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T his study is the third in a series of Federal Reserve Bank of Boston
studies contributing to a broader understanding of derivative
securities. The first (Fortune 1995) presented the rudiments of

option pricing theory and addressed the equivalence between exchange-
traded options and portfolios of underlying securities, making the point
that plain vanilla options--and many other derivative securities--are
really repackages of old instruments, not novel in themselves. That paper
used the concept of portfolio insurance as an example of this equivalence.
The second (Minehan and Simons 1995) summarized the presentations at
"Managing Risk in the ’90s: What Should You Be Asking about Deriva-
tives?", an educational forum sponsored by the Boston Fed.

The present paper addresses the question of how well the best-
known option pricing model--the Black-Scholes model--works. A full
evaluation of the many option pricing models developed since their
seminal paper in 1973 is beyond the scope of this paper. Rather, the goal
is to acquaint a general audience with the key characteristics of a model
that is still widely used, and to indicate the opportunities for improve-
ment which might emerge from current research and which are undoubt-
edly the basis for the considerable current research on derivative securi-
ties. The hope is that this study will be useful to students of financial
markets as well as to financial market practitioners, and that it will
stimulate them to look into the more recent literature on the subject.

The paper is organized as follows. The next section briefly reviews
the key features of the Black-Scholes model, identifying some of its most
prominent assumptions and laying a foundation for the remainder of
the paper. The second section employs recent data on almost one-half
million options transactions to evaluate the Black-Scholes model. The
third section discusses some of the reasons why the Black-Scholes model
falls short and assesses some recent research designed to improve our
ability to explain option prices. The paper ends with a brief summary.
Those readers unfamiliar with the basics of stock options might refer to



Box 1: The Rudiments of Options on Common Stock

A call option gives the holder the right to acquire
shares of a stock at the exercise price, also called
the strike price, on or before a specific date, called the
expiration date. The seller of the call, called the writer,
is obligated to deliver the shares at the strike price if
the option is exercised. A call option is said to be a
covered call when the writer holds the shares that
might have to be delivered upon exercise. A call
option is naked when the writer does not own the
underlying stock. Writing a covered call is rouglfly
equivalent to writing a naked put option at the same
strike price. Naked call options expose the option
holder to the risk of nondelivery if the writer cannot
buy the shares for delivery. Brokers typically require
higher margins on naked calls.

A put option gives the holder the right to sell shares
at the strike price on or before the exercise date. The
writer of a put option is obligated to receive those
shares and to deliver the required cash. A put option
is covered if the writer has a short position in the
underlying shares; otherwise, the put is naked. Writ-
ing a covered put is roughly equivalent to writing a
naked call if the writer does not have a long position
in the shares. Naked put options expose the option
holder to the risk of loss if the writer does not have
sufficient cash to pay for delivered shares.

The price paid for an option is called the premium.
An option is said to be in-the-money if the holder
would profit by exercising it; otherwise it is either
at-the-money or out-of-the-money. Thus, a call option
is in-the-money if the stock price exceeds the strike
price, and it is out-of-the-money if the stock price is
below the strike price. A put option is in-the-money if
the stock price is below the strike price and out-of-the-
money if the stock price exceeds the strike price. An
option that remains out-of-the-money will not be
exercised and will expire without any value.

An option is European if it can be exercised only on
the expiration date. It is American if it can be exer-
cised at any time on or before the expiration date. An
equity option is an option on a specific firm’s common
stock. One equity option contract controls 100 shares
of stock. When equity options are exercised, the re-
sulting exchange is between cash and shares. All
equity options traded on registered exchanges in the
United States are American. An example of an equity

option is the range of options on Intel’s common stock.
Traded at the American Stock Exchange, this option is
available for several strike prices and expiration dates.
For example, on February 2, 1996 there were transac-
tions in the Intel call option expiring on February 16
with a strike price of $50 per share ($5,000 per con-
tract). The premium at the settlement (close of trad-
ing) was $7 per share ($700 per contract). Because
Intel’s closing price on NASDAQ was $56.75 per
share, this call option was in-the-money by $6.75 per
share ($675 per contract).

A stock index option is an option on a stock index,
and the resulting exchange is one of cash for cash. The
holder of an exercised stock index option receives the
difference between the S&P 500 at the time of exercise
and the strike price, and the writer pays that amount.
Each index futures contract is for $100 times the value
of the index. All stock index options traded in the
United States are American with one significant ex-
ception: The S&P 500-stock index option is European.
Denoted as SPX, the S&P 500 index option is traded
on the Chicago Board of Trade’s Option Exchange
(CBOE). On February 2, 1996, the CBOE’s SPX index
option was traded for expiration dates from February
1996 through December 1997. For each expiration date
there were options at a range of strike prices. On
February 2, 1996, when the S&P 500 closed at 635.84,
the settlement premium on the February SPX call
option with a strike price of 640 ($64,000 per contract)
was 5.00 ($500 per contract). The option was out-of-
the-money, because if it were immediately exercised,
the holder would receive $63,584, for which he would
pay $64,000.

All traded options expire on the third Friday of their
exercise month. Option contracts are not written di-
rectly between the buyer and seller. Instead, each
party makes a contract with a clearing house. In the
United States the Option Clearing Corporation is the
major clearing house. The primary function of the
clearing house is to eliminate counterparty risk as a
significant consideration. That is, the option holder
need not fear that the writer will not honor the option,
because the clearing house will honor it. If the holder
of an option chooses to exercise it, the clearing house
will randomly select a writer of the same type of
option to make delivery.

Notation

C: the premium on a call option
P: the premium on a put option
S: the price of the underlying security
X: the option’s strike price

r: the riskless rate of interest
or: the option’s volatility
T: the option’s expiration date
t: the current date
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Fortune (1995). Box 1 reviews briefly the fundamental
language of options and explains the notation used in
the paper.

I. The Black-Scholes Model

In 1973, Myron Scholes and the late Fischer Black
published their seminal paper on option pricing (Black
and Scholes 1973). The Black-Scholes model revolu-
tionized financial economics in several ways. First, it
contributed to our understanding of a wide range of
contracts with option-like features. For example, the

call feature in corporate and municipal bonds is
clearly an option, as is the refinancing privilege in
mortgages. Second, it allowed us to revise our under-
standing of traditional financial instruments. For ex-
ample, because shareholders can turn the company
over to creditors if it has negative net worth, corporate
debt can be viewed as a put option bought by the
shareholders from creditors.

The Black-Scholes model explains the prices on
European options, which cannot be exercised before
the expiration date. Box 2 summarizes the Black-
Scholes model for pricing a European call option on
which dividends are paid continuously at a constant

Box 2: The Black-Scholes Option Pricing Model with

Following Merton (1973), we consider a share of
common stock that pays a continuous dividend at
a constant yield of q at each moment, and a call
option that expires at time T. The current price of a
share, at time t, is denoted as St. This price can be
interpreted as the sum of two components. The first
component is the present value of the dividends to
be paid over the period up to time T, which is the
expiration date of a call option on the stock. The
second component is the value that is "at risk."
Because payment of dividends reduces the value of
the stock at the rate q, the stock price at time T is
reduced by the factor e-q(T-t), so the present value
"at-risk" is Ste-q(T-t).

Denoting the "at-risk" component as S*, the
Black-Scholes model assumes that S* evolves over
time as a diffusion process, which can be written as

dS*/S* = /xdt + o-dz (B2.1)

in which /x, called the "drift," is the expected
instantaneous rate of change in S*, and ~r, called the
"volatility," is the standard deviation of the instan-
taneous rate of change in S*. The term dz, called a
Wiener variable, is a norlnally distributed random
variable with a mean of zero and a standard devi-
ation of x/dt. Thus, the rate of change in S* vibrates
randomly around the drift. If we convert this to a
statement about the value of S*, we find that S* will
be log-normally distributed, that is, the logarithm
of S* will be normally distributed.

Now consider a European call option on that
stock which expires in (T - t) days. The Black-
Scholes model describes the equilibrium price, or

Continuous Dividends

premium, on an option as a function of the risky
component of the stock price (Ste-q(T-t)), the

present value of the option’s strike price (Xe-r(T-t)),

the riskless rate of interest (r), the dividend-yield on
the stock (q), the time remaining until the option
expires (T - t), and the "volatility" of the return on
the underlying security (~r). The volatility is defined
as the standard deviation of the rate of change in
the stock’s price.

Recalling that St* = Ste-q(T-t), the Black-Scholes
relationship is

Ct ~- St*N(dl) - Xe-r(T-t) N(d2)    (B2.2)
where

[In(S/X) + (r - q + ½o-2)(T - t)]/o-~/(T - t)

d2 = d~ - o-k/(T - t)

In this formula N(d) is the probability that a
standard normal random variable is less than d.
N(d1) and N(d2), both positive but less than one,
represent the number of shares and the amount of
debt in a portfolio that exactly replicate the price of
the option. Thus, a call option on one share is
exactly equivalent to buying N(dl) shares of the
stock and selling N(d2) units of a bond with present
value Xe-r(T-t~. For example, if N(d1) = 0.5 and
N(d2) = 0.4, the call option is exactly equivalent to
one-half share of the stock plus borrowing 40
percent of the present value of the strike price; this
is the option’s "replicating portfolio" and a position
consisting of one call option, shorting N(d~) shares,
and purchasing Xe-r(T-t) N(d2) of bonds creates a
perfect hedge, exposing the holder to no price risk.
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rate. A crucial feature of the model is that the call
option is eqttivalent to a portfolio constructed from
the underlying stock and bonds. The "option-replicat-
ing portfolio" consists of a fractional share of the stock
combined with borrowing a specific amount at the
riskless rate of interest. This equivalence, developed
more fully in Fortune (1995), creates price relation-
ships which are maintained by the arbitrage of in-
formed traders. The Black-Scholes option pricing
model is derived by identifying an option-replicating
portfolio, then equating the option’s premium ~vith
the value of that portfolio.

An essential assumption of this pricing model is
that investors arbitrage away any profits created by
gaps in asset pricing. For example, if the call is trading

The Btack-Scholes model
revolutionized financial economics

in several ways, contributing
to our understanding of a

wide range of contracts with
option-like features.

"rich," investors will write calls and buy the replicat-
ing portfolio, thereby forcing the prices back into line.
If the option is trading low, traders will buy the option
and short the option-replicating portfolio (that is, sell
stocks and buy bonds in the correct proportions). By
doing so, traders take advantage of riskless opportu-
nities to make profits, and in so doing they force
option, stock, and bond prices to conform to an
equilibrium relationship.

Arbitrage allows European puts to be priced
using put-call parity. Consider purchasing one call that
expires at time T and lending the present value of
the strike price at the riskless rate of interest. The cost
is Ct q- Xe-r(T-t). (See Box 1 for notation: C is the call
premium, X is the call’s strike price, r is the riskless
interest rate, T is the call’s expiration date, ancl t is the
current date.) At the option’s expiration the position is
worth the highest of the stock price (ST) or the strike
price, a value denoted as max(ST, X). Now consider
another investment, purchasing one put with the same
strike price as the call, plus buying the fraction e-q(T-t)

of one share of the stock. Denoting the put premium
by P and the stock price by S, then the cost of this is

Pt q- e-q(T t)st, and, at time T, the value at this position
is also max(ST, X).~ Because both positions have the
same terminal value, arbitrage will force them to have
the same initial value.

Suppose that Ct + Xe-r(T-t) > Pt ÷ e-q(T-t)st, for
example. In this case, the cost of the first position
exceeds the cost of the second, but both must be worth
the same at the option’s expiration. The first position is
overpriced relative to the second, and shrewd inves-
tors will go short the first and long the second; that is,
they ~vill write calls and sell bonds (borrow), while
simultaneously buying both puts and the underlying
stock. The result will be that, in equilibrium, equality
will prevail and Ct + Xe-r(T-t) = Pt q- e-q(T-t)st¯ Thus,
arbitrage will force a parity between premiulns of put
and call options.

Using this put-call parity, it can be shown that the
premium for a European put option paying a contin-
uous dividend at q percent of the stock price is:

Pt = -e-q(T-t~StN(-dl) + Xe-r~T-t~N(-d2)

where d~ and d2 are defined as in Box 2.
The importance of arbitrage in the pricing of

options is clear. However, many option pricing mod--
els can be derived from the assumption of complete
arbitrage. Each would differ accordiug to the proba-
bility distribution of the price of the underlying asset.
What makes the Black-Scholes model unique is that it
assumes that stock prices are log-normally distrib-
uted, that is, that the logarithm of the stock price
is normally distributed. This is often expressed h~ a
"diffusion model" (see Box 2) in which the (instanta-
neous) rate of change in the stock price is the sum of
two parts, a "drift," defined as the difference bet~veen
the expected rate of change in the stock price and
the dividend yield, and "noise," defined as a random
variable with zero mean and constant variance. The
variance of the noise is called the "volatility" of the
stock’s rate of price change. Thus, the rate of change in
a stock price vibrates randomly around its expected
value in a fashion sometimes called "white noise."

The Black-Scholes models of put and call option
pricing apply directly to European options as long as
a continuous dividend is paid at a constant rate. If no

~ Consider the call cure bond position, purchased for Ct +
Xe r(T t). If, at expiration, ST <- X, the call will expire without value
and the position will be worth the accumulated value of the bond,
or X. However, if, at expiration, the call is in-the-money (that is,
ST > X), it will be exercised and the holder will receive S~r - X.
When added to the value of the bond at time T, the position is worth
S~- - X + X = Sr. Thus, the call cure bond position is worth the
highest of ST or X, a value denoted by max(ST, X).
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dividends are paid, the models also apply to American
call options, which can be exercised at any time. In this
case, it can be sho~vn that there is no incentive for
early exercise, hence the American call option must
trade like its European counterpart. However, the
Black-Scholes model does not hold for American put
options, because these might be exercised early, nor
does it apply to any American option (put or call)
when a dividend is paid.2 Our empirical analysis will
sidestep those problems by focusing on European-
style options, which cannot be exercised early.

A call option’s intrinsic value is defined as
max(S - X,0), that is, the largest of S - X or zero; a
put option’s intrinsic value is max(X - S,0). When the
stock price (S) exceeds a call option’s strike price (X),
or falls short of a put option’s strike price, the option
has a positive intrinsic value because if it could be
immediately exercised, the holder would receive a
gain of S - X for a call, or X - S for a put. However,
if S < X, the holder of a call will not exercise the option
and it has no intrinsic value; if X > S this ~vill be true
for a put.

The intrinsic value of a call is the kinked line in
Figure 1 (a put’s intrinsic value, not shown, would
have the opposite kink). When the stock price exceeds

the strike price, the call option is said to be in-the-
money. It is out-of-the-money when the stock price
is below the strike price. Thus, the kinked line, or
intrinsic value, is the income from immediately exer-
cising the option: When the option is out-of-the-
money, its intrinsic value is zero, and when it is in
the money, the intrinsic value is the amount by which
S exceeds X.

Convexity, the Call Premium, and the Greek Chorus

The premium, or price paid for the option, is
shown by the curved line in Figure 1. This cttrvature,
or "convexity," is a key characteristic of the premium
on a call option. Figure 1 shows the relationship
between a call option’s premium and the underlying
stock price for a hypothetical option having a 60-day
term, a strike price of $50, and a volatility of 20 per-
cent. A 5 percent riskless interest rate is assumed. The
call premium has an upward-sloping relationship
with the stock price, and the slope rises as the stock
price rises. This means that the sensitivity of the call
premium to changes in the stock price is not constant
and that the option-replicating portfolio changes with
the stock price.

The convexity of option premiums gives rise to a
number of technical concepts which describe the re-
sponse of the premium to changes in the variables and
parameters of the model. For example, the relation-
ship between the premium and the stock price is
captured by the option’s Delta (zX) and its Gamma (F).
Defined as the slope of the premium at each stock
price, the Delta tells the trader how sensitive the
option price is to a change in the stock price.3 It also
tells the trader the value of the hedging ratio.4 For
each share of stock held, a perfect hedge requires
writing 1/A~ call options or buying 1/Ap puts. Figure
2 shows the Delta for our hypothetical call option as a
function of the stock price. As S increases, the value
of Delta rises until it reaches its maximum at a stock

2 If a dividend is paid, an American call option might be
exercised early to capture the dividend. American puts might be
exercised early regardless of a dividend payment if the}, are
deep-in-the-money. Thus, American options might be priced differ-
ently from European options.

~ Delta is defined as ~X~ = OC/OS for a call and /~p = OP/OS for
a put.

4 The hedging ratio is the number of options that must be
written or bought to insulate the investor from the effects of a
change in the price of a share of the underlying stock. Thus, if ~ =
0.33, the hedging ratio using calls is -3, that is, calls on 300 shares
(3 contracts) must be written to protect 100 shares against a change
in the stock price.
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Figure 2

Parameter Value
1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0

The Greek Chorus and the Stock Price

Gamma
(scaled)

Delta

(scaled)

-20     -15     -10 5
Dollars in-the-Money (S - X)

15     20

price of about $60, or $10 in-the-money. After that
point, the option premium and the stock price have a
1:1 relationship. The increasing Delta also means that
the hedging ratio falls as the stock price rises. At
higher stock prices, fewer call options need to be
written to insulate the investor from changes in the
stock price.

The Gamma is the change in the Delta when the
stock price changes.5 Gamma is positive for calls and
negative for puts. The Gan’una tells the trader how
much the hedging ratio changes if the stock price
changes. If Gamma is zero, Delta would be indepen-
dent of S and changes in S would not require adjust-
ment of the number of calls required to hedge against
further changes in S. The greater is Gamma, the more
"out-of-line" a hedge becomes when the stock price
changes, and the more frequently the trader must
adjust the hedge.

Figure 2 shows the value of Gamma as a function
of the amount by which our hypothetical call option is

5 Fc = 0A~/0S = 02C/OS2 for a call and Fp = c3Ap/0S = 02p/0s2

for a put.

in-the-money.6 Gamma is ahnost zero for deep-in-the-
money and deep-out-of-the-money options, but it
reaches a peak for near-the-money options. In short,
traders holding near-the-money options will have to
adjust their hedges frequently and sizably as the stock
price vibrates. If traders want to go on long vacations
without changing their hedges, they should focus on
far-away-from-the-money options, which have near-
zero Gammas.

A third member of the Greek chorus is the op-
tion’s Lambda, denoted by A, also called Vega.7 Vega
measures the sensitivity of the call premium to
changes in volatility. The Vega is the same for calls
and puts having the same strike price and expiration

6 Because the actual values of Delta, Gamma, and Vega are very
different, some scaling is necessary to put them on the same figure.
We have scaled by dividing actual values by the maximum value.
Thus, each curve in Figure 2 shows the associated parameter
relative to its peak value, with the peak set to 1. Note that Delta is
already scaled since its maximum is 1.

7 Vega is not a Greek letter, but it serves as a useful mnemonic
for the sensitivity of the premium to changes in Volatility. A~ =
OC/0o- for a call and Ap : OP/Oo- for a put, where o- is the volatility
of the daily return on the stock.
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date. As Figure 2 shows, a call option’s Vega conforms
closely to the pattern of its Gamma, peaking for
near-the-money options and falling to zero for deep-
out or deep-in options. Thus, near-the-money options
appear to be most sensitive to changes in volatility.

Because an option’s premium is directly related to
its volatility--the higher the volatility, the greater the
chance of it being deep-in-the-money at expiration--
any propositions about an option’s price can be trans-
lated into statements about the option’s volatility, and
vice versa. For example, other things equal, a high
volatility is synonymous with a high option premium
for both puts and calls. Thus, in many contexts we
can use volatility and premium interchangeably. We
will use this result below when we address an option’s
implied volatility.

Other Greeks are present in the Black-Scholes
pantheon, though they are lesser gods. The option’s
Rho (p) is the sensitivity of the call premium to
changes in the riskless interest rate.8 Rho is always
positive for a call (negative for a put) because a rise in
the interest rate reduces the present value of the strike
price paid (or received) at expiration if the option is
exercised. The option’s Theta (0) measures the change
in the premium as the term shortens by one time unit.9
Theta is always negative because an option is less
valuable the shorter the time remaining.

The Black-Scholes Assumptions

The assumptions underlying the Black-Scholes
model are few, but strong. They are:

¯ Arbitrage: Traders can, and will, eliminate any
arbitrage profits by simultaneously buying (or
writing) options and writing (or buying) the
option-replicating portfolio whenever profitable
opportunities appear.

¯ Continuous Trading: Trading in both the option
and the underlying security is continuous in
time, that is, transactions can occur simulta-
neously in related markets at any instant.

¯ Leverage: Traders can borrow or lend in unlimited
amounts at the riskless rate of interest.

¯ Homogeneity: Traders agree on the values of the
relevant parameters, for example, on the riskless
rate of interest and on the volatility of the returns
on the underlying security.

¯ Distribution: The price of the underlying security
is log-normally distributed with statistically in-

dependent price changes, and with constant
mean and constant variance.

¯ Continuous Prices: No discontinuous jumps occur
in the price of the underlying security.

¯ Transactions Costs: The cost of engaging in arbi-
trage is negligibly small.
The arbitrage assumption, a fundamental proposi-

tion in economics, has been discussed above. The
continuous trading assumption ensures that at all times
traders can establish hedges by silnultaneously trad-
ing in options and in the underlying portfolio. This
is important because the Black-Scholes model derives
its power from the assumption that at any instant,

If traders want to go away on
long vacations without changing
their hedges, they should focus on
far-from-the-money options, which

have near-zero Gammas.

arbitrage will force an option’s premium to be equal
to the value of the replicating portfolio. This cannot
be done if trading occurs in one market while trading
in related markets is barred or delayed. For example,
during a halt in trading of the underlyh~g security
one would not expect option premiums to conform to
the Black-Scholes model. This would also be true if
the underlying security were inactively traded, so that
the trader had "stale" information on its price when
contemplating an options transaction.

The leverage assumption allows the riskless inter-
est rate to be used in options pricing without reference
to a trader’s financial position, that is, to whether and
how much he is borrowing or lending. Clearly this is
an assumption adopted for convenience and is not
strictly true. However, it is not clear how one would
proceed if the rate on loans was related to traders’
financial choices. This assumption is common to fi-
nance theory: For example, it is one of the assumptions
of the Capital Asset Pricing Model. Furthermore,
while private traders have credit risk, important play-
ers in the option markets, such as nonfinancial corpo-
rations and major financial institutions, have very low
credit risk over the lifetime of most options (a year or
less), suggesting that departures from this assumption
might not be very important.

The homogeneity assumption, that traders share
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the sal-ne probability beliefs and opportunities, flies in
the face of comlnon sense. Clearly, traders differ in
their judgments of such important things as the vola-
tility of an asset’s future returns, and they also differ in
their time horizons, some thinking in hours, others in
days, and still others in weeks, months, or years.
Indeed, much of the actual trading that occurs must be
due to differences in these judgments, for otherwise
there would be no disagreements with "the market"
and financial markets would be pretty dull and unin-
teresting.

The distribution assumpfion is that stock prices are
generated by a specific statistical process, called a
diffusion process, which leads to a normal distribution
of the logarithm of the stock’s price. Furthermore, the
continuous price assumption means that any changes in
prices that are observed reflect only different draws
from the same underlying log-normal distribution, not
a change in the underlying probability distribution
itself.

II. Tests of the Black-Scholes Model

Assessments of a model’s validity can be done in
two ways. First, the model’s predictions can be con-
fronted with historical data to determine whether the
predictions are accurate, at least within some statisti-
cal standard of confidence. Second, the assumptions
made in developing the model can be assessed to
determine if they are consistent with observed behav-
ior or historical data.

A long tradition in economics focuses on the first
type of tests, arguing that "the proof is in the pud-
ding." It is argued that any theory requires assump-
tions that might be judged "unrealistic," and that if
we focus on the assumptions, we can end up ~vith no
foundations for deriving the generalizations that make
theories useful. The only proper test of a theory lies in
its predictive ability: The theory that consistently
predicts best is the best theory, regardless of the
assumptions required to generate the theory.

Tests based on assumptions are justified by the
principle of "garbage in-garbage out." This approach
argues that no theory derived from invalid assump-
tions can be valid. Even if it appears to have predictive
abilities, those can slip away quickly when changes in
the environment make the invalid assumptions more
pivotal.

Our analysis takes an agnostic position on this
methodological debate, looking at both predictions
and assumptions of the Black-Scholes model.

The Data

The data used in this study are from the Chicago
Board Options Exchange’s Market Data Retrieval Sys-
tem. The MDR reports the number of contracts traded,
the time of the transaction, the premium paid, the
characteristics of the option (put or call, expiration
date, strike price), and the price of the underlying
stock at its last trade. This information is available for
each option listed on the CBOE, providing as close to

Assessments of a model’s vali’dity
can be done in two ways.
The model’s predictions

can be confronted with historical
data, or the assumptions made

in developing the model
can be assessed.

a real-time record of transactions as can be found.
While our analysis uses only records of actual trans-
actions, the MDR also reports the same information
for every request of a quote. Quote records differ from
the transaction records only in that they show both the
bid and asked premiums and have a zero number of
contracts traded.

The data used are for the 1992-94 period. We
selected the MDR data for the S&P 500-stock index
(SPX) for several reasons. First, the SPX options con-
tract is the only European-style stock index option
traded on the CBOE. All options on individual stocks
and on other indices (for example, the S&P 100 index,
the Major Market Index, the NASDAQ 100 index) are
American options for which the Black-Scholes model
would not apply. The ability to focus on a European-
style option has several advantages. By allowing us
to ignore the potential influence of early exercise, a
possibility that significantly affects the premiums on
American options on dividend-payh~g stocks as well
as the premiums on deep-in-the-money American put
options, we can focus on options for which the Black-
Scholes model was designed. In addition, our interest
is not in individual stocks and their options, but in the
predictive power of the Black-Scholes option pricing
model. Thus, an index option allows us to make
broader generalizations about model performance
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than would a select set of equity options. Finally, the
S&P 500 index options trade in a very active market,
while options on many individual stocks and on some
other indices are thinly traded.

The full MDR data set for the SPX over the
roughly 758 trading days in the 1992-94 period con-
sisted of more than 100 million records. In order to
bring this down to a manageable size, we eliminated
all records that were requests for quotes, selecting
only records reflecting actual transactions. Some of
these transaction records were cancellations of previ-
ous trades, for example, trades made in error. If a
trade was canceled, we included the records of the
original transaction because they represented market
conditions at the tilne of the trade, and because there

The Black-Scholes model assumes
that investors know the volatility

of the rate of return on the
underlying asset, and that an

option’s implied volatility should
differ from the true volatility only

because of random events.

is no way to determine precisely which transaction
was being canceled. We eliminated cancellations be-
cause they record the S&P 500 at the time of the
cancellation, not the time of the original trade. Thus,
cancellation records will contain stale prices.

This screening created a data set with over
726,000 records. In order to complete the data required
for each transaction, the bond-equivalent yield (aver-
age of bid and asked prices) on the Treasury bill with
maturity closest to the expiration date of the option
was used as a riskless interest rate. These data were
available for 180-day terms or less, so we excluded
options with a term longer than 180 days, leaving over
486,000 usable records having both CB©E and Trea-
sury bill data. For each of these, we assigned a
dividend yield based on the S&P 500 dividend yield in
the month of the option trade.

Because each record shows the actual S&P 500
at almost the same time as the option transaction, the
MDR provides an excellent basis for estimating the
theoretically correct option premium and evaluating
its relationship to actual option premiums. There are,

however, some minor problems with interpreting the
MDR data as providing a trader’s-eye view of option
pricing. The transaction data are not entered into the
CBOE computer at the exact moment of the trade.
Instead, a ticket is filled out and then entered into the
computer, and it is only at that time that the actual
level of the S&P 500 is recorded. In short, the S&P 500
entries necessarily lag behind the option premium
entries, so if the S&P 500 is rising (falling) rapidly, the
reported value of the SPX will be above (below) the
true value known to traders at the time of the trans-
action.

Test 1: An Implied Volatility Test

A key variable in the Black-Scholes model is the
volatility of returns on the underlying asset, the SPX
in our case. Investors are assumed to know the true
standard deviation of the rate of return over the term
of the option, and this information is embedded in
the option premium. While the true volatility is an
unobservable variable, the market’s estimate of it can
be inferred from option premiums. The Black-Scholes
model assumes that this "implied volatility" is an
optimal forecast of the volatility in SPX returns ob-
served over the term of the option.

The calculation of an option’s implied volatility is
reasonably straightforward. Six variables are needed
to compute the predicted premium on a call or put
option using the Black-Scholes model. Five of these
can be objectively measured within reasonable toler-
ance levels: the stock price (S), the strike price (X), the
remaining life of the option (T - t), the riskless rate
of interest over the remaining life of the option (r),
typically measured by the rate of interest on U.S.
Treasury securities that mature on the option’s expi-
ration date, and the dividend yield (q). The sixth
variable, the "volatility" of the return on the stock
price, denoted by o-, is unobservable and must be
estimated using numerical methods. Using reasonable
values of all the known variables, the implied volatil-
ity of an option can be computed as the value of ~ that
makes the predicted Black-Scholes premium exactly
equal to the actual premium. An example of the
computation of the implied volatility on an option is
shown in Box 3.

The Black-Scholes model assumes that investors
know the volatility of the rate of return on the under-
lying asset, and that this volatility is measured by the
(population) standard deviation. If so, an option’s
implied volatility should differ from the true volatility
only because of random events. While these discrep-
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Box 3: Computing Implied Volatility

At 8:55:02 a.m. on December 30, 1994 a trans-
action was recorded for 100 contracts on SPX
calls having a strike price of 460 and expiring on
March 17, 1995. The call premium was 12.75 and
the value of the S&P 500 was recorded as 461.93
at the time of the trade. The option had a term of
77 days, the annual interest rate on Treasury bills
that expired closest to that date was 5.56 percent
(0.00015233 per day), and the dividend-yield pre-
vailing at the thne was 3.01 percent (0.00008247 per
day).

The Black-Scholes model for this call option
(see Box 2) allows us to compute the implied
volatility. For this option we have S = 461.93,
X = 460, C = 12.75, T - t = 77, r = 0.00015233
and q = 0.00008247. Denoting the daily volatility
as or, the model in Box 2 gives

[In(461.93/460) + (0.00015233 - 0.00008247

1/2o2)(77)]/(o-3/77) (B3.1)

= (0.0011156 + 4.387482 o-2)/cr

d2 = dl - 8.77496~

For each possible value of cr the values of
N(d1) and N(d2) can be computed from the
standard normal distribution function. These
values can then be fed into the implicit equation

C - [Se-q(T-t)N(dl) - Xe-r~T-t) N(d2)] = 0 (B3.2)

where C is the actual premium and the term in
brackets is the Black-Scholes theoretical pre-
mium. Different values of o- can be tried until the
theoretical and actual premiums are equal. The
solution for the daily volatility is the value of o-
that solves equation (B3:2), hence it is the daily
standard deviation that makes the Black-Scholes
model explain the observed premium. To con-
vert this to a percentage value at annual rates
we multiply o-by 1003/253 (following the con-
vention of using a 253-day trading year). For our
particular option, the implied volatility is 10.3
percent.

Computations for the 486,000 options transac-
tions in our sample were done using the OPT-
MUM module for the statistical and economet-
rics program GAUSS.

ancies might occur, they should be very short-lived
and random: Informed investors will observe the
discrepancy and engage in arbitrage, which quickly
returns things to their normal relationships.

Figure 3 reports two measures of the volatility in
the rate of return on the S&P 500 index for each
trading day in the 1992-94 period.1° The "actual"
volatility is the ex post standard deviation of the daily
change in the logarithm of the S&P 500 over a 60-day
horizon, converted to a percentage at an annual rate.
For example, for January 5, 1993 the standard devia-
tion of the daily change in lnS&P500 was computed
for the next 60 calendar days; this became the actual
volatility for that day. Note that the actual volatility is
the realization of one outcome from the entire proba-
bility distribution of the standard deviation of the rate
of return. While no single realization will be equal to
the "true" volatility, the actual volatility should equal
the true volatility, "on average."

The second measure of volatility is the implied
volatility. This was constructed as follows, using the
data described above. For each trading day, the im-
plied volatility on call options meeting two criteria
was computed. The criteria were that the option had
45 to 75 calendar days to expiration (the average
was 61 days) and that it be near the money (defined
as a spread between S&P 500 and strike price no more
than 2.5 percent of the S&P 500). The first criterion
was adopted to match the term of the implied volatil-
ity with the 60-day term of the actual volatility. The
second criterion was chosen because, as we shall see
later, near-the-money options are most likely to con-
form to Black-Scholes predictions.

The Black-Scholes model assumes that an option’s
implied volatility is an optimal forecast of the volatil-
ity in SPX returns observed over the term of the
option. Figure 3 does not provide visual support for
the idea that implied volatilities deviate randomly
from actual volatility, a characteristic of optimal fore-
casting. While the two volatility measures appear to
have roughly the same average, extended periods of
significant differences are seen. For example, in the last
half of 1992 the implied volatility remained well above
the actual volatility, and after the two came together
in the first half of 1993, they once again diverged for
an extended period. It is clear from this visual record
that implied volatility does not track actual volatility

~0 This conversion is done by multiplying the daily value of o-
by X/253 to bring it to an annual rate based on 253 trading days per
year. The result is then multiplied by 100 to convert from fractions
to percentages.
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Figure 3
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well. However, this does not mean that implied vola-
tility provides an inferior forecast of actual volatility:
It could be that implied volatility satisfies all the
scientific requirements of a good forecast in the sense
that no other forecasts of actual volatility are better.

In order to pursue the question of the informa-
tional content of implied volatility, several simple tests
of the hypothesis that implied volatility is an optimal
forecast of actual volatility can be applied. One char-
acteristic of an optimal forecast is that the forecast
should be unbiased, that is, the forecast error (actual
volatility less implied volatility) should have a zero
mean. The average forecast error for the data shown
in Figure 3 is -0.7283, ~vith a t-statistic of -8.22. This
indicates that implied volatility is a biased forecast of
actual volatility.

A second characteristic of an optimal forecast is
that the forecast error should not depend on any
information available at the time the forecast is made.
If information ~vere available that would improve the
forecast, the forecaster should have already included
it in making his forecast. Any remaining forecasting
errors should be random and uncorrelated with infor-
mation available before the day of the forecast. To

implement this "residual information test," the fore-
cast error was regressed on the lagged values of the
S&P 500 in the three days prior to the forecast.11 The
F-statistic for the significance of the regression coeffi-
cients was 4.20, with a significance level of 0.2 percent.
This is strong evidence of a statistically significant
violation of the residual information test.

The conclusion that implied volatility is a poor
forecast of actual volatility has been reached in several
other studies using different methods and data. For
example, Canina and Figlewski (1993), using data for
the S&P 100 in the years 1983 to 1987, found that
implied volatility had almost no informational content
as a prediction of actual volatility. However, a recent

11 Because the forecast errors are for overlapping periods, they
must be serially correlated. This calls for an estimation method that
corrects for serial correlation. The method used was Hannan Effi-
cient regression, in which serial correlation in residuals is corrected
using spectral analysis. Over the 758-day period between 1992 and
1994, on 67 days no forecast error could be measured because no
at-the-money call options with 45 to 75 days remaining were traded.
The average forecast error over the 691 days with measured forecast
errors was substituted for the missing values on those days. The
independent variables were a dummy variable for missing forecast
error and the lagged values of the SPX over the previous three days.

March/April 1996 Nezo England Economic Review 27



review of the literature on implied volatility (Mayhew
1995) mentions a number of papers that give more
support for the forecasting ability of implied volatility.

Test 2: The Smile Test

One of the predictions of the Black-Scholes model
is that at any moment all SPX options that differ only
in the strike price (having the same term to expiration)
should have the same implied volatility. For example,
suppose that at 10:15 a.m. on November 3, transac-
tions occur in several SPX call options that differ only
in the strike price. Because each of the options is
for the same interval of time, the value of volatility
embedded in the option premiums should be the
same. This is a natural consequence of the fact that the
variability in the S&P 500’s return over any future
period is independent of the strike price of an SPX
option.

One approach to testing this is to calculate the
implied volatilities on a set of options identical in all
respects except the strike price. If the Black-Scholes
model is valid, the implied volatilities should all be
the same (with some slippage for sampling errors).
Thus, if a group of options all have a "true" volatility
of, say, 12 percent, we should find that the implied
volatilities differ from the true level only because of
random errors. Possible reasons for these errors are
temporary deviations of premiums from equilibrium
levels, or a lag in the reporting of the trade so that the
value of the SPX at the time stamp is not the value at
the time of the trade, or that two options might have
the same fime stamp but one ~vas delayed more than
the other in getting into the computer.

This means that a graph of the implied volatilities
against any economic variable should show a flat line.
In particular, no relationship should exist between the
implied volatilities and the strike price or, equiva-
lently, the amount by which each option is "in-the-
money." However, it is widely believed that a "smile"
is present in option prices, that is, options far out of
the money or far in the money have higher implied
volatilities than near-the-money options. Stated differ-
ently, deep-out and far-in options trade "rich" (over-
priced) relative to near-the-money options.

If true, this would make a graph of the implied
volatilifies against the value by which the option is
in-the-money look like a smile: high implied volatili-
ties at the extremes and lower volatilities in the
middle. In order to test this hypothesis, our MDR data
were screened for each day to identify any options
that have the same characteristics but different strike

Table 1
Testing for a Smile~

Number
Year Type of Trades
1992 Call 43,449

Put 65,267

F-Stat~ DF R2

5,561 5/43,443 .39
14,890 5/65,261 .53

1993 Call 59,269 8,758 5/59,263 .43
Put 88,501 24,934 5/88,495 .58

1994 Call 82,828 9,530 5/82,822 .37
Put 137,640 47,528 5/137,634 .63

~Option transactions with volatility spreads below the first percentile or
greater than the 99th percentile were excluded in order to eliminate the
inlluence of outliers.
t~The F-statistics are for regressions of the deviation of a volatility from its
group mean on a fifth-degree polynomial in ITM, the amount by which the
option is in-the-money divided by the SPX level.

prices. If 10 or more of these "identical" options were
found, the average implied volatility for the group
was computed and the deviation of each option’s
implied volatility from its group average, the Volatil-
ity Spread, was computed. For each of these options,
the amount by which it is in-the-money was com-
puted, creating a variable called ITM (an acronym for
in-the-money). ITM is the amount by wlzich an option
is in-the-money. It is negative when the option is out-
of-the-money. ITM is measured relative to the S&P 500
index level, so it is expressed as a percentage of the
S&P 50O.

The Volatility Spread was then regressed against
a fifth-order polynomial equation in ITM. This allows
for a variety of shapes of the relationship between the
two variables, ranging from a flat line if Black-Scholes
is valid (that is, if all coefficients are zero), through a
wavy line with four peaks and troughs. The Black-
Scholes prediction that each coefficient in the polyno-
mial regression is zero, leading to a flat line, can be
tested by the F-statistic for the regression. The results
are reported in Table 1, which shows the F-statistic for
the hypothesis that all coefficients of the fifth-degree
polynomial are jointly zero. Also reported is the
proportion of the variation in the Volatility Spreads,
which is explained by variations in ITM (R2). The
results strongly reject the Black-Scholes model. The
F-statistics are extremely high, indicating virtually no
chance that the value of ITM is irrelevant to the
explanation of implied volatilities. The values of R2 are
also high, indicating that ITM explains about 40 to 60
percent of the variation in the Volatility Spread.
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Figure 4

The Smile in Call Option Volatility
Volatility Spread

-20
-.24               -.18               -.12               -.06                  0                   .06                 .12                 .18                 .24                 .30

Proportion in-the-Money (S - X)/S

Source: Author’s calculations.

Figure 4 shows, for call options only, the pattern
of the relationship between the Volatility Spread and
the amount by which an option is in-the-money. The
vertical axis, labeled Volatility Spread, is the deviation
of the implied volatility predicted by the polynomial
regression from the group mean of implied volatilities
for all options trading on the same day with the same
expiration date. For each year the pattern is shown
throughout that year’s range of values for ITM. While
the pattern for each year looks more like Charlie
Brown’s smile than the standard smile, it is clear that
there is a smile in the implied volatilities: Options that
are further in or out of the money appear to carry
higher volatilities than slightly out-of-the-money op-
tions. The pattern for extreme values of ITM is more
mixed.

Test 3: A Put-Call Parity Test

Another prediction of the Black-Scholes model is
that put options and call options identical in all other
respects should have the same implied volatilities and
should trade at the same premium. This is a conse-

quence of the arbitrage that enforces put-call parity.
Recall that put-call parity implies Pt + e-q(T-t)st =

Ct q- Xe-r(T-t). A put and a call, having identical strike
prices and terms, should have equal premiums if they
are just at-the-money h~ a present value sense. If, as
this paper does, we interpret at-the-money in current
dollars rather than present value (that is, as S = X
rather than S = Xe-(r-q)(T-t)), at-the-money puts
should have a premium slightly below calls. Because
an option’s premium is a direct function of its volatil-
ity, the requirement that put premiums be no greater
than call premiums for equivalent at-the-money op-
tions implies that implied volatilities for puts be no
greater than for calls.

For each trading day in the 1992-94 period, the
difference between implied volatilities for at-the-
money puts and calls having the same expiration
dates was computed, using the +2.5 percent criterion
used above.~2 Figure 5 shows this difference. While

- The exp~ratton dates for the put and call are the same for any
day, but on different days the time to expiration of the options will
be different.
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Figure 5

20

15

10

5

0

-5

-10

-15

-20

-25

-30

Difference betzoeen hnplied Volatilities on SPX Puts and Calls

Annualized Standard Deviation

1992

Source: Author’s calculations.

1993 1994

puts sometimes have implied volatility less than calls,
the norm is for higher implied volatilities for puts.
Thus, puts tend to trade "richer" than equivalent calls,
and the Black-Scholes model does not pass this put-
call parity test.

Test 4: Option Pricing Errors

The tests used thus far have relied on implied
volatilities. We now turn to a test based directly on
pricing errors, converting information on the range of
implied volatilities for repeated trades of SPX options,
all traded on the same day and having the same
expiration date, into measures of the Black-Scholes
pricing error. This test, due in part to Rubinstein
(1994), is based on the Black-Scholes model’s predic-
tion that repeated trades in the same option over a
short interval should, apart from random variations
due to chance, reflect the same implied volatility.

The implied volatility data can be converted to
information on pricing errors in the following fashion.
Suppose we have calculated the implied volatility
for each SPX index option traded on a given day and
grouped all of those options by their expiration
dates. For example, on November 3 there might have

been 75 transactions in SPX options that expire on
March 17. From this group, select the options with the
highest and lowest implied volatility. Let A be the
option with the lowest implied volatility and Z be
the option with the highest implied volatility, and
let a and z denote the respective values of implied
volatility.

Now consider Figure 6, which shows the Black-
Scholes relationship between pricing errors and the
true volatility for these two options. The line AA
shows, for each possible level of volatility, the propor-
tional difference between the Black-Scholes value of
option A (denoted by C*) and the observed premium
on option A (denoted by C). At volatility level a this
difference is zero because the Black-Scholes model
predicts C* = C at option A’s implied volatility.
Recalling that the Black-Scholes model predicts an
increase in the premium as volatility rises, the AA line
is upward-sloping. The slope of the line at each point
is the option’s Vega, which is assumed to be constant
in Figure 6. Similarly, the line labeled ZZ is drawn for
option Z, the option with the highest implied volatil-
ity. The pricing error for option Z is zero at volatility
level z, and it increases as volatility increases.

If the Black-Scholes model were always correct,
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Figure 6

Option Pricing Error Tests
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the lines AA and ZZ would coincide because each
would have the same implied volatility. The horizon-
tal distance between AA and ZZ is a reflection of the
size of the errors in the Black-Scholes model. Of
course, we cannot know which option is incorrectly
priced. Perhaps both are! But we can calculate the
value of the pricing error for each option under
different assumptions about the true volatility of the
return on the underlying stock.

Assume that option A is correctly priced, so that
the true volatility for all options in the group is a. In
this case, the pricing error for option Z is shown by the
vertical distance from point a to the ZZ line. If, at the
other extreme, option Z is correctly priced (the true
volatility is z), then the pricing error is the vertical
distance to AA at volatility level z. Because we are
concerned with the size of the pricing errors, not the
sign, we can compute the absolute value of each error
just measured. Noting that all options in the group lie
on lines between AA and ZZ, so they must have
smaller pricing errors at volatility a and at volatility z,
we can see that the larger of the two absolute errors
just measured must set an upper bound on the possi-
ble pricing errors. That is, conditional on the assump-

tion that the true volatility is between the lowest
implied volatility and the highest implied volatility in
a group, the proportiona! pricing error for all options
in the group can be no greater than the largest of the
errors measured at the extreme implied volatilities.
We call this the Upper Bound error.13

We would, of course, like to know what the
pricing error is at the true volatility. A rough measure
can be obtained by assuming that, for each group of
options, the true volatility is the group’s average
implied volatility. For example, for the hypothetical
situation in Figure 6, we can calculate the errors for
both option A and option Z at volatility level m, which
is the mean implied volatility. The absolute valtte of
the lowest of these t~vo errors is called the Lower
Bound error. Thus, conditional on the mean hnplied
volatility representing the true volatility, the Black-
Scholes model gives an error at least as high as the
Lower Bound error.

For any single group of options, the Upper Bound
and Lower Bound errors might be a poor measure of
the Black-Scholes model’s fit. However, if we take the
averages over a large number of groups, we can
expect a better measure of fit. Table 2 summarizes the
results for both calls and puts in each year in the
sample and for all three years combined. The com-
bined sample contains 2,034 groups of calls and 2,496
groups of puts. The average number of transactions in
each group was 88 calls and 117 puts. The mean time
to expiration was 46 days for calls and 58 days for puts.

For the combined sample, the Lower Bound error
is 10 percent for calls and 15 percent for puts. This
means that if the average implied volatility accurately
measures the true volatility, the Black-Scholes model
is off the mark by at least 10 to 15 percent. This value
of the Lower Bound error appears to be stable over
time, as shown in the entries for each year. The Upper
Bound error is much higher and considerably less
stable. For the combined data, the Upper Bound for
calls is 97 percent of the observed premium. It is a
more moderate 40 percent for puts. Thus, the com-
bined results suggest a 10 to 100 percent error for calls
and a 15 to 40 percent error for puts. The conclusion
that puts are more accurately priced by the Black-
Scholes model is a bit surprising, because the model
was originally developed for call options.

~B There is, of course, some probability that the range of implied
volatilities in a group of options does not contain the true volatility.
In that event, the Upper Bound error will understate the true error.
Unfortunately, we do not know the probability of understatement
because we do not know the probability distribution of implied
volatilities.
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Table 2
Pricing Error Tests

Year
1992

Mean Mean Valuesb

Number Trades Mean Lower Upper
Option of per Term Boundb Boundb
Type Groupsa Group (Days) (Percent) (Percent)
Call 627 68 45.8 7.7 64.8
Put 741 86 54.3 13.1 33.8

1993 Call 681 86 45.0 9.7
Put 849 104 56.8 17.0

distributed has a long history. Made
largely as a matter of convenience, it has
long been known to be an approxima-
tion, sometimes a poor one. Indeed,
studies of the frequency distribution of
individual stock prices beginning as
early as Fama (1965) found that the dis-
tribution of changes in the logarithm of
stock prices has "fat tails," that is, the
relative frequency of very large changes

106.1 is greater than for the normal distribu-44.0
tion. Furthermore, the observed distri-

115.1 bution, while having small skewness, is
42.1 leptokurtic, mea~ing that it is more

bunched in the middle than the normal
distribution. The "fat tails" phenome-
non has become a stylized fact in fi-
nance, and has been used to explain the
smile in implied volatilities: Options that
are far out of or far in the money have
premiums greater than the Black-Scholes
prediction. This will show up as higher

implied volatilities for off-the-money options than for
at-the-money options.

Table 3 reports the descriptive statistics for the
daily change in the logarithm of the S&P 500 index for
the period January 2, 1980 to March 31, 1995. The
statistics are reported for the entire period and for two
subperiods: The pre-1987 crash period (January 2,
1980 to September 30, 1987) and the post-crash period
(January 4, 1988 to March 31, 1995). Fama and French
(1988), among others, have shown that the distribution
of daily stock returns is different over weekends than
on contiguous trading days. Table 3 reports the de-
scriptive statistics for contiguous trading days and for
two-day trading breaks (typically, weekends).

For the entire period, the sample mean and stan-
dard deviation for contiguous days (percentages at
annual rates) are 21.5 percent and 12.6 percent, while
for weekends they are -4.2 percent and 9.1 per-
cent. Thus, in the 1980s and 1990s, the S&P 500 has
done well during trading weeks but poorly on week-
ends. Ho;vever, this pattern shifted over time. Prior
to the ’87 Crash, stocks did extremely well during
the week and declined over weekends. After the
Crash, stocks rose both during the weeks and on
weekends, but the performance was particularly good
over weekends.

No significant difference is seen between the
pre-Crash and post-Crash daily volatility of the S&P
500, either during the week or over weekends. How-
ever, the higher moments of the distribution changed

1994 Call 726 113 47.2 11.4
Put 906 154 61.0 15.6

All 3     Call      2,034       88    46.0      9.7       96.6
Years    Put      2,496      117    57.6     15.3       40.3

~Each group consists of all options of the stated type traded on the same day and having
lhe same expiration date.
bThe Lower Bound assumes that the true volatility is at the mean of the group’s implied
volatility. The Upper Bound is the largest error observed in a group.

The importance of these pricing errors depends
upon one’s perspective. A 10 to 15 percent prediction
error is not uncommon for economic data, and the
academic economist might feel that a simple abstract
model like the Black-Scholes model does quite well
with these margins of error. However, for traders and
financial practitioners, an error of at least 10 to 15
percent is large enough to drive a truck through.
Clearly, these errors are also sufficiently great to drive
large research budgets devoted to finding models
better than the Black-Scholes model.

Test 5: The Distribution of Stock Prices

Thus far our analysis has focused on the predic-
tions of the Black-Scholes model. Now we look at one
of the assumptions of the model: that the instanta-
neous rate of change in the return on an option’s
underlying security is log-normally distributed. For-
really, the Black-Scholes model assumes that the
change in the stock’s price is given by a diffusion
process in which, at any instant, the rate of change in
the stock’s price is determined as described in Box 2.
This implies that the change in the logarithln of price
over a time interval of length T is a normally distrib-
uted random variable with an expected value equa! to
the drift and a variance equal to To"2, where o- is the
instantaneous volatility of the rate of return on the
stock.

The assumption that stock prices are log-normally
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Table 3
Descriptive Statistics for Changes in
Log S&P 500~

1/2/80 to 1/4/88 to
9/30/87 3/31/95

1/2/80 to (Pre- 1987 (Post- 1987
3/31/95 Crash) Crash)

Number of days
Calendar 5,549 2,846 2,639
Trading days 3,859 1,962 1,834
Contiguous trading days 3,030 1,538 1,442

Mean trading days per year
Total 253 253 253
Contiguous 199 198 199

Return characteristics
Contiguous trading days

Mean return (%) 21.48 32.65 8.29
Standard deviation (%) 12.58 12.40 11.27
Skewness .07 .21 -.94
Kurtosis 7.33 1.80 8.32

Two-day breaks (for example,
Friday-Monday)

Mean return (%) -4.20 -11.22 20.47
Standard deviation (%) 9.10 6.87 5.73
Skewness - 7.77 - .38 .25
Kurtosis 128.38 .98 2.62

aThe daily changes in log S&P 500 are (approximately) the daily rate of change in
the S&P 500. These were converted into percent at annual rate, as follows: The
mean return was calculated on a 365-day calendar year. The standard deviation
was calculated on a 199-day trading year for contiguous days, and on 95 days per
year for two-day breaks.

dramatically. The skewness of the intra-week daily
returns went from positive to negative after the Crash,
indicating a shift toward more down days after the
Crash. However, the weekend returns turned from
negative skewness to positive ske~vness. In short, after
the Crash intra-week returns shifted toward fe~ver
good days, but inter-week returns shifted toward
more good days.

In addition to this change in patterns for skew-
ness, the kurtosis of the distribution uniformly in-
creased after the Crash. The kurtosis of stock returns,
and the increase in kurtosis, are clear in Figure 7,
which shows the relative frequency distribntions for
both periods as well as the standard normal distribu-
tion. Both periods contain many more values in a
range within one standard deviation than the normal
distribution, as well as slightly more values in the
three to four standard deviation range distribution.
Thus, the S&P 500 appears to be bunched in the
middle range of outcomes, with signs of a few large

changes, conforming more to a "thin middle"
than to a "fat tails" description.

In summary, the probability distribution
of the change in the logarithm of the S&P 500
does not conform strictly to the normality
assumption. Not only is the distribution
thicker in the middle than the normal distri-
bution, but it also shows more large changes
(either up or down) than the normal distribu-
tion. Furthermore, the distribution seems to
have shifted over time. After the Crash an
increase in the kurtosis and a shift in skewness
occurred.

An Interim S, ummary

The analysis of data on almost 500,000
transactions in the SPX call and put options in
the 758 trading days of 1992 to 1994 shows
abundant evidence against the Black-Scholes
lnodel. We find that implied volatility is a
poor forecast of actual future volatility, rais-
ing doubts about the Black-Scholes assump-
tion that traders are excellent statisticians able
to develop optimal forecasts of volatility
which are then reflected in option premiums.
We find that implied volatilities exhibit a
"smile," in contrast to the Black-Scholes mod-
el’s prediction that implied volatility will be
the same for all options having the same
underlying stock and the same time to expi-
ration. We find that implied volatilities for

at-the-money puts are, other things equal, greater than
implied volatilities for at-the-money calls, a result not
consistent with the Black-Scholes prediction that put-
call parity will ensure that at-the-money puts and calls
identical h~ all respects will have the same premiums
and the same implied volatility.

In addition, we have computed estimates of the
magnitude of pricing errors. Assuming that the group
average of implied volatility is a nseful estimate of
true volatility, we find that the Black-Scholes model
works better for puts than for calls, but that in both
cases the errors are economically significant, on the
order of at least 10 to 15 percent of the actual premium.

Finally, we show that the relative frequency
distribution of daily changes in the logarithm of the
S&P 500 does not fit the assumption of a normal
distribution: It is slightly skewed and highly leptokur-
tic, and it has signs of fat tails. Thus, the actual
distribution of the S&P 500 has slightly more large
changes, many more small changes, and fewer rood-
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Figure 7
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erate changes than the normal distribution would
predict.

The next section presents some explanations of
the failures of the Black-Scholes model.

IlL Some Explanations for the
Black-Scholes Model Performance

The previous section reports results indicating
that the Black-Scholes model provides, at best, a crude
approximation to the option premiums observed in
data on actual transactions. The reasons for these
discrepancies have been the subject of considerable
controversy among financial economists, as well as
practitioners. This section will examine several rea-
sons why this shortfall might exist.

Limitations on Arbitrage

Underlying the Black-Scholes model of option
pricing is an assumption central to finance theory: that
traders quickly and efficiently eliminate any dis-
crepancies between actttal and theoretical prices by

engaging in arbitrage. Two types of arbitrage must be
unrestricted to make this happen. First, call options
must be fully arbitraged with their replicating port-
folios. If a call is underpriced, traders must be able to
buy calls and sell the underlying stocks short. If a call
is overpriced, traders must be able to buy the stock
and write covered calls. Second, arbitrage must en-
force put-call parity. If puts are overpriced relative to
calls, traders must be able to write puts, buy calls, and
sell the stock short. If puts are underpriced relative to
calls, traders must be able to buy both puts and the
underlying stock, and write covered calls.14

The put-call parity analysis in the previous sec-
tion indicates that implied volatilities for puts typi-
cally are greater than implied volatilities for calls with
identical characteristics, although occasionally call
volatilities exceed put volatilities. Stated differently,
put options appear to be systematically overpriced
relative to identical calls, although occasionally under-

~4 A call is covered if the writer also owns the shares, in which
case he can immediately deliver them if the call is exercised. A call
is naked if he does not own the shares and might have to buy them
under adverse conditions for delivery if the call is exercised.
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Box 4: Short Selling and Option Arbitrage

Among the anomalies observed in this paper
is that SPX put options appear to be overpriced
relative to SPX calls. This is not consistent ~vith the
arbitrage conditions underlying option pricing
models because, upon observing overpriced puts,
traders should simultaneously write puts, sell the
underlying stock short, and buy calls. For a number
of reasons, arbitrage might not occur in a sufficient
volume to correct put overpricing. Note that costs
are also associated with correcting underpriced
puts, but the barriers to the transactions required
(buying both a put and the stock, and writing a
covered call) are lower.
¯ Restrictions on Entry In order to sell short, an

investor must meet financial standards estab-
lished by regulation and by brokerage firms.
These standards are even higher for investors
writing naked options, as an arbitrageur must
do in order to take advantage of put overpricing.
Thus, some investors will be excluded from the
opportunity to engage in the arbitrage required
to correct overpriced puts.

¯ The Uptick Rule A short sale can occur only
when the price is above the last different price,
that is, only on an "uptick." As a result, it might
not be possible to simultaneously write a put
and sell the stock short. This exposes the arbitra-
geur to the risk that the price at the short sale’s
execution is so low that the arbitrage creates a
loss.

¯ Risks of Premature Termination The arbitrage
required to take advantage of overpriced puts
assumes that the position can be held until the
expiration of the options. However, a short posi-
tion can be forced to terminate early if the lender
of the shares wants them and replacements can-
not be found.

¯ Maintenance Margins Under the Federal Re-
serve System’s Regulation T, the initial margin
required for a short sale is equal to the initial
margin on a long position; at present, this is 50
percent of the value of the security. The New
York Stock Exchange requires member firms to

establish a maintenance margin of at least 25
percent, but brokerage houses typically set a
maintenance margin of 30 percent or more. Some
brokerage houses require higher maintenance
margins for short positions than for long posi-
tions, reflecting their greater risk exposnre for a
short sale. This raises the probability of a margin
call for a short position.
Interest and Dividends When a stock is pur-
chased, the new owner obtains a right to the
dividends and pays the interest rate, either as an
opportunity cost or, in the case of a margin
purchase, as interest on a security loan. The net
cost is (r - q). When a stock is sold short, the
short seller is obligated to pay any dividends to
the stock lender, but earns no interest on the
proceeds of the sale. The net cost is q rather than
(q - r). Thus, the sacrifice of interest means that
the carrying cost of a short sale is not simply the
reverse of the carrying cost of the purchase.
Fees for Lending Stocks Typically, the lending
firm loans the shares "flat," that is, withont
paying or receiving any fees. However, in peri-
ods of strong short-selling pressure, the borrow-
ing firm might pay a fee. The borrowing firm can
recover this cost through the interest earned on
the proceeds of the short sale or by embedding it
in the commissions on the short sale.
Interest on Unrealized Gains and Losses Lend-
ing brokers typically require a cash deposit equal
to 100 percent of the value of the shares. Initially,
this is provided by the proceeds of the short sale.
If the stock price moves up, the lending broker
can ask for additional cash to maintain the 100
percent deposit. This adds to the short seller’s
margin loan and interest is charged on the debit
balance. If the stock price falls, the lendh~g broker
releases an amount of cash equal to the unreal-
ized profit, and this is available to earn interest
for the short seller. Thus, the short seller pays
interest on unrealized losses and receives interest
on unrealized gains. The same practice applies to
stock purchases on margin.

pricing occurs. This is consistent with limits on arbi-
trage that prevent correction of overpriced puts but
allow correction of underpriced puts. These limits are
in two forms, those that inhibit short sales relative to

stock purchases, and those that inhibit ~vriting naked
options as opposed to buying options or writing call
options.

Box 4 summarizes some of the factors that make it

March/April 1996 New England Economic Review 35



particularly risk}, or expensive to engage in arbitrage
to take advantage of overpriced puts. Perhaps the
most prominent reason is an asymmetry in costs.
When a customer sells stock short, as he must when
puts are overpriced, he does not receive interest on the
proceeds of the sale. However, if he purchased the
shares, he would pay interest in the form of an
opportunity cost or in the form of interest on a security
loan. This means that a short position is not simply the
reverse of a long position, and that short positions
carry a higher cost.

Another factor restricting arbitrage involving
short sales is the uptick rule, which allows a short sale
to be executed only in a rising market. This means that

The relative overpricing of puts
might be the result of inhibitions

on the arbitrage required to
correct put overpricing.

the timing of a short sale might not be synchronized
with the option transactions that must also be part of
the arbitrage, exposing the arbitragenr to a risk not
found h~ arbitrage involving purchases of shares.

The influence of these short-selling restrictions on
put-call arbitrage is exacerbated by limits on writing
naked options as opposed to writing covered options.
Because the writer of a covered option exposes the
brokerage firm to no risk, there are no margin require-
ments. Naked options, on the other hand, do expose
firms to the risk that the writer will not be able to
perform if the option is exercised, and brokers require
margin protection.~5

The arbitrage costs jnst discussed are asymmetri-
cal in that they affect put-overpriced arbitrage more
than put-underpriced arbitrage. Other symmetrical
arbitrage costs affect both sides equally. Commissions,
fees, and the bid-asked spreads for both stock and
option trades can be particularly high for arbitraging
S&P 500 options contracts if changes in position, either
long or short, require transactions in 500 common
stocks, some having higher transactions costs than the
most actively traded.~6 This consideration limits both
sides of the put-call parity arbitrage: Short positions in
the S&P 500, required to correct overpriced puts, are
expensive, but so are long positions required to correct
underpriced puts. The effect of these transactions costs

is to limit all arbitrage, not just arbitrage involving
short sales.

The existence of transactions costs creates a range
within which put-call premiums can vary without
eliciting corrective arbitrage. Because the costs of
correcting put overpricing exceed those of correcting
put underpricing, ,aTe should expect some tendency
for put overpricing to continue unless it is excessive.
Thus, asymmetrical transactions costs can help to
explain the relationship we have found in our data:
At-the-money puts tend to sell at premiums relative to
calls that are greater than allowed by put-call parity.

If the arbitrage-inhibiting factors discussed in Box
4 fully account for the observed tendency toward put
overpricing, the failure of pnt-call parity cannot be
laid at the foot of Black-Scholes, for that model ab-
stracts from transactions costs. However, it seems
likely that some portion of the observed put overpric-
ing is a true anomaly, in the sense that it reflects an
inefficiency in the market for stock index options. The
reason for this speculative conclusion lies in the ability
of many traders, particularly financial institutions, to
arrange their transactions in ways that make the costs
of options arbitrage small. For example, short sales of
stock indexes can be replicated in the futures markets
without the expenses related to selling short through
brokers. Furthermore, wholesale traders negotiate the
terms with brokerage firms and are not bound by the
published terms for retail transactions.

The Non-Normality of Stock Price Changes

As noted above, an important assumption of
Black-Scholes--that the price of the underlying secu-
rity is log-normally distributed--is not validated by
the observed distribution of changes in the logarithm
of stock prices: The relative frequency distribution is
roughly symmetric (with signs of skewness), and very
leptokurtic. Furthermore, while there might be evi-
dence of fat tails for individual equities, we observe
9nly minor fat tails for the S&P 500.

One explanation for non-normality, first pro-

~s Self-regulating organizations set minimum requirements on
naked options, subject to Secnrities and Exchange Commission
approval. Brokers are free to set margins higher than the required
mh~imun~s. One major discount broker requires margh~ on writing
naked equity options equal to the premium received plus 25 per-
cent of the underlying security’s market values minus any out-of-
the-money amount.

~6 Of course, a trader can choose to arbitrage with a subset of
the S&P 500, but this substitutes basis risk for out-of-pocket ex-
penses. In addition, stock index futures contracts are a low-cost way
of taking a position on the index.
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Box 5: A Jump-Diffusion Model of Stock Prices

Press (1967) first presented a model of stock
prices consistent with the non-normality observed
by Fama (1965). Press’s Compound Events Model
was developed further by Merton (1976a, 1976b)
and Cox and Ross (1976). According to this model,
stock price changes conform to the following "jump
diffusion" process.

dS/S = ~dt + ~rdz + dq (B5.1)

where dz is a Wiener variable (that is, dz = ~x/dt,
with ~ an independent standard normal random
variable), and dq is a random variable defined as
(Y - 1)dt if a jump occurs in interval dt and zero
otherwise. The variable Y is a jump multiplier for S
(Y = 2 means a doubling of S), so the proportional
change is S is (Y - 1). The jump multiplier, Y, is a
random variable assumed to be log-normally dis-
tributed, so lnY is normal with mean 0 and variance
~2.

The process controlling whether a jump occurs is
assumed to be Poisson, with ;tat being the proba-
bility of one jump in the small interval At and
p(n) = e-~h(;th)n/n! being the probability of n
jumps in the interval of length h.

Merton has shown that this jtLmp process results
in the following stock-price dynamics:

ln[S(t + h)/S(t)] = [1_~ - V2o-2 - ;t0]h + [o-x/h]Z +

Y_.nh1Yn    n = 0, 1, 2 .... (B5.2)

with Z being a standard normal random variable
(mean zero and standard deviation 1) and each of
the n values of InY being normally distributed with
mean 0 and variance 32. Thus, the log of the price
ratio consists of a drift of [/x - ~/20-2 - ;t0]li plus a
normally distributed part consisting of a Wiener
variable plus the sum of n "shocks," each being the
logarithm of the respective jump size.

Under this jump-diffusion model, the log of stock
price-relatives in (B5.2) is a Poisson mixture of
normal distributions. Conditional on exactly n
jumps occurring, tlie log of tlie price-relative will be
normally distributed, with mean [~ - V~o-2 - ;t0]h
and variance [ho"2 + ;tn(02 + ~2)]. Because n is a

random variable, this variance will be random with
a Poisson distribution. Because the expected value
of n over an interval of length h is ;th, the uncon-
ditional variance is [o-2 + ,\(02 + 32)]li.

Characteristics of the distribution of In[S(T)/S(t)]
over interval (T - t) are determined by the first four
cumulants of the distribution, given below:

kI = (/x - V20-2 - ;t0)h
k2 = [0~ + ;t(02 + 62)h

k3 = ;t0(02 + 332)h

k4 = ;t(04 + 60~-32 + 364)h

Characteristics

Mean = k1
Variance = k2
Skewness = k3/k23/2
Kurtosis = k4/k22

The first and second cumulants are the expected
value and variance of ln[S(t+h)/S(t)]. The signs of
the third and fourth cumulants determine the di-
rections of skewness and kurtosis. If 0 ~ 0, the
distribution is skewed, and the sign of the skew-
ness is the sign of 0: When 0 is positive, random
jumps will increase the stock price on average and
the distribution will be positively skewed, having
more increases than decreases. The kurtosis will be
positive (indicating leptokurtosis) so long as either
0 ~ 0 or ~ > 0, that is, so long as discrete shocks
influence prices.

Thus, the jump-diffusion model is consistent with
the observed characteristics of the frequency distri-
bution of daily changes in the logarithm of the
S&P 500: leptokurtic (having a thin middle) with a
potential for skewness.

The jump-diffusion model also leads to the fol-
lowing theoretical call premium:

C = Yn[e-’\h(;th)n/n!]Cn    with n = 0, 1, 2 ....

(B5.3)

stating that the call premium is a weighted average
of the conditional Black-Scholes premiums, each
conditioned on the number of jumps. Thus, C~ is
the Black-Scholes model when there are n jumps, in
which case the volatility is the square root of [o.2 +
n(02 + ~2)], and e-~(,\)n/n! is the Poisson probabil-
ity of n jumps.

posed by Press (1967) even before the Black-Scholes
paper, is that stock prices are hit by occasional shocks,
called jumps, which cause temporary departures from

normality. Press’s "Compound Events" explanation is
that the changes in the log of stock prices conform to
a normal distribution in the absence of shocks; this is
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consistent with the Wiener diffu-
sion process, which underlies
Black-Scholes. However, when
jumps occur, the distribution
changes: It remains normal, but
with a variance that depends upon
the number of jumps. Thus, the
observed distribution is made up
of a mixture of different normal
distributions, each with a variance
depending on the number of
jumps. Box 5 discusses the founda-
tions of a "jump diffusion" model
and shows that it is consistent with
the stylized facts: It results in a
relative frequency distribution that
might be skewed but will be lep-
tokurtic.

As shown by Merton (1976a),
the jump-diffusion model leads to a
specific closed-form model of op-
tion prices in which the premium is
a weighted average (using the
Poisson distribution) of the Black-
Scholes premiums for options, each

Figure 8
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conditional on the number of jumps. Figure 8 shows
the theoretica! call option values for a Black-Scholes
model and a jump-diffusion model. Because the jump-
diffusion model incorporates the greater-than-normal
proportion of small stock price changes, the jump-
diffusion model places greater value on the call in the
region around the current stock price. Because the
hypothetical option in Figure 8 is at-the-money, the
greater value is placed in the region around the strike
price.~7

IV. Summamd and Conclusions

Recent years have seen a reinvestigation of the
"efficient markets" hypothesis (EMH) of financial
market performance. An hypothesis that once had
widespread acceptance, the EMH has not fared well
under newer tests. For example, Fortune (1991) has
reviewed the literature on the EMH as it applies to the
stock market.                            ~

This study suggests that the Black-Scholes model
is not consistent with the efficient markets hypothesis.

~7 For Figure 8, it is assumed that the jump-diffusion parame-
ters are cr = 0.01, 3 = 0.02 and X = 0.2. The Black-Scholes model is
the same, but with ,~ = 0, that is, no jumps occur.

That this is true is also demonstrated by the prolifer-
ation of other models of option pricing in recent years,
including nonanalytical methods involving numerical
analysis. One implication of this finding is that those
who are responsible for monitoring financial institu-
tions should not naively apply popular formal models
of option pricing to assess financial risks. To do so is
to invite undoing successful risk management strate-
gies that more informed internal management might
adopt.

The goal of this study is to examine the EMH in
the context of the market for options on common
stocks. The ability of the premier option pricing the-
ory, the Black-Scholes model, to explain observed
premiums on S&P 500 stock index options is subjected
to a number of tests. The article begins with a sum-
mary of the Black-Scholes model, then examines some
of the assumptions underlying the model. The second
section describes the data used to evaluate the Black-
Scholes model and reports the results. Using almost
500,000 transactions on the SPX stock index option
traded on the Chicago Board Options Exchange in the
years 1992 to 1994, the study finds a number of
violations of the Black-Scholes model’s predictions or
assumptions.

First, the Black-Scholes model assumes that the
market forms efficient estimates of the volatility of the
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return on the S&P 500. These estimates then become
embedded in the premiums paid for options and can
be recovered as the option’s "implied volatility."
However, several tests of the implied volatility indi-
cate that it is a poor estimate of true volatility: For
the SPX contracts, implied volatility is an upwardly
biased estimate of the observed volatility. Further-
more, implied volatility does not contain all the rele-
vant information available at the time the option is
traded, a violation of the assumption of forecast effi-
ciency.

A second test is based on the Black-Scholes mod-
el’s prediction that options trades at the same time and

Those who are responsible for
monitoring financial institutions
should not nafvely apply popular
formal models of option pricing
to assess financial risks. To do

so is to invite undoing successful
risk management strategies that

more informed internal
management might adopt.

alike in all respects except the strike price should
exhibit no relationship between the implied volatility
and the strike price, or between implied volatility and
the amount by which the option is in or out of the
money. This study finds, as have other studies, a
"smile" in implied volatility: Near-the-money options
tend to have lower implied volatilities than moder-
ately out-of-the-money or in-the-money options. A
third test is derived from the Black-Scholes model’s
prediction that put-call parity will ensure that puts
and calls identical in all respects (expiration date,
strike price, expiration date) have the same implied
volatilities. This study finds that puts tend to have a
higher implied volatility than equivalent calls, indicat-
ing that puts are overpriced relative to calls. The
overpricing is not random but is systematic, suggest-

ing that unexploited opportunities for arbitrage profits
might exist.

A fourth test is based on measures of the pricing
errors associated ~vith the Black-Scholes model. Devi-
ations between the theoretical and observed option
premiums should be small and random. Instead the
study finds systematic and sizable errors. For the
entire sample, calls have pricing errors averaging 10 to
100 percent of the observed call premium. Puts appear
to be more accurately priced, with errors 15 to 40
percent of the observed premium.

Finally, the distribution of changes in the loga-
rithm of the S&P 500 is examined. The Black-Scholes
model assumes that stock prices are log-normally
distributed, that is, that the logarithm of the price is
normally distributed. It has long been known that this
is not true, and the received wisdom is that stock
prices exhibit "fat tails" relative to a normal distribu-
tion (more extreme changes than the normal distribu-
tion would predict). Our analysis of daily values of the
S&P 500 confirms a departure from normality for the
period 1980 to 1995. We find minor evidence of fat
tails, but much evidence of a "too-thin" middle in the
distribution--more small changes and fewer moder-
ate-sized changes than the normal distribution would
allow.

The paper’s third section turns to some explana-
tions for these results. We suggest that the relative
overpricing of puts might be the result of h~hibitions
on the arbitrage required to correct put overpricing.
These limitations, in the form of transactions costs and
risk exposure, are greater for short selling of stock, the
way arbitrageurs would take advantage of put over-
pricing, than for buying stock, the mechanism for
correcting put underpricing.

We also examine a model of stock prices that can
explain the non-normality observed in our data. This
"jump-diffusion" model is consistent with both the
observed skewness and the leptokurtosis in the distri-
bution of stock prices. According to this model, stock
prices are usually consistent with a log-normal distri-
bution, but occasional shocks create discrete jumps
up or down h~ the price. This leads to a distribution of
stock prices that looks like the one observed for the
S&P 500 index, that is, roughly symmetric but with
small changes given excessive weight. The jump-
diffusion model of stock prices also leads to a specific
option pricing model that is a modification of Black-
Scholes.
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