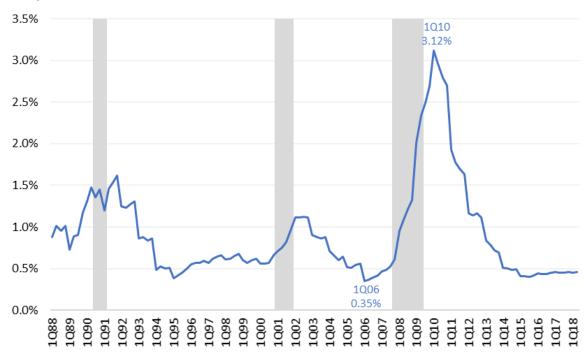


Measures of Model Performance

FRB Modeling Symposium

Michael Szwejbka SVP, Quantitative Model Development U.S. Bank

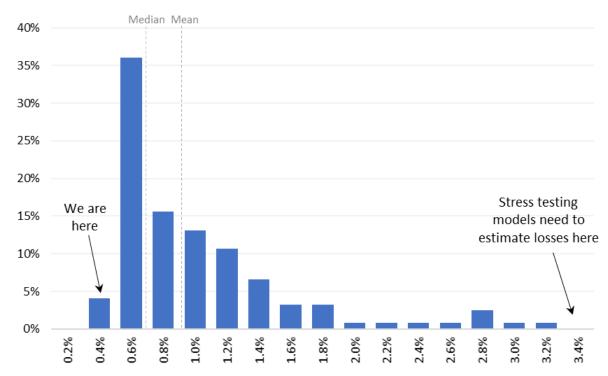

Disclaimer

Views expressed in this presentation are mine and do not necessarily reflect those of U.S. Bank.

Net Charge-Offs

Net Charge-Offs

All banks, all assets


Source: Federal Reserve Economic Data

1Q88 to 2Q18		
Quarters	122	
Max	3.12%	
Min	0.35%	
Mean	0.91%	

3Q14 to 2Q18	
Quarters	16
Max	0.49%
Min	0.40%
Mean	0.44%

Net Charge-Offs

Histogram of Net Charge-Offs

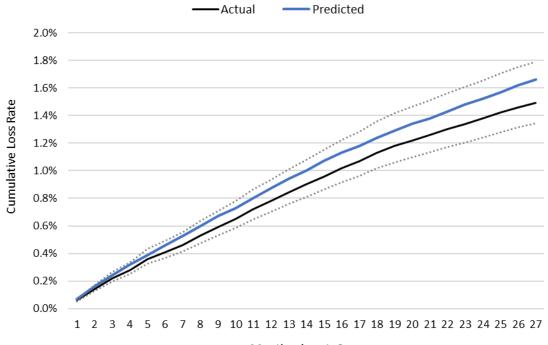
- How do you assess model performance in benign conditions when the models are used to estimate losses at the other end of the loss distribution?
- Is a model that performs well under current conditions fit for use under stress conditions?
- Does "recalibrating" a model under benign conditions make it "more fit for use" in stress?

Measures of Model Performance

How do you measure stress testing model performance under benign economic conditions?

Goal: Models that are appropriately sensitive to macroeconomic factors.

- How do you assess model performance in benign conditions when the models are used to estimate losses at the other end of the loss distribution?
 - Measures may go beyond the usual RMSE, MAPE, etc.
 - Underlying assumptions of the model may have changed
- Is a model that performs well under current conditions fit for use under stress conditions?
 - Not necessarily; 12-month rolling average may work just as well as more complex model in benign conditions
 - 12-month rolling average will not work in stress testing
 - Remember the goal
- Does "recalibrating" a model under benign conditions make it "more fit for use" in stress?
 - Not necessarily; if model is robust, adding one year of benign data should not materially change the model parameters
 - Recalibrating a model may create a better fit to current conditions but may actually hurt the model under stress conditions
 - Remember the goal



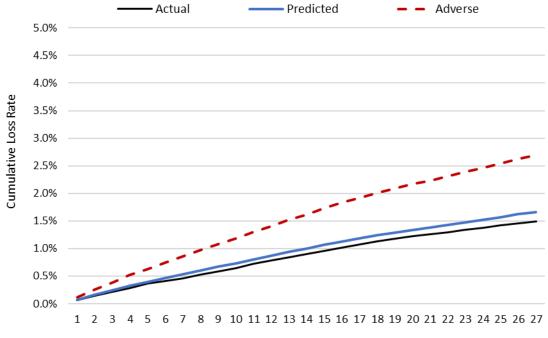
Actual vs Model

- Choose out-of-time launch point such that forecast horizon has at least 9 quarters of actual loss rates (Dec 2015 in this example)
- Run model over 9 quarters with actual macroeconomic factors
- Plot actual vs modeled cumulative default rates
- Assess model performance
- Model over-predicts by 11% over 9 quarters
- However, this does not mean the model is suitable for stress testing.

Why? Because it's being tested under benign conditions.

Cumulative Loss Rates Over 9 Otrs

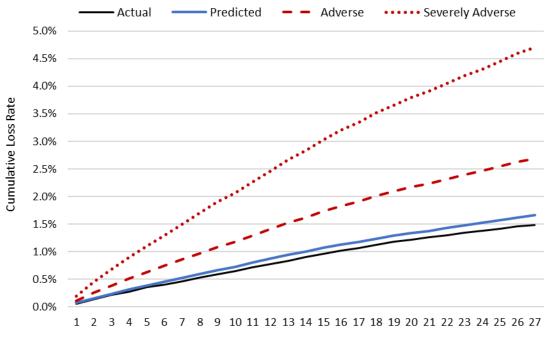
Months since t=0


Cumulative 9 Quarters		
Actual	1.49%	
Predicted	1.66%	
Error	0.17%	
% Error	11.41%	

Add Adverse

- Using same launch point, run model over 9 quarters with macroeconomic factors from the adverse scenario
- Plot actual, model and adverse cumulative default rates
- Assess model performance
- Adverse increases loss rate to 2.7%
- Provides context to modeled rates with actual macroeconomic factors
- Is this model fit for use in stress testing?

Cumulative Loss Rates Over 9 Qtrs

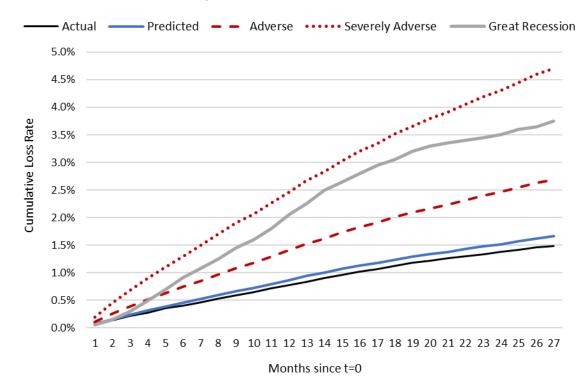

Months since t=0

Cumulative 9 Quarters		
Actual	1.49%	
Predicted	1.66%	
Error	0.17%	
% Error	11.41%	
Adverse	2.69%	
% Increase to Adverse	162%	

Add Severely Adverse

- Using same launch point, run model over 9 quarters with macroeconomic factors from the severely adverse scenario
- Plot actual, model, adverse and severely adverse cumulative default rates
- Assess model performance
- Severely adverse loss rate goes to 4.7%
- Provides further context to modeled rates with actual macroeconomic factors
- Is this model fit for use in stress testing?

Cumulative Loss Rates Over 9 Qtrs


Months since t=0

Cumulative 9 Quarters	;
Actual	1.49%
Predicted	1.66%
Error	0.17%
% Error	11.41%
Adverse	2.69%
% Increase to Adverse	162%
Sev Adverse	4.70%
% Increase to Sev Adverse	283%

Extra Bonus Feature

- Add the historical loss from the Great Recession
- Plot actual, model, adverse, severely adverse and Great Recession cumulative default rates
- Assess model performance
- Great Recession loss rate was 3.8%
- Provides even further context to modeled outputs and scenarios
- Is this model fit for use in stress testing?

Cumulative Loss Rates Over 9 Qtrs

Cumulative 9 Quarters		
Actual	1.49%	
Predicted	1.66%	
Error	0.17%	
% Error	11.41%	
Adverse	2.69%	
% Increase to Adverse	162%	

Sev Adverse

% Increase to Sev Adverse

Great Recession 3.75%

4.70%

283%

Conclusions

- Stress testing models should be appropriately sensitive to macroeconomic factors
- ► Model performance under the current benign economic conditions may not be useful in assessing if the model is fit for use in stress conditions
- ▶ Need to consider other non-quantitative measures: portfolio composition, acquisitions, underlying assumptions, etc.

Michael Szwejbka michael.szwejbka@usbank.com