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odern finance would not have been possible without models.
MIncreasingly complex quantitative models drive financial inno-

vation and the growth of derivatives markets. Models are
necessary to value financial instruments and to measure the risks of
individual positions and portfolios. Yet when used inappropriately, the
models themselves can become an important source of risk. Recently,
several well-publicized instances occurred of institutions suffering signif-
icant losses attributed to model error. This has sharpened the interest in
model risk among financial institutions and their regulators.

In March of 1997, NatWest Markets, an investment banking subsid-
iary of National Westminster Bank, announced a loss of £90 million due
to mispriced sterling interest rate options. Shortly thereafter, BZW, an
investment banking subsidiary of Barclays, sustained a £15 million loss
on mispriced currency options and Bank of Tokyo-Mitsubishi announced
a loss of $83 million. In April of 1997, Deutsche Morgan Grenfell lost an
undisclosed amount. Model errors have been blamed for all these losses.!

This article will describe various models and discuss model errors
characteristic of two types—valuation models for individual securities,
and models of market risk. The article will discuss the statistical issues
that complicate the use of such models, namely the probability distribu-
tions of asset returns and estimates of their volatility. It will also discuss
a number of practical issues related to model development and describe
the approach taken by bank regulators to model risk.

I. Types of Models

Models can be roughly divided into four categories. The first type is
the macroeconomic forecasting model, which seeks to predict real output,
employment, inflation, the unemployment rate, and the level of interest
rates. Macroeconomic models range from naive one-equation models that



extrapolate the values of these variables from their
recent past levels to elaborate ones containing hun-
dreds of equations and thousands of variables.

A second, related type of model is a microeco-
nomic model that seeks to explain relationships in
particular markets. Such models also use regression
analysis, but to explain microeconomic variables, for
example, the effect of changes in interest rates on
mortgage prepayment rates, or the effect of winter
temperatures on the demand for heating oil. Macro-
economic models often use the results of these models
as inputs.

Increasingly complex quantitative
models drive financial
innovation and the growth
of derivatives markets.

The third type is the valuation model, used by
traders to price derivatives instruments. Derivatives
are instruments whose value depends on the price of
underlying assets such as stocks, bonds, commodities,
or foreign currencies. A simple example of a deriva-
tive is a call option on a stock. It gives the buyer the
right, but not the obligation, to purchase the stock at
some point in the future at a price agreed upon today
(known as the strike price). A call option can be priced
with the Black-Scholes model, which determines the
option’s value as a function of five factors: the strike
price, the time to expiration, the current stock price, its
volatility, and the risk-free interest rate. This model,
developed by Fischer Black and Myron Scholes (1973)
is often cited as the foundation of modern derivatives
markets. For the first time, options could be priced
accurately, and this gave rise to an explosion of
options trading in the 1980s.

In fact, many newer derivative pricing models are
modifications or extensions of Black-Scholes. Note
that the Black-Scholes model is different from a statis-
tical model. It is an analytical formula—theoretically,
given the five specified factors, one can determine the
value of the option exactly. In practice, the results of
statistical models often serve as inputs into valuation
models. For example, to value a mortgage-backed
security, one needs an estimate of the mortgage pre-

! These events are discussed in more detail in Paul-Choudhury
(1997).
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payment rate, which has to come from a statistical
model. To value a call option with the Black-Scholes
formula, one needs to know the volatility of the stock
price, which can also be statistically estimated. Statis-
tical estimates are subject to errors and thus can lead
to error in the valuation model for which they serve as
an input.

The fourth type of model is a model of market
risk, used to estimate how the value of an individual
position or the whole portfolio changes with a change
in the prices of the underlying instruments. Currently,
the standard for market risk measurement is a family
of models known as “Value at Risk” or VAR. VAR is
defined as the maximum amount the portfolio can lose
with a given probability in a given period of time. For
example, if the daily VAR is estimated to be $1 million
at the 95th percent confidence level, one would expect
to lose no more than $1 million in one day 95 percent
of the time.

To estimate VAR, one first needs to know the
probability distributions of the prices of the underly-
ing assets. Second, one must use these prices to arrive
at the values of the securities in one’s portfolio (that is,
use valuation models); and third, one must aggregate
these values into one summary estimate of the value
at risk. Thus, it is clear that errors in valuation models
feed into errors in VAR. In many financial institutions,
the valuation methods used in VAR are different and
independent of the valuation models used on the
trading desks. However, an accurate VAR is not a
substitute for accurate valuation models. Clearly, it is
not very useful to know with a great degree of
confidence and precision how much money one’s
portfolio can lose in a given period of time if one is
seriously mistaken about what the portfolio is worth
in the first place.

Statistical issues related to macroeconomic and
microeconomic models are outside the scope of this
article. We will be concerned only with the last two
types of models mentioned—individual valuation and
Value at Risk.

II. Types of Errors

It can be useful to think of valuation models and
Value at Risk as subject to two distinct types of
error—error in the inputs or data, and error in the
structure of the model itself. To return to the example
of pricing a call option, one is unlikely to make a
mistake about the strike price and the expiration date,
as these are specific to the contract and do not change
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during the life of the option. Similarly, while there
can be some disagreement about the exact number
that should be used for the risk-free interest rate, the
option price is not very sensitive to small variations in
it. A more likely and serious error in the option value
can result from an incorrect stock price. Price errors
are especially likely if the stock is illiquid, infrequently
traded, or subject to abrupt price swings. Then the
price at the last transaction may be outdated and give
the wrong price for the option.

It is always a matter of judgment
which simplifying assumptions
can be made and whether the
resulting model is sufficiently
accurate for the purpose for
which it is being used.

Of the five factors in the Black-Scholes model
affecting the value of the option, only the volatility is
not directly observable. It must be estimated from the
historical data; alternatively, it can be “backed out”
from prices of other options on the same underlying
security. Different methods of volatility estimation can
yield widely different results, and it is probably safe to
say that incorrect volatility estimates are the single
largest cause of error in both valuation models and
risk management models.

The second type of error is specification error,
that is, error in the structure of the model itself. The
model is misspecified if, for example, an additional
factor affecting the price of the derivative is not part of
the model. This kind of error often occurs when a
model intended for one product is used for another
without sufficient modification. A more complex issue
arises with respect to the simplifying assumptions
used in the model. Such assumptions are necessarily
unrealistic, but this may not be a problem if they
preserve the important features of the market while
maintaining analytical tractability. However, it is al-
ways a matter of judgment which simplifying as-
sumptions can be made and whether the resulting
model is sufficiently accurate for the purpose for
which it is being used. Simplifying assumptions, par-
ticularly those made in modeling the stochastic pro-
cess governing asset returns, will be discussed below.
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III. The Perils of VAR

Perhaps no model is more fraught with contro-
versy than Value at Risk, or VAR. First popularized by
the Group of Thirty report, Derivatives: Practices and
Principles, VAR has become a de facto industry stan-
dard for measuring market risk, that is, the risk of
losses from the prices of financial instruments. VAR
forms the backbone of the “Internal Models Ap-
proach” to allocating capital for market risk in bank
trading accounts. This approach, endorsed by Basle
Committee on Banking Supervision of the Bank for
International Settlements (BIS) and adopted by U.S.
bank regulators, allows banks to use their own models
to set aside capital for the risks in their trading
accounts.

To be acceptable to regulators, banks” models
must be based on VAR and fulfill certain other condi-
tions. Specifically, the confidence level for the VAR
calculation must be 99 percent and the holding period
must be two weeks. For instance, if VAR were found
to be $1 million under these conditions, the bank
would expect to lose more than $1 million 1 times out
of 100 over a two-week period. Figure 1 shows the
probability of possible profits and losses based on the
normal distribution and the VAR at the 99 percent

Figure 1
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Figure 2

Daily Percent Change in the Peso/Dollar Exchange Rate
November 9, 1993 to December 16, 1994
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confidence level, expressed as a number of standard
deviations from the mean.

Many market participants consider the 99 percent
confidence level and the two-week interval to be too
conservative; the industry practice is to limit the
confidence level to 95 percent and the holding period
to one day. However, since the purpose of the regu-
latory VAR calculation is to set aside enough capital
to protect the bank against failure due to market
risk, the regulators consider that a conservative VAR
is justified.

Recently, there has been something of a backlash
against VAR. Its detractors argue that VAR is mislead-
ing and too often wrong to be useful and that, by
providing an illusion of scientific precision, it creates a
false sense of security, thereby leading traders to carry
larger positions and take more risk.? The following
example is a demonstration of how one can go wrong
with VAR.

The Mexican Peso Crisis

Suppose a bank trading desk held a position of
$10 million in Mexican pesos on December 19, 1994
and wanted to calculate the VAR of this position based

% Taleb (1997) eloquently summarizes the case against VAR.

20  November/December 1997

16-Mar-94 27-Apr-94 8-Jun-94

19-Jun-94 26-Aug-94 6-Oct-94  17-Nov-94

on the historical behavior of the peso/dollar exchange
rate. Following the BIS guidelines for internal models,
the bank uses a 99 percent confidence interval and a
two-week holding period. Figure 2 shows a plot of the
percentage changes in the exchange rate from Novem-
ber 1993 through the first half of December 1994. The
bank calculates the standard deviation, or volatility, of
the daily return on its peso holdings during the
previous year starting on November 9, 1993. (Before
November 9 the peso was pegged to the dollar, so
there was no variation in the exchange rate.) The daily
return on the peso position can be calculated as the
daily percentage change in the exchange rate, namely:

E,—E,

+100%.
Ei

Rt =
R, is the daily return and E, is the exchange rate on day
t. The daily volatility of returns over a period of N
days, with all observations weighted equally, can be
calculated as follows:

where o is the volatility of daily returns and w is the
mean return.

New England Economic Review



Figure 3

Daily Percent Change in the Peso/Dollar Exchange Rate
November 9, 1993 to January 31, 1995
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The volatility during the sample period was
found to be 0.4704 percent. The VAR calculation is
shown in Table 1. To calculate the VAR of this position
for two weeks (or 10 trading days), we multiply the
daily volatility by V/10. Then we multiply the result-
ing two-week volatility by 2.33 for the 99th percent
confidence level and by the dollar value of the port-
folio ($10 million). VAR = .4704% * \V/10 * 2.33 * $10
million = $347,000. This means that the bank would
expect to lose no more than $347,000 within the next
two weeks, 99 times out of a 100.

The subsequent events are shown in Figure 3.
Within the next eight days, the peso depreciated 65.7
percent, when the exchange rate went from 3.47 pesos
to the dollar on December 19 to 5 pesos to the dollar
on December 27. The bank would have lost $6.5
million on its $10 million position, compared to its
$347,000 VAR estimate.

Table 1
Calculation of VAR

Daily 10-day 99% 2-week
Position Volatility ~ Volatility — Confidence VAR
$10 milion ~ .4704% 1.5% 3.47% $347,000
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IV, Fat Tails

Why did the risk estimate prove so inadequate in
the case of the Peso Crisis? Having first verified that
the exchange rate data were correct and that the
arithmetic calculations were also done correctly, we
are left to examine the assumptions underlying the
model. To arrive at this VAR estimate, we adopted the
most commonly used model of asset returns. We
assumed that returns are independently distributed
over time and identically distributed over time (IID),
and that they are normally distributed. These assump-
tions make the model analytically tractable but they
are not necessarily close to reality. The assumption of
temporal independence allowed us to scale the daily
volatility by the square root of time. Furthermore, the
assumption of the normal distribution allowed us to
infer that a loss 2.33 standard deviations away from
the mean would happen no more than one time out
of a hundred. The Peso Crisis was a 44-standard-
deviation event, something that might happen to a
normally distributed random variable once in many
billions of years.> Nevertheless, it did happen. Nor

® The exact probability of such an event is not reported here
because none of the statistical programs tried by the author could
distinguish such a small number from zero.
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Figure 4
Normal and Fat-Tailed Distributions

Normal

Fat-Tailed

was the Peso Crisis of 1994 unique. Crashes happen
regularly in financial markets, and they do so much
more frequently than would be predicted by the
normal model.

While the normal distribution is used routinely in
modeling asset returns, it has been widely recognized
for many years that financial markets exhibit signifi-
cant non-normalities. In particular, asset returns ex-
hibit “fat tails,” meaning that more of their probability
is to be found at the tail ends of the distribution and
less at the center. A fat-tailed distribution and a
normal distribution are illustrated in Figure 4. A
fat-tailed distribution makes extreme outcomes such
as crashes relatively more likely than does the normal
distribution.

How to Measure Fat Tails

The degree of tail-fatness of a distribution can be
measured in two ways. The first is kurtosis, or the
fourth moment of a distribution. Kurtosis for a sample
of daily returns can be estimated as follows:

M =

1
K=7Fa (R — w)*,

t

1
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where K is kurtosis, T is the number of days in the
sample, w is the mean return, o is the standard
deviation of returns, and R, is the return on day t. The
kurtosis of a normally distributed variable is 3. By
contrast, the sample kurtosis of the daily returns on
the S&P 500 index between January 1, 1980 and March
31, 1995 was 128.38. For the most part this high
kurtosis can be explained by the stock market crash of
1987. The kurtosis was 2.62 after the crash and 0.98
before it. The high kurtosis was entirely due to the
period between October 1 and December 31 of 1987
(Fortune 1996, p. 33).

Another measure of tail-fatness is the frequency
of outcomes that are a given number of standard
deviations away from the mean. For example, for a
normal distribution, outcomes that are farther than
2.33 standard deviations away from the mean in either
direction have a 1 percent probability of occurring
and events 2.58 standard deviations away from the
mean have only a 0.5 percent probability. Thus, one
can measure tail-fatness of returns of a given asset by
counting how often such extreme outcomes occurred
in the sample.

The empirical evidence of fat tails in asset returns
is extensive. It was first demonstrated for daily stock-
market returns by Fama (1965) and subsequently
confirmed in the academic literature for many asset
returns. Recently, Duffie and Pan (1997) measured
the kurtosis and tail probabilities of daily returns
between 1986 and 1996 for 33 return series, including
17 equity indexes representing 13 countries, exchange
rates between the dollar and 12 foreign currencies,
and 3 commodity series. They found evidence of fat
tails across all 33 series they examined. Interestingly,
they found the returns on the U.S. dollar/Mexican
peso exchange rate to have the fattest tails of all,
with kurtosis of 217.5, or 20 moves beyond 5 stan-
dard deviations and 5 moves beyond 10 standard
deviations.

Fat Tails and Options Pricing

Fat-tailed distributions not only play havoc with
Value at Risk, but can also lead to errors in pricing
options if the standard Black-Scholes model is used. A
critical determinant of the stock option price is the
distribution of the terminal price of the underlying
stock, that is, its price at the time the option expires. If
the returns on the stock are normal, then the terminal
stock price has a lognormal distribution. If, on the
other hand, the returns distribution has fatter tails
than the normal, then the terminal price distribution
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also has fatter tails than the lognormal. This intro-
duces a bias into the Black-Scholes price of deeply
in-the-money and out-of-the-money options,* in a way
that causes the model to underprice both.

Consider, for example, a deeply out-of-the-money
call option (such as an option that gives the holder the
right to buy a stock for $50 at the end of the month,
while the stock is currently worth only $40). This
option will expire with a positive value only if the
stock price increases by a large amount. The probabil-
ity of such an increase depends on the right tail of the
price distribution at the end of the month. If the tail is
fatter than assumed under the Black-Scholes model,
then this probability is higher and the option is more
valuable than the Black-Scholes model would lead one
to believe.

Fat-tailed distributions not only
play havoc with Value at Risk,
but can also lead to errors in
pricing options if the standard
Black-Scholes model is used.

An analogous argument applies to an out-of-the-
money put, which will have a positive value only if
the stock price drops significantly. The fatter the left
tail of the price distribution, the more likely the price
drop. Thus, the Black-Scholes model underprices the
out-of-the money put. The pricing bias also holds for
deep-in-the-money options because of the put-call
parity, which is independent of the price distribution.
If the call is out of the money, then the corresponding
put is in the money, and vice versa. Thus, an in-the-
money put will have the same pricing bias as an
out-of-the-money call, and an out-of-the-money put
the same bias as an in-the-money call.

These pricing biases in option pricing exist if the
distribution of returns is fat-tailed but symmetrical,
that is, the left and right tails are of equal thickness.
However, this need not be the case. The returns
distribution can be skewed, with one tail thicker than
the other. In particular, it has often been observed that

* An option is in the money if it would lead to a positive cash
flow if it were exercised immediately. Similarly, an out-of-the-
money option would lead to a negative cash flow if exercised
immediately.
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in equity markets, crashes occur more frequently than
sudden sharp increases in stock prices. This would
imply that the stock returns distribution has a fat left
tail but a normal right tail. In this case, only out-of-
the-money puts and in-the-money calls will be under-
priced by the Black-Scholes model (Hull 1997, p. 494).

V. Three Recipes for Fat Tails

We can try to improve on the normal model by
explicitly modeling fat-tailed distributions and using
these distributions for pricing options and for calcu-
lating the probabilities of losses of certain magnitudes.
The challenge is in choosing a fat-tailed distribution
that is both mathematically tractable and empirically
relevant. Among the most widely used approaches
to modeling fat-tailed distribution are stable distribu-
tions, jump diffusion, and stochastic volatility.

Stable Distributions

Stable distributions (also known as Pareto-Levy
or stable-Paretian), first described by Levy (1924), are
a class of bell-shaped symmetrical distributions of
which the normal is a special case. Generally, non-
normal stable distributions have narrower peaks at
the mean and fatter tails than the normal distribu-
tion. The fat-tailed distribution illustrated in Figure 4
alongside the normal is Cauchy distribution, which
can be described as follows:

0= (3) =

where y = 1 and 6 = 1.

Stable distributions imply long-range correlations
in asset returns and are characterized by trends,
cycles, and discontinuous changes. The application of
stable distributions to financial asset returns was first
proposed by Mandelbrot (1963) and gave rise to a
large literature on the subject.

The most striking feature of stable distributions is
that the variance and all higher moments do not exist.
This feature also makes their use in modeling very
difficult, because of the crucial role the concept of
variance plays in finance theory. Moreover, the histor-
ical record of asset returns does not fit some empirical
implications of stable distributions. For example, sam-

5 See Campbell, Lo, and MacKinlay (CLM) 1997, p. 17 for more
detail and a list of references.
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ple estimates for variance drawn from random vari-
ables that follow stable distributions would not con-
verge to a single number as the sample gets larger, but
would keep increasing without limit. In practice, esti-
mates of variance of sample returns usually converge
as the sample gets larger. In addition, the use of a
stable distribution to model short-term returns implies
that long-term returns would also follow the same
distribution. In practice, unlike short-term returns,
long-term returns are often well-approximated by the
normal distribution (CLM 1997, p. 19). As a result, the
use of stable distributions in finance has always been
controversial and recently has been supplanted by
other models such as jump diffusion and stochastic
volatility, which produce fat tails while preserving the
finite variance.

Jump Diffusion

The jump diffusion model was introduced by
Merton (1976). This model assumes only that returns
are IID. In particular, the returns usually behave as if
drawn from a normal distribution but are periodically
“jumped” up or down by adding an independent
normally distributed shock. The arrival of these jumps
is random and their frequency is governed by the
Poisson distribution with a given expected frequency.

Fortune (forthcoming) estimates the jump diffu-
sion process for the daily returns on the S&P 500. He
finds that the volatility of returns arises both from the
normal process and from the jumps, with the jumps
accounting for 80 percent of overall return volatility.
He also compares intraweek daily returns with re-
turns over weekends and finds that jumps occur more
frequently on weekdays and are, on average, positive.
In contrast, weekend jumps are, on average, less
frequent, of larger size, and negative. This is consistent
with companies” announcing bad news over week-
ends, hoping to minimize its impact on their stock
prices when the markets next open.

The advantage of the jump diffusion model is that
it can make extreme events appear more frequently.
Duffie and Pan (1997) illustrate the impact of jumps on
risk measurement by comparing a normal distribution
of returns with a constant standard deviation of 15
percent, to an otherwise identical process that has
jumps that occur with an expected frequency of once a
year and come from a normal distribution with a zero
mean and a standard deviation of 10 percent. Despite
the low frequency of jumps, this is equivalent in risk
to a standard normal distribution of returns with a
standard deviation of 185 percent. The jump process
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makes extreme events far out in the tail more likely.
For example, in the above model, one can expect to
lose overnight at least a quarter of the value of one’s
position. In contrast, as Duffie and Pan point out, in
the normal model “one would expect to wait far
longer than the age of the universe to lose as much as
one quarter of the value of one’s position overnight.”®

Stochastic Volatility

Stochastic volatility means that the volatility is
not constant but undergoes random changes over
time. This results in a fat-tailed unconditional distri-
bution of returns, while the conditional distribution
(that is, the distribution of returns at time f conditional
on all previous returns) remains normal. The most
popular class of stochastic volatility models is
GARCH, and the most popular type of GARCH is
GARCH (1,1). GARCH stands for Generalized Autore-
gressive Conditional Heteroskedasticity. The model is
autoregressive because it involves regressing the vari-
ance on its own past values; heteroskedasticity simply
means changing variance. The first version of this type
of model, known as ARCH, was introduced by Engle
(1982) and the generalized, or GARCH, version, was
developed by Bollerslev (1986).

GARCH (1,1) relates the variance of asset returns
at time ¢ to the variance of asset returns at time t — 1
and the excess return at time . The equation is:

o} = 0 + ael + Boiy,

where o is the volatility of asset price at time f, €, is the
excess return, that is, the difference between the actual
return on the asset at time t and the average return,
and w, a, and B are constants. This model is referred to
as GARCH (1,1) because volatility at time ¢ depends
only on the return and the volatility at time t — 1 and
not on the path they have taken in the past. In this
model, B is the persistence parameter, which deter-
mines how much carryover effect the previous peri-
od’s volatility has on today’s volatility. The three
parameters can then be estimated from the historical
returns data.

Implied Volatility—Smiles and Scowls
A different approach to volatility estimates calcu-

lates them from option prices. This can be done

¢ Duffie and Pan credit Mark Rubinstein with the use of this
language to describe the expected frequency of an overnight loss of
this magnitude in the normal model.
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because in the Black-Scholes model a one-to-one cor-
respondence exists between the price of any option
traded in the market and the volatility of the under-
lying security that went into the calculation of that
option price. Thus, if the option price is known, the
volatility can be “backed out” from the Black-Scholes
formula. (The formula cannot be solved analytically,
but the volatility can be found by plugging in different
values for it until one gets arbitrarily close to the
option price.)

The volatility calculated from the option price is
known as “implied” volatility. If one knows the price
of an option on a certain underlying security and its
implied volatility, one could, in principle, calculate the
price of any other option on the same underlying
security. Moreover, one could also use the implied
volatility in value-at-risk calculations. The advantage
claimed for using implied volatility rather than histor-
ical volatility in pricing options and measuring value
at risk is that it is forward-looking, reflecting actual
expectations of market participants rather than the
past. The advantages of implied volatility, however,
are more apparent than real. The main reason for this
are the simplifying assumptions in the Black-Scholes
model. Recall that the model assumes that the volatil-
ity of the underlying security is constant. Thus, if
traders really were using the Black-Scholes to price
options, the implied volatility for any underlying
security would be identical for all options on it. In
reality, nothing could be further from the truth. Op-
tion prices on the same underlying security imply
different volatilities, depending on the option’s expi-
ration date and strike price. Implied volatility first
tends to decrease with the strike price and then to
increase, resulting in the so-called volatility “smile.”
Figure 5 shows a hypothetical example of a volatility
smile. Its symmetry is usually characteristic of cur-
rency options (Hull 1997, p. 503).

Implied volatility plots for stock index options
resemble crooked “scowls” rather than smiles. Stock
index option volatilities are highest for deeply out-of-
the-money options and they keep decreasing, the
more options get into the money. Figure 6 shows
several implied volatility plots for call options on the
S&P 500 index traded on June 10, 1997. The S&P 500
index traded at 862.88 when these volatilities were
calculated. Each plot shows the variation in implied
volatility for options with different strike prices but
the same expiration dates. The different curves repre-
sent different months of option expiration. The steep-
est slope is for the nearest expiration month (in this
case, June) with the more distant expiration months
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Figure 5
Volatility Smile

Implied Volatility

Strike Price

having progressively flatter slopes. The relationship
between implied volatility and time to expiration is
known as the term structure of volatility, by analogy
with the term structure of interest rates.

The differences in implied volatilities among dif-
ferent strike prices and expiration dates reflect not
only market views of volatility, but other consider-
ations. They may depend, in part, on differences in
option premiums caused by variations in supply and
demand for different kinds of options. This is partic-
ularly true for deeply in- and out-of-the-money op-
tions, as they tend to be infrequently traded. Implied
volatilities for different times to expiration tend to
converge for near “at-the-money” options because of
the relative depth of their markets. Ultimately, how-
ever, it must be kept in mind that despite their
ubiquity, different implied volatilities for the same
underlying securities calculated from the Black-
Scholes formula do not have a well-defined economic
meaning. In fact, such volatilities reflect a logical
inconsistency, since they are calculated from a model
whose fundamental assumptions are violated by their
very existence. Implied volatilities can be useful, how-
ever, if they are estimated from an options-pricing
model that allows for time-varying volatility, pro-
vided that we know which model was used to price
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Figure 6

Volatility Smile for SPX June Calls

Volatility (Percent)

40

\ge

Jul

30 y

o= \ March 1998 December

September
20
10
December 1999
~
[ 1 1 | \'

850 855 860

875

Strike Price (Dollars)

the option, and provided that this model was correct.
These conditions make implied volatilities more ap-
propriate for trading options than for more general
value-at-risk calculations. Risk managers concerned
with value-at-risk often prefer historical data because
of their desire to have independent models rather than
relying on pricing models used by traders.

VI. Choosing the Model

The use of historical data to model fat-tailed
distributions of asset returns has gained ground in
modeling value at risk. In particular, jump diffusion
and stochastic volatility models are appealing because
they can predict “tail events” more accurately than the
normal distribution. Nevertheless, the normal distri-
bution continues to be used despite its frequently
proclaimed and well-documented flaws. The appeal of
the normal model lies in its simplicity. This may not
seem like a good excuse, given its less-than-reassuring
track record; however, the appeal of the normal be-
comes more obvious once we consider the practical
difficulties in implementing the alternatives. To use
the normal distribution, one needs to estimate only
one unobserved parameter from the historical data,
namely the variance. In contrast, the two alternative
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models described above, jump diffusion and GARCH
(1,1), each require estimation of three unobserved
parameters. The GARCH model requires the estimates
of o, @, and B. The jump diffusion model requires the
estimates of the variance of returns, the variance of
jumps, and the expected frequency of jumps. Thus, it
is not enough to choose a model structure that hap-
pens to describe the stochastic process generating the
data reasonably well. It is also necessary to estimate its
parameters correctly, and if one or more parameters of
the model are misspecified, the resulting model is not
going to be an improvement over the normal model.

VAR and the Risk of Catastrophic Events

Would a VAR measure based on a stochastic
volatility model such as GARCH have done any better
than the normal model in estimating the probability of
a catastrophic event such as the Peso Crisis? The
answer depends on the amount and appropriateness
of the historical data used for estimating the model. It
will be recalled that the volatility of the peso/dollar
exchange rate was very low during the year leading
up to the crisis. It was low no matter how it was
measured and what sort of structure was imposed on
the data. The peso/dollar exchange rate simply did
not change very much in the year leading to the
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dramatic devaluation, and no model can find the
variability that is not there. The obvious choice is to
use historical data further in the past. In particular,
Mexico has had currency devaluations since the mid-
dle 1970s. Possibly, 20 years of daily exchange rate
data would provide an estimate of the probability of
the latest devaluation, and one model might do so
better than another. However, using 20 years of daily
data in every market in which a bank is trading is
impractical, and in general 20-year-old data usually
would not be relevant.

The preceding observations are not meant to
suggest that no information was available in 1994 that
suggested a possible devaluation. Such information,
however, was not to be found in the volatility of the
exchange rate but in the political climate and macro-
economic policies of the Mexican government. Re-
cently there has been renewed interest in the causes of

The basic model as applied to
currency crises was developed by
Krugman in 1979. It attributes
speculative pressures on
currencies to the inconsistency
of the government’s monetary
and fiscal policies with its
exchange rate target.

currency crises, spurred in part by the events in
Mexico. The basic model as applied to currency crises,
however, was developed by Krugman in 1979. It
attributes speculative pressures on currencies to the
inconsistency of the government’s monetary and fiscal
policies with its exchange rate target. Specifically, such
inconsistency can arise if a country runs budget defi-
cits while its central bank finances them by expansion-
ary monetary policy. The expanding supply of local
currency relative to the U.S. dollar tends to depress the
value of the local currency. If the central bank wants to
defend the value of its currency and keep it pegged to
the U.S. dollar, it must buy it with its foreign currency
reserves. But its foreign currency reserves are not
infinite, and once they are exhausted, the currency can
no longer be defended. Rational investors will foresee
that the reserves will eventually be exhausted and
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seek to profit immediately by selling the currency
before the reserves are depleted. Krugman’s theory
predicts that the collapse of the exchange rate peg will
occur as soon as investors become convinced that the
government’s policies are unsustainable and mount a
speculative attack on the currency.

Mexican experience in 1994 is consistent with
Krugman’s model of a speculative attack. At the time,
Mexico had a large and growing current-account
deficit and relied on an overexpanding money supply
and short-term borrowing. These weaknesses were
masked for a time by large capital inflows from
foreign investors which allowed Mexico to maintain
the value of the peso and maintain its foreign ex-
change reserves. In 1994, however, Mexico experi-
enced a great deal of political instability, notably the
peasant uprising in Chiapas and the assassination of
presidential candidate Luis Donaldo Colosio. Political
turmoil led to a loss of confidence by foreign investors,
who withdrew their money. As the Mexican govern-
ment sought to defend the value of the peso, its
foreign exchange reserves were rapidly depleted, forc-
ing the devaluation.

Catastrophic Events and Stress Testing

While no method of modeling catastrophic events
like the Peso Crisis is universally accepted, it is clear
that VAR is not sufficient and must be supplemented
by other methods. These usually involve stress testing
using scenario analysis. Stress testing involves creat-
ing a set of realistic scenarios and evaluating their
impact on all current trading positions. Besides the
Peso Crisis, other examples of catastrophic market
events in the 1990s include the European currency
crisis precipitated by the decision of Great Britain and
Italy to leave the Exchange Rate Mechanism (ERM) in
September of 1994, the sharp fall in the U.S. and
European bond markets in April of 1994, and the Kobe
earthquake in February of 1995. In addition to using
scenarios based on actual past catastrophic events,
stress testing can be supplemented by views of man-
agement about possible future events or based on
econometric models of market trends. Stress testing
can then be used to define the limits on market
positions the traders are permitted to take, and to
determine the level of diversification necessary to
bring the impact of catastrophic events to acceptable
levels.

Thus, it is useful to make a distinction between
the risk of events that occur somewhat rarely (like 1
out of 100 times) but are still a part of business as
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usual, and catastrophic events that happen very rarely
and whose probability cannot be estimated with accu-
racy. The former risk is measured by VAR and the
latter by stress testing. These approaches are com-
plementary, and both are necessary for modeling risk.
The main difference between VAR and stress testing
is that, unlike VAR, stress testing does not assign
probabilities to the scenarios being tested, which
makes it difficult to compare results to VAR or to each
other.

VII. Conclusion

At the beginning of this article, we distinguished
between four types of models—macro models, micro
models, valuation models, and risk management mod-
els such as Value at Risk. The bulk of the article has
focused on valuation and risk management models
and their crucial first step—modeling the statistical
processes of asset returns. We observed that modeling
asset returns is complicated by changes in the param-
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