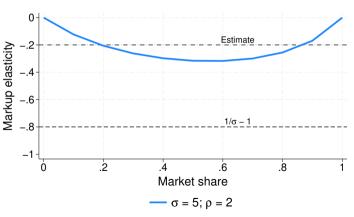
$$COGS_{ft} = m_{ft}^{-\sigma} c_{ft}^{1-\sigma} \frac{X_{jct}}{P_{jct}^{1-\sigma}}$$

$$\frac{d \ln COGS_{ft}}{d \ln c_{ft}} = 1 - \sigma - \sigma \frac{d \ln m_{ft}}{d \ln c_{ft}}$$

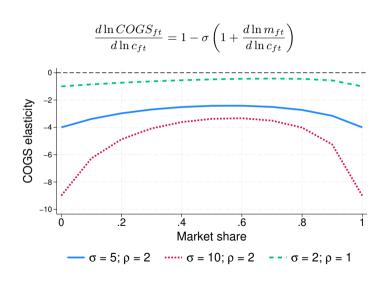
Therefore:

$$\frac{d \ln COGS_{ft}}{d \ln c_{ft}} > 0 \Leftrightarrow \frac{d \ln m_{ft}}{d \ln c_{ft}} < \frac{1}{\sigma} - 1: \text{ Can it be?}$$

Markup elasticity


Atkeson-Burstein markup elasticity (textbook, Cournot):

$$m_{ft} = \left(1 - \frac{1}{\sigma} - \left(\frac{1}{\rho} - \frac{1}{\sigma}\right)s_{ft}\right)^{-1}; \qquad \frac{d\ln m_{ft}}{d\ln c_{ft}} = \left[\left((1 - \sigma)\left(\frac{1}{\rho} - \frac{1}{\sigma}\right)s_{ft}\left(1 - s_{ft}\right)m_{ft}\right)^{-1} - 1\right]^{-1}$$


Markup elasticity

Atkeson-Burstein markup elasticity (textbook, Cournot):

$$m_{ft} = \left(1 - \frac{1}{\sigma} - \left(\frac{1}{\rho} - \frac{1}{\sigma}\right) s_{ft}\right)^{-1}; \qquad \frac{d \ln m_{ft}}{d \ln c_{ft}} = \left[\left((1 - \sigma)\left(\frac{1}{\rho} - \frac{1}{\sigma}\right) s_{ft} (1 - s_{ft}) m_{ft}\right)^{-1} - 1\right]^{-1}$$

COGS elasticity

Possibilities?

- Inelastic demand? $\sigma < 1$
- Incorrect sectoral aggregation/fixed effects? $COGS_{ft} = m_{ft}^{-\sigma} c_{ft}^{1-\sigma} P_{jct}^{\sigma-\rho} \times \underbrace{\frac{X_{sct}}{P_{sct}^{1-\rho}}}_{\delta_{st}}$
 - $_{\circ}$ Would require (const. m) $\frac{d \ln P_{jct}}{d \ln c_{ft}} > \frac{\sigma 1}{\sigma \rho}$
- $\bullet \text{ COGS of exports? } COGS_{ft} \propto c_{ft}^{1-\sigma} \times \left(\frac{X_{jct}}{P_{jct}^{1-\sigma}} + \frac{\tau_{cc'jt}^{1-\sigma}X_{jc't}}{P_{jc't}^{1-\sigma}} \right)$
 - Would require positive (firm-level) demand shift in foreign markets
- Timing? COGS refers to a different time period than when tariffs were incurred?

Towards macro/aggregation

Demand, firm f, sector j, country c:

$$q_{fjct} = \frac{X_{jct}}{P_{jct}^{1-\sigma}} p_{ft}^{-\sigma} \qquad p_{ft} = m_{ft} c_{ft}$$

Towards macro/aggregation

Demand, firm f, sector j, country c:

$$q_{fjct} = \frac{X_{jct}}{P_{jct}^{1-\sigma}} p_{ft}^{-\sigma} \qquad p_{ft} = m_{ft} c_{ft}$$

Production:

$$c_{ft} = \left[(1 - \omega) W_{ct}^{1 - \epsilon} + \omega \left(P_{ft}^X \right)^{1 - \epsilon} \right]^{\frac{1}{1 - \epsilon}} \qquad P_{ft}^X = \left[\sum_{f'} \bar{\varpi}_{f'fs} \left(\tau_{c'cjt} p_{f'ft} \right)^{1 - \chi} \right]^{\frac{1}{1 - \chi}}$$

Expenditure:

$$X_{jct} = \alpha_j \left(W_{ct} L_{ct} + \Pi_{ct} + T_{ct} \right)$$

Need to know: elasticities + GE \rightarrow Could make progress on elasticities?

Taking stock

- Exciting effort, impressive data collection, rich set of results
- Micro: benefit from understanding micro findings better
- Macro: still some distance

... but may make some progress to put micro estimates in service of macro