# Does Systemic Risk in the Financial Sector Predict Future Economic Downturns?

### Linda Allen, Turan Bali, Yi Tang

Presentation by Professor Linda Allen William F. Aldinger Chair in Banking & Finance Baruch College Zicklin School of Business

# The crisis has focused attention on systemic risk measurement

- Micro-level measures focus on the interrelationships across individual financial institutions.
  - For example: MES (Acharya et al. (2010), Co-Var (Adrian and Brunnermeier (2009))
- Macro-level measures focus on whether interbank externalities are substantial enough to threaten real macroeconomic conditions
- We need <u>both</u> approaches to accomplish systemic risk regulation
  - Individual bank (micro-level) systemic risks may be low, but collectively, the systemic risk of economic downturn is high, or vice versa.
  - The macro-level measure can be used to calibrate the micro-level systemic risk premium (tax) or limits.

# A new macro-level measure of systemic risk, *CATFIN*

- Banks play a special role in the economy.
- During crises, banks curtail lending and hoard liquidity contagious spread across financial markets.
- Increased bank risk taking increases economic uncertainty and reduces real investment activity.
- Macroeconomic conditions are impacted.
- Can we design a macro-level early warning system for systemic risk that will trigger micro-level interventions?
- *CATFIN* is an out-of-sample measure of the financial sector's catastrophic (tail) risk.
  - □ *CATFIN* is robust to methodology (VaR or ES approaches) and parametric (GPD and SGED) v. non-parametric estimation.

3

## Preview of Results (1)

- CATFIN forecasts macroeconomic downturns into the future:
  - For US (1,025 bank returns): 6 months
  - Asia (1183 banks from 27 countries): 8 months
  - Europe (607 banks from 25 countries): 6 months

# Preview of Results (2)

- The risk of macroeconomic downturns increases when the *aggregate* level of risk taking in the banking sector is high.
  - *CATFIN* is predictive of economic and financial uncertainty, aggregate bank lending, many macro variables (GDP, industrial prod., micro-systemic risk measures such as MES, DD, CTR).
- □ *CATFIN* is a measure of the *collective* catastrophic (tail) risk of the banking system that forecasts economic downturns almost a year later.
  - The collective risk of non-financial firms and "fake" banks have no predictive power. Banks are "special."
  - The collective risk of even small banks has predictive power so this is not just "Too Big To Fail."
  - Results are robust to inclusion of leverage, size, past returns and bank interconnectedness, other systemic risk measures.

# The *CATFIN* measure of aggregate systemic risk for the financial sector.

- □ Value at Risk (VaR) Approaches
  - Generalized Pareto Distribution (GPD)
  - Skewed Generalized Error Distribution (SGED)
  - Non-parametric
  - Average (Principal Component Analysis)
- □ Expected Shortfall (ES) Approaches
  - Generalized Pareto Distribution (GPD)
  - Skewed Generalized Error Distribution (SGED)
  - Non-parametric
  - Average (Principal Component Analysis)

### Predicting future economic downturns

- The Chicago Fed National Activity Index (CFNAI) is used to measure the aggregate U.S. economy
  - A weighted average of 85 existing monthly indicators of national economic activity, constructed to have zero mean and unity standard deviation
  - Positive (negative) index reading corresponds to growth above (below) trend
- CFNAI in month *t* + *n* is regressed on *CATFIN* in month *t*

$$CFNAI_{t+n} = \alpha + \gamma CATFIN_t + \varepsilon_{t+n}.$$

- γ is significantly negative at the 5% level up to 13 months ahead
- Increase in CATFIN by one standard deviation i.e. 1.6345 predicts decrease in CFNAI by 0.4 (-0.7 in three-month moving average CFNAI denotes economic contraction)
- GPD, SGED and NP measures also have statistically significant negative coefficient up to 13 months ahead



Figure 2. Predictive ability of *CATFIN* for the Chicago Fed National Activity Index (CFNAI). This figure depicts the coefficients of *CATFIN* (the upper panel) and *CATFIN*<sup>ES</sup> (the lower panel) from the predictive regressions:  $CFNAI_{t+n} = \alpha + \gamma CATFIN_t/CATFIN_t^{ES} + \beta X_t + \sum_{i=1}^{12} \lambda_i CFNAI_{t-i+1} + \varepsilon_{t+n}$ , where *CATFIN*<sub>t</sub> and *CATFIN*<sub>t</sub><sup>ES</sup> are, respectively, computed as the average of the 1% VaR measures and the average of the 1% expected shortfall (ES) measures, estimated from the GPD, the SGED, and the non-parametric methods: X denotes a vector of control variables: the default spread (*DEF*)

### Table 3: International CATFIN

| European U | nion      |         | Asian countries |        |
|------------|-----------|---------|-----------------|--------|
| GDPt+n     | CATFIN    | Adj. R2 | CAT FIN         | Adi R2 |
| n=1        | -0.003*** | 96.68%  | -0.002**        | 94.36% |
|            | (-3.03)   |         | (-2.11)         | 110070 |
| n=2        | -0.007*** | 85.96%  | -0.006**        | 76.11% |
| 2          | (-3.66)   |         | (-2.08)         |        |
| n=3        | -0.011*** | 66.1%   | -0.010**        | 42.5%  |
| n_1        | (-4.12)   | 51 100/ | (-2.06)         |        |
| 11=4       | -0.013*** | J1.1270 | -0.012**        | 23.52% |
| n=5        | -0.015*** | 39.6%   | (-1.99)         |        |
|            | (-3.54)   | 57.070  | -0.013**        | 13.88% |
| n=6        | -0.014*** | 29.58%  | (-2.01)         |        |
|            | (-3.22)   |         |                 |        |
| n=7        | -0.013*** | 21.97%  |                 |        |
|            | (-2.67)   |         |                 |        |
| n=8        | -0.012**  | 17.1%   |                 |        |
|            | (-2.22)   |         |                 |        |

# Predictive ability of CATFIN and CATnonFIN for the CFNAI

### • No predictive power for non-financial sectors

|                         | Dependent           | t variable: C | $FNAI_{t+1}$         | Dependent  | t variable: C | FNAI <sub>t+3</sub>                |
|-------------------------|---------------------|---------------|----------------------|------------|---------------|------------------------------------|
| Industry                | CATFIN <sub>t</sub> | CATnonFIN     | tAdj. R <sup>2</sup> | $CATFIN_t$ | CATnonFIN     | l <sub>t</sub> Adj. R <sup>2</sup> |
| All non-financial firms | -0.2205***          | -0.0389       | 16.22%               | -0.2458*** | -0.0421       | 19.97%                             |
|                         | (-3.46)             | (-0.72)       |                      | (-3.77)    | (-0.82)       |                                    |
| Consumer goods          | -0.2292***          | -0.0255       | 16.07%               | -0.2596*** | -0.0215       | 19.75%                             |
| & services              | (-3.92)             | (-0.46)       |                      | (-4.04)    | (-0.40)       |                                    |
| Manufacturing, energy   | -0.1929***          | -0.0768       | 16.78%               | -0.2320*** | -0.0596       | 20.16%                             |
| & utilities             | (-3.43)             | (-1.57)       |                      | (-3.66)    | (-1.12)       |                                    |
| Hitech, bus. equipment  | ,-0.2415***         | -0.0082       | 15.98%               | -0.2463*** | -0.0455       | 20.02%                             |
| telephone & TV          | (-3.86)             | (-0.16)       |                      | (-4.12)    | (-1.02)       |                                    |
| Healthcare, medical     | -0.2186***          | -0.0562       | 16.35%               | -0.2447*** | -0.0595       | 20.11%                             |
| equipment, & drugs      | (-3.97)             | (-0.87)       |                      | (-4.07)    | (-0.97)       |                                    |
| All other non-financial | -0.2432***          | -0.0053       | 15.98%               | -0.2704*** | -0.0064       | 19.68%                             |
| firms                   | (-3.62)             | (-0.10)       |                      | (-4.00)    | (-0.13)       |                                    |

### Developing a warning system

- The CFNAI has designated three-month moving average CFNAI equal to -0.7 as contraction. Median CATFIN during these months is 0.7680 over 1973-2009 period
- Define CATFIN<sup>+</sup> (CATFIN<sup>−</sup>) = CATFIN if CFNAI ≤ (>) − 0.7, and zero otherwise
- CFNAI in month t + n is regressed on CATFIN<sup>+</sup> and CATFIN<sup>-</sup> in month t

$$CFNAI_{t+n} = \alpha + \gamma^{+} CATFIN_{t}^{+} + \gamma^{-} CATFIN_{t}^{-} + \varepsilon_{t+n}$$

 CATFIN<sup>+</sup> has predictive power (excessive bank risk taking during contractions), whereas CATFIN<sup>-</sup> does not

### Table 6: The Early Warning System

| CFNAI <sub>t+n</sub> | CATFIN <sup>+</sup> | CATFIN    | Adj. <i>R</i> <sup>2</sup> |
|----------------------|---------------------|-----------|----------------------------|
| n=1                  | -1.273***           | -1.580**  | 67.21%                     |
|                      | (-3.23)             | (-2.35)   |                            |
| n=2                  | -0.907**            | -0.167    | 71.30%                     |
|                      | (-2.52)             | (-0.30)   |                            |
| n=3                  | -1.218**            | -0.604    | 61.76%                     |
|                      | (-2.41)             | (-0.97)   |                            |
| n=4                  | -1.567***           | -0.738    | 55.83%                     |
|                      | (-2.76)             | (-1.07)   |                            |
| n=5                  | -1.615**            | -1.070*   | 48.65%                     |
|                      | (-2.41)             | (-1.68)   |                            |
| n=6                  | -2.048***           | -1.114    | 47.83%                     |
|                      | (-2.93)             | (-1.28)   |                            |
| n=7                  | -1.707**            | -0.995    | 41.44%                     |
|                      | (-2.04)             | (-1.22)   |                            |
| n=8                  | -2.326***           | -1.455**  | 42.74%                     |
|                      | (-3.11)             | (-1.99)   |                            |
| n=9                  | -2.889***           | -1.471*   | 48.47%                     |
|                      | (-3.63)             | (-1.66)   |                            |
| n=10                 | -2.730***           | -1.937*   | 43.83%                     |
|                      | (-3.33)             | (-1.97)   |                            |
| n=11                 | -3.087***           | -3.048*** | 47.49%                     |
|                      | (-4.07)             | (-3.30)   |                            |
| n=12                 | -2.244***           | -1.394    | 46.92%                     |
|                      | (-3.00)             | (-1.50)   |                            |

#### Jan. 1973- Dec. 2011



## Why CATFIN works?

### □ CATFIN is correlated to:

- Aggregate bank lending activity
- Financial and economic uncertainty
- Financial sector conditions (bank capital, CDS spreads, bank financial ratios)
- Conditional Asset Pricing Model (ICAPM) in which systemic risk is a priced factor for financial firms only – CATFIN is correlated with business cycle fluctuations (Merton 1973) – independent of market risk

## Conclusions

- □ Banks are still special.
- Monthly estimation of CATFIN can provide regulators with real-time estimates of the risk of macroeconomic downturns around six months into the future.
- □ *CATFIN* can be used by international bank regulators.
- CATFIN can be used in conjunction with a microlevel measure of systemic risk (e.g., MES, co-VAR, etc.) to calibrate systemic risk taxes and limits for large and small banks.