Approaches to Modeling Credit Card Portfolios

Stress Testing Model Symposium
Federal Reserve Bank of Boston

Presented by:
Peter A. Schnall
Chief Risk Officer
Agenda

• Overview of Capital One’s approach to modeling Credit Card charge-offs

• Explore issues in modeling that may require consideration of BHC specific effects

• Propose a principled approach to continuously improve models and to incorporate BHC-specific variation
Our approach to modeling credit card charge-offs

<table>
<thead>
<tr>
<th>Approach</th>
<th>PD</th>
<th>EAD</th>
<th>LGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Features</td>
<td>• Separate modeling systems for major business segments</td>
<td>• Trend forecasts have outperformed PD-based forecasts to-date</td>
<td>• Captures timing of self-recovery</td>
</tr>
<tr>
<td></td>
<td>• Splines for non-linearities</td>
<td></td>
<td>• Allows modeling of management choices (i.e. self recovery vs sale)</td>
</tr>
<tr>
<td></td>
<td>• Up to 8 sub-models per hazard based on:</td>
<td></td>
<td>• Complex approach supports staff planning</td>
</tr>
<tr>
<td></td>
<td>• account age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• delinquency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• account activity/inactivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>• History from 2002</td>
<td>• Vintage level credit line and utilization trends</td>
<td>• C/O amount and date by account</td>
</tr>
<tr>
<td></td>
<td>• Account level data:</td>
<td>• Historic line increase volumes</td>
<td>• Recovery amount and date by account</td>
</tr>
<tr>
<td></td>
<td>• Performance</td>
<td>• National economic data</td>
<td>• Strategy entry amount and date by account (for complex approach)</td>
</tr>
<tr>
<td></td>
<td>• Acct characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bureau attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MSA-level economic data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>• Account level competing hazard survival model with four hazards:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contractual c/o at 180 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bankruptcy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Deceased</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Attrition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MSA-level economic effects built into model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Three Issues in Modeling Credit Card Charge-offs

- Accounting Issues in modeling LGD
- Alternatives for modeling EAD
- Firm- and segment-specific effects in modeling PD

- These issues may require firm specific considerations to create accurate models

- **Objectivity Principle**: Any approach to including firm specific considerations must be objective, preserve methodological consistency across firms, and reflect independent judgments reached by the Federal Reserve

- The difficulty of preserving the Objectivity Principle varies by issue
BHC-specific card recovery practices drive variation in both Provision and PPNR due to material differences in accounting.

Accounting Treatments for Different Approaches to Recovery

<table>
<thead>
<tr>
<th>Sell Charged-off Debt</th>
<th>Self Recover Charge-offs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Recovery recognized at time of sale in the credit provision</td>
<td>• Recovery recognized as cash is received from charged-off borrowers</td>
</tr>
<tr>
<td>• Recovery amount determined by the price of sale</td>
<td>• The amount of cash received is recorded in the credit provision</td>
</tr>
<tr>
<td>- Implicitly includes cost of recovery</td>
<td>• The cost of recovery is recorded in operating expense (PPNR)</td>
</tr>
<tr>
<td>- Implicitly includes discounted value of lifetime recoveries</td>
<td>• ALLL reflects expected cash receipts over the ALLL timeframe</td>
</tr>
<tr>
<td>• ALLL reflects anticipated sales of future charge-offs</td>
<td></td>
</tr>
</tbody>
</table>

Proposal

- Collect information about each firm’s approach to recoveries and their accounting practices
- Ensure that recovery costs are properly accounted for in PPNR and/or Provision depending on approach being modeled
Three Issues in Modeling Credit Card Charge-offs

Accounting Issues in modeling LGD
- Collect information about each firm’s approach to recoveries and their accounting practices
- Ensure that recovery costs are properly accounted for in PPNR and/or Provision depending on approach being modeled

Alternatives for modeling EAD

Firm- and segment-specific effects in modeling PD

Difficulty of Preserving the Objectivity Principle
Variation in Credit Card EAD is driven primarily by variation in Credit Line at Default

\[\text{EAD} = \text{Credit Line At Default} \times \text{Utilization At Default} \]

Driven by:

- Firm level credit line distribution
- Firm level correlation between credit line and default risk (line sloping) – Reflects firm’s credit strategy

Driven by:

- Charge-off type (bankrupt, contractual, etc.) and other smaller effects
- Has lower variation than credit line at default
Variation in Credit Limits, even within bands, and in Line Sloping strategies may require a firm specific approach to modeling EAD.

Firm Average Credit Limit as a Percent of Industry Average (for accounts with credit limit <$1500)

Effect of Sloping Credit Limit by Risk: Ratio of Credit Limit at Default to Average Credit Limit

High Correlation between risk and credit limit

Low Correlation between risk and credit limit

Source: Equifax
Two approaches to modeling EAD

Direct Modeling Using Account Level PD Model

- Apply an account level PD model to the expected EAD for each account to estimate total EAD
- Calculate each account’s contribution to EAD by multiplying PD x Credit Limit x Utilization at Charge-off

<table>
<thead>
<tr>
<th>Account #</th>
<th>PD</th>
<th>Credit Limit</th>
<th>Utilization at charge-off</th>
<th>Contribution to EAD</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td>2.2%</td>
<td>$1,000</td>
<td>80%</td>
<td>$18</td>
</tr>
<tr>
<td># 2</td>
<td>1.5%</td>
<td>$2,500</td>
<td>82%</td>
<td>$31</td>
</tr>
<tr>
<td># 3</td>
<td>0.9%</td>
<td>$15,000</td>
<td>90%</td>
<td>$122</td>
</tr>
<tr>
<td># 4</td>
<td>0.7%</td>
<td>$25,000</td>
<td>95%</td>
<td>$166</td>
</tr>
<tr>
<td># 5</td>
<td>0.4%</td>
<td>$27,500</td>
<td>95%</td>
<td>$105</td>
</tr>
<tr>
<td>Total</td>
<td>1.1%</td>
<td>$441</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This approach fully accounts for variation in credit limit distribution and the correlation between credit limit and risk (line sloping)
- **Caution:** the PD model needs to be valid for each credit limit at the firm level to avoid significant distortion. Firm level PD effects may complicate the approach.

Firm Level Trend Modeling

- Develop time series for each firm’s EAD by credit limit band
 - Modeling components such as Credit Limit at Charge-off and Utilization at Charge-off may improve intuition
- Consult with on-site examiners to identify any expected disruptions to the trend (e.g. recent changes to a credit line increase program)
- In our experience, EAD trends move relatively slowly and yield accurate results
- EAD trends reflect persistent, firm level differences in credit limit distributions and the correlation between credit limit and risk (line sloping)
- EAD trend modeling is easier to implement than Direct Modeling and less prone to unintended distortion
Three Issues in Modeling Credit Card Charge-offs

<table>
<thead>
<tr>
<th>Accounting Issues in modeling LGD</th>
<th>Alternatives for modeling EAD</th>
<th>Firm- and segment-specific effects in modeling PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Collect information about each firm’s approach to recoveries and their accounting practices</td>
<td>• EAD models should reflect variation in credit limit distributions and in the correlation between credit limit and risk (line sloping)</td>
<td></td>
</tr>
<tr>
<td>• Ensure that recovery costs are properly accounted for in PPNR and/or Provision depending on approach being modeled</td>
<td>• EAD can be modeled directly by applying an account level PD model to each account’s credit line (although this requires that the PD model be accurate at the credit line level)</td>
<td></td>
</tr>
</tbody>
</table>
| | • EAD can also be modeled by considering firm specific trends.
 − These trends tend to move slowly and are good proxies for line sloping | |

Easier

More Difficult

Difficulty of Preserving the Objectivity Principle
We use segment indicators in our PD models to capture differences in marketing and customer management strategies for certain segments (1 of 3)

Comparison of Core Model Default Predictions for Two Segments with Similar Credit Measures

Segment B Prediction (segment with unique marketing)

Segment A Prediction (core population)

Observations:
• Model predicts similar performance for Segments A and B
We use segment indicators in our PD models to capture differences in marketing and customer management strategies for certain segments (2 of 3)

Comparison of Actual Defaults and Core Model Predictions
for Two Segments with Similar Credit Measures

Observations:

• Segment B actuals are much better than Segment A's and than the core model prediction

• Segment B variance is due to a multi-faceted marketing approach that is designed to appeal to customers with higher potential. We cannot isolate account-level variables that pick up the difference in marketing approach.
We use segment indicators in our PD models to capture differences in marketing and customer management strategies for certain segments (3 of 3)

Observations:

- Adding Segment B indicator to the model to represent the aggregate difference in marketing approach is statistically valid and corrects the prediction over a long-time frame
Industry level PD models do not capture originator specific effects (mortgage example)

Comparison Industry Model Predictions for Two Comparable Portfolios from Different Originators
(Broker Originated 5 Year ARMs, Vintages 2005-2007)
Industry level PD models do not capture originator specific effects (mortgage example)

Comparison of Actual Default Rates and Industry Model Predictions for Two Comparable Portfolios from Different Originators

(Broker Originated 5 Year ARMs, Vintages 2005-2007)

The loans look the same to the model, BUT:
• Originator B had loose credit standards and was often the lender of last resort
• Originator A had a very tight credit box, a strong brand and only saw the best customers
Proposal for handling BHC-specific effects in PD models

- Explore statistical robustness and persistence of BHC-specific effects. One method would be to add BHC-specific indicators to the industry model.

- For BHC-specific effects that are sufficiently robust, consult on-site examination teams to qualitatively assess the business drivers of the variance and their likely persistence over a two year stress testing horizon.

- Include partial or full BHC-specific effects which have long duration, statistically significance, and which are judged to have high likelihood to persist over a two year stress horizon.
 - These effects could increase or decrease loss estimates.
Three Issues in Modeling Credit Card Charge-offs

<table>
<thead>
<tr>
<th>Accounting Issues in modeling LGD</th>
<th>Alternatives for modeling EAD</th>
<th>Firm- and segment-specific effects in modeling PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Collect information about each firm's approach to recoveries and their accounting practices</td>
<td>- EAD models should recognize the variation in line sloping (i.e. how strongly firms reflect default risk when they determine credit lines)</td>
<td>- Use indicators to help explain behavior of segments in industry data that where there is systematic bias</td>
</tr>
<tr>
<td>- Ensure that recovery costs are properly accounted for in PPNR and/or Provision depending on approach being modeled</td>
<td>- EAD can be modeled directly by applying an account level PD model to each account’s credit line (although this requires that the PD model be accurate at the credit line level)</td>
<td>- Create BHC level indicators to measure statistical robustness of any variation from industry level model</td>
</tr>
<tr>
<td></td>
<td>- EAD can also be modeled by considering firm specific trends.</td>
<td>- Consult on-site examination teams to qualitatively assess business drivers of variance and their likely persistence over a two year stress testing horizon</td>
</tr>
<tr>
<td></td>
<td>- These trends tend to move slowly and are good proxies for line sloping</td>
<td>- Give partial or full credit to BHCs where long duration, statistically significant variation is judged to have high likelihood to persist over a two year stress horizon</td>
</tr>
</tbody>
</table>

Difficulty of Preserving the Objectivity Principle

Easier | More Difficult
A general approach to managing firm specific variation

Objectivity Principle: Any approach to including firm specific considerations must be objective, preserve methodological consistency across firms, and reflect independent judgments reached by the Federal Reserve

1. **Build Industry Level Models**
 - Measure variance for PD, EAD and LGD separately

2. **“Validate” at BHC Level to Measure Variance**
 - On-site examination teams can help apply a business view to the raw data to improve understanding

3. **Identify Drivers of Variance**
 - Adjustments can be positive or negative
 - Amount of adjustment depends on both the statistical evidence and judgment about the likelihood that the effects will persist in stress and over the two year timeframe

4. **Short Term**
 - Adjust Results for significant Variance that is Judged to be Persistent

5. **Long Term**
 - Enhance Data Collection to Improve Next Generation of Models
 - In some cases, but not all, enhanced data can make the “adjustments” unnecessary in the next generation of models