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Abstract

This paper develops a new test for identifying racial bias in the context of bail decisions – a
high-stakes setting with large disparities between white and black defendants. We motivate our
analysis using Becker’s model of racial bias, which predicts that rates of pre-trial misconduct
will be identical for marginal white and marginal black defendants if bail judges are racially
unbiased. In contrast, marginal white defendants will have higher rates of misconduct than
marginal black defendants if bail judges are racially biased, whether that bias is driven by
racial animus, inaccurate racial stereotypes, or any other form of bias. To test the model,
we use the release tendencies of quasi-randomly assigned bail judges to identify the relevant
race-specific misconduct rates. Estimates from Miami and Philadelphia show that bail judges
are racially biased against black defendants, with substantially more racial bias among both
inexperienced and part-time judges. We find suggestive evidence that this racial bias is driven
by bail judges relying on inaccurate stereotypes that exaggerate the relative danger of releasing
black defendants. JEL Codes: C26, J15.
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Racial disparities exist at every stage of the U.S. criminal justice system. Compared to observ-
ably similar whites, blacks are more likely to be searched for contraband (Antonovics and Knight
2009), more likely to experience police force (Fryer 2016), more likely to be charged with a serious
offense (Rehavi and Starr 2014), more likely to be convicted (Anwar, Bayer, and Hjalmarrson 2012),
and more likely to be incarcerated (Abrams, Bertrand, and Mullainathan 2012). Racial disparities
are particularly prominent in the setting of bail: in our data, black defendants are 3.6 percentage
points more likely to be assigned monetary bail than white defendants and, conditional on being
assigned monetary bail, receive bail amounts that are $9,923 greater.1 One view is that these racial
disparities are driven by statistical discrimination, or the use of observable group traits such as race
to form accurate beliefs about the unobservable characteristics of defendants (e.g., Phelps 1972,
Arrow 1973). A second view is that statistical discrimination alone cannot explain these disparities,
leaving a role for various forms of racial bias, such as racial animus (e.g., Becker 1957) or inaccurate
racial stereotypes (e.g., Bordalo et al. 2016). However, distinguishing between these two contrasting
explanations remains an empirical challenge.

To test whether racial bias is empirically relevant, Becker (1957, 1993) proposed an “outcome
test” that compares the success or failure of decisions across groups at the margin. In our setting,
the outcome test is based on the idea that rates of pre-trial misconduct will be identical for marginal
white and marginal black defendants if bail judges are racially unbiased and the disparities in bail
setting are solely due to accurate statistical discrimination. In contrast, marginal white defendants
will have higher rates of pre-trial misconduct than marginal black defendants if these bail judges are
racially biased against blacks, whether that racial bias is driven by racial animus, inaccurate racial
stereotypes, or any other form of racial bias. The outcome test has been difficult to implement
in practice, however, as comparisons based on average defendant outcomes are biased when whites
and blacks have different risk distributions – the well-known infra-marginality problem (e.g., Ayres
2002).

In recent years, two seminal papers have developed outcome tests of racial bias that partially
circumvent this infra-marginality problem. In the first paper, Knowles, Persico, and Todd (2001)
show that if motorists respond to the race-specific probability of being searched, then all motorists of
a given race will carry contraband with equal probability. As a result, the marginal and average suc-
cess rates of police searches will be identical and OLS estimates are not biased by infra-marginality
concerns. Knowles et al. (2001) find no difference in the average success rate of police searches for
white and black drivers, leading them to conclude that there is no racial bias in police searches. In
a second important paper, Anwar and Fang (2006) develop a test of relative racial bias based on
the idea that the ranking of search and success rates by white and black police officers should be
unaffected by the race of the motorist even when there are infra-marginality problems. Consistent
with Knowles et al. (2001), Anwar and Fang (2006) find no evidence of relative racial bias in police

1Authors’ calculation for Miami-Dade and Philadelphia using the data described in Section II. Racial disparities
in bail setting are also observed in other jurisdictions. For example, black felony defendants in state courts are nine
percentage points more likely to be detained pre-trial compared to otherwise similar white defendants (McIntyre and
Baradaran 2013).
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searches, but note that their approach cannot be used to detect absolute racial bias.2 However, the
prior literature has been critiqued for its reliance on restrictive assumptions about the unobserved
risk of blacks and whites (e.g., Brock et al. 2012).

In this paper, we propose a new outcome test for identifying racial bias in the context of bail
decisions. Bail is an ideal setting to test for racial bias for a number of reasons. First, the legal
objective of bail judges is narrow, straightforward, and measurable: to set bail conditions that allow
most defendants to be released while minimizing the risk of pre-trial misconduct. In contrast, the
objectives of judges at other stages of the criminal justice process, such as sentencing, are compli-
cated by multiple hard-to-measure objectives, such as the balance between retribution and mercy.
Second, mostly untrained bail judges must make on-the-spot judgments with limited information
and little to no interaction with defendants. These institutional features make bail decisions par-
ticularly prone to the kind of inaccurate stereotypes or categorical heuristics that exacerbate racial
bias (e.g., Fryer and Jackson 2008, Bordalo et al. 2016). Finally, bail decisions are extremely conse-
quential for both white and black defendants, with prior work suggesting that detained defendants
suffer about $30,000 in lost earnings and government benefits alone (Dobbie, Goldin, and Yang
2018).3

In the first section of the paper, we formally develop two complementary estimators that use
variation in the release tendencies of quasi-randomly assigned bail judges to identify the differences
in pre-trial misconduct rates at the margin of release required for the Becker outcome test. Our
first estimator uses the standard instrumental variables (IV) framework to identify differences in
the local average treatment effects (LATEs) for white and black defendants near the margin of
release. Though IV estimators are often criticized for the local nature of the estimates, we ex-
ploit the fact that the Becker test relies on (the differences between) exactly these kinds of local
treatment effects to test for racial bias. In our context, our IV estimator measures the weighted
average of racial bias across all bail judges with relatively few auxiliary assumptions, but at the
potential cost that we cannot estimate judge-specific treatment effects and the weighting scheme
underlying the IV estimator is not always policy relevant. In contrast, our second estimator uses
the marginal treatment effects (MTE) framework developed by Heckman and Vytlacil (1999, 2005)
to estimate judge-specific treatment effects for white and black defendants at the margin of release.
Our MTE estimator therefore allows us to put equal weight on each judge in our sample, but with
the estimation of the judge-specific estimates coming at the cost of additional auxiliary assumptions.

The second part of the paper tests for racial bias in bail setting using administrative court data
from Miami and Philadelphia. We find evidence of significant racial bias against black defendants
using both our IV and MTE estimators, ruling out statistical discrimination as the sole explanation

2We replicate the Knowles et al. (2001) and Anwar and Fang (2006) tests in our data, finding no evidence of
racial bias in either case. The differences between our test and the Knowles et al. (2001) and Anwar and Fang (2006)
tests are that (1) we identify treatment effects for marginal defendants rather than the average defendant, and (2) we
identify absolute rather than relative bias. See Section III.C for additional details on why the Knowles et al. (2001)
and Anwar and Fang (2006) tests yield different results than our test.

3See Dobbie et al. (2018), Gupta, Hansman, and Frenchman (2016), Leslie and Pope (2017), and Stevenson
(2016) for evidence on the non-financial consequences of bail decisions.
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for the racial disparities in bail. We find that marginally released white defendants are 22.2 to 23.1
percentage points more likely to be rearrested prior to disposition than marginally released black
defendants using our IV and MTE estimators, respectively. Our estimates of racial bias are nearly
identical if we account for other observable crime and defendant differences by race, suggesting
that our results cannot be explained by black-white differences in certain types of crimes (e.g., the
proportion of felonies versus misdemeanors) or black-white differences in defendant characteristics
(e.g., the proportion with prior offenses versus no prior offenses). In sharp contrast to these results,
naïve OLS estimates indicate, if anything, racial bias against white defendants, highlighting the
importance of accounting for both infra-marginality and omitted variables when estimating racial
bias in the criminal justice system.

In the final part of the paper, we explore which form of racial bias is driving our findings. The
first possibility is that, as originally modeled by Becker (1957, 1993), racial animus leads judges
to discriminate against black defendants at the margin of release. This type of taste-based racial
bias may be a particular concern in our setting due to the relatively low number of minority bail
judges, the rapid-fire determination of bail decisions, and the lack of face-to-face contact between
defendants and judges. A second possibility is that bail judges rely on incorrect inferences of risk
based on defendant race due to anti-black stereotypes, leading to the relative over-detention of black
defendants at the margin. These inaccurate anti-black stereotypes can arise if black defendants are
over-represented in the right tail of the risk distribution, even when the difference in the riskiness
of the average black defendant and the average white defendant is very small (Bordalo et al. 2016).
As with racial animus, these racially biased prediction errors in risk may be exacerbated by the fact
that bail judges must make quick judgments on the basis of limited information, with virtually no
training and, in many jurisdictions, little experience working in the bail system.

We find three sets of facts suggesting that our results are driven by bail judges relying on
inaccurate stereotypes that exaggerate the relative danger of releasing black defendants versus white
defendants at the margin. First, we find that both white and black bail judges exhibit racial bias
against black defendants, a result that is inconsistent with most models of racial animus. Second,
we find that our data are strikingly consistent with the theory of stereotyping developed by Bordalo
et al. (2016). For example, we find that black defendants are sufficiently over-represented in the
right tail of the predicted risk distribution, particularly for violent crimes, to rationalize observed
racial disparities in release rates under a stereotyping model. We also find that there is no racial
bias against Hispanics, who, unlike blacks, are not significantly over-represented in the right tail of
the predicted risk distribution. Finally, we find substantially more racial bias when prediction errors
of any kind are more likely to occur. For example, we find substantially less racial bias among both
the full-time and more experienced part-time judges who are least likely to rely on simple race-based
heuristics, and substantially more racial bias among the least experienced part-time judges who are
most likely to rely on these heuristics.

Our findings are broadly consistent with parallel work by Kleinberg et al. (2018), who use ma-
chine learning techniques to show that bail judges make significant prediction errors for defendants
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of all races. Using a machine learning algorithm to predict risk using a variety of inputs such as
prior and current criminal charges, but excluding defendant race, they find that the algorithm could
reduce crime and jail populations while simultaneously reducing racial disparities. Their results
also suggest that variables that are unobserved in the data, such as a judge’s mood or a defendant’s
demeanor at the bail hearing, are the source of prediction errors, not private information that leads
to more accurate risk predictions. Our results complement Kleinberg et al. (2018) by documenting
one specific source of these prediction errors – racial bias among bail judges.

Our results also contribute to an important literature testing for racial bias in the criminal justice
system. As discussed above, Knowles et al. (2001) and Anwar and Fang (2006) are seminal works in
this area. Subsequent work has used outcome tests to examine racial bias in police search decisions
(Antonovics and Knight 2009), capital sentencing (Alesina and La Ferrara 2014), and parole board
release decisions (Mechoulan and Sahuguet 2015, Anwar and Fang 2015). Racial bias in bail setting
has been studied using the prices charged by bail bond dealers (Ayres and Waldfogel 1994) and
a parametric framework to account for unobserved heterogeneity across defendants (Bushway and
Gelbach 2011). Our paper is also related to work using LATEs provided by IV estimators to obtain
effects at the margin of the instrument (e.g., Card 1999, Gruber, Levine, and Staiger 1999) and
work using MTEs to extrapolate to other estimands of interest (e.g., Heckman and Vyltacil 2005,
Heckman, Urzua, and Vytlacil 2006, Cornelissen et al. 2016, Brinch, Mogstad, and Wiswall 2017).

The remainder of the paper is structured as follows. Section I provides an overview of the bail
system, describes the theoretical model underlying our analysis, and develops our empirical test for
racial bias. Section II describes our data and empirical methodology. Section III presents the main
results. Section IV explores potential mechanisms, and Section V concludes. The Online Appendix
provides all additional results, theoretical proofs, and detailed information on our setting.

I. An Empirical Test of Racial Bias

In this section, we motivate and develop our empirical test for racial bias in bail setting. Our
theoretical framework closely follows the previous literature on the outcome test in the criminal
justice system (e.g., Becker 1957, 1993, Knowles et al. 2001, Anwar and Fang 2006). Consistent
with the prior literature, we show that we can test for racial bias by comparing treatment effects for
the marginal black and marginal white defendants. We then develop two complementary estimators
to identify these race-specific treatment effects using the quasi-random assignment of cases to judges.
Online Appendix B provides additional details and proofs.

I.A. Overview of the Bail System

In the United States, bail judges are granted considerable discretion to determine which defen-
dants should be released before trial. Bail judges are meant to balance two competing objectives
when deciding whether to detain or release a defendant before trial. First, bail judges are directed to
release all but the most dangerous defendants before trial to avoid undue punishment for defendants
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who have not yet been convicted of a crime. Second, bail judges are instructed to minimize the risk
of pre-trial misconduct by setting the appropriate conditions for release. In our setting, pre-trial
misconduct includes both the risk of new criminal activity and the risk of failure to appear for a
required court appearance. Importantly, bail judges are not supposed to assess guilt or punishment
at the bail hearing.

The conditions of release are set at a bail hearing typically held within 24 to 48 hours of a
defendant’s arrest. In most jurisdictions, bail hearings last only a few minutes and are held through
a video-conference to the detention center such that judges can observe each defendant’s demeanor.
During the bail hearing, the assigned bail judge considers factors such as the nature of the alleged
offense, the weight of the evidence against the defendant, the nature and probability of danger
that the defendant’s release poses to the community, the likelihood of flight based on factors such
as the defendant’s employment status and living situation, and any record of prior flight or bail
violations, among other factors (Foote 1954). Because bail judges are granted considerable discretion
in setting the appropriate bail conditions, there are substantial differences across judges in the same
jurisdiction (e.g., Dobbie et al. 2018, Gupta et al. 2016, Leslie and Pope 2017, Stevenson 2016).

The assigned bail judge has a number of potential options when setting a defendant’s bail
conditions. For example, the bail judge can release low-risk defendants on a promise to return for
all court appearances, known as release on recognizance (ROR). For defendants who pose a higher
risk of flight or new crime, the bail judge can allow release but impose non-monetary conditions
such as electronic monitoring or periodic reporting to pre-trial services. The judge can also require
defendants to post a monetary amount to secure release, typically 10 percent of the total bail
amount. If the defendant fails to appear at the required court appearances or commits a new crime
while out on bail, either he or the bail surety forfeits the 10 percent payment and is liable for the
remaining 90 percent of the total bail amount. In practice, the median bail amount is $6,000 in our
sample, and only 57 percent of defendants meet the required monetary conditions to secure release.
Bail may also be denied altogether for defendants who commit the most serious crimes such as first-
or second-degree murder.

One important difference between jurisdictions is the degree to which bail judges specialize in
conducting bail hearings. In our setting, the bail judges we study in Philadelphia are full-time
specialists who are tasked with setting bail seven days a week throughout the entire year. In
contrast, the bail judges we study in Miami are part-time nonspecialists who assist the bail court
by serving weekend shifts once or twice per year. These weekend bail judges spend their weekdays
as trial judges. We explore the potential importance of these institutional features in Section IV.

I.B. Model of Judge Behavior

This section develops a stylized theoretical framework that allows us to define an outcome-based
test of racial bias in bail setting. We begin with a model of taste-based racial bias that closely follows
Becker (1957, 1993). We then present an alternative model of racially biased prediction errors, which
generates similar empirical predictions as the taste-based model.
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1. Taste-Based Discrimination. Let i denote a defendant and Vi denote all case and defendant
characteristics considered by the bail judge, excluding defendant race ri. The expected cost of
release for defendant i conditional on observable characteristics Vi and race ri is equal to the
expected probability of pre-trial misconduct E[αi|Vi, ri], which includes the likelihood of both new
crime and failure to appear, times the cost of misconduct C, which includes the social cost of any
new crime or failures to appear. For simplicity, we normalize C = 1, so that the expected cost of
release conditional on observable characteristics is equal to E[αi|Vi, ri]. Moving forward, we also
simplify our notation by letting the expected cost of release conditional on observables be denoted
by E[αi|ri].

The perceived benefit of release for defendant i assigned to judge j is denoted by tjr(Vi), which is a
function of observable case and defendant characteristics Vi. The perceived benefit of release tjr(Vi)

includes social cost savings from reduced jail time, private gains to defendants from an improved
bargaining position with the prosecutor or increased labor force participation, and personal benefits
to judge j from any direct utility or disutility from being known as either a lenient or tough judge,
respectively. Importantly, we allow the perceived benefit of release tjr(Vi) to vary by race r ∈W,B
to allow for judge preferences to differ for white and black defendants.

Definition 1. Following Becker (1957, 1993), we define judge j as racially biased against black
defendants if tjW (Vi) > tjB(Vi). Thus, for racially biased judges, there is a higher perceived
benefit of releasing white defendants than releasing observably identical black defendants.

For simplicity, we assume that bail judges are risk neutral and maximize the perceived net benefit
of pre-trial release. We also assume that the bail judge’s sole task is to decide whether to release
or detain a defendant given that this decision margin is the most important and consequential
(Kleinberg et al. 2018, Dobbie et al. 2018). In simplifying each judge’s task to this single decision,
we abstract away from the fact that bail judges may set different levels of monetary bail that take
into account a defendant’s ability to pay. We discuss possible extensions to the model that account
for these features below.

Under these assumptions, the model implies that bail judge j will release defendant i if and only
if the expected cost of pre-trial release is less than the perceived benefit of release:

(1) E[αi|ri = r] ≤ tjr(Vi)

Given this decision rule, the marginal defendant for judge j and race r is the defendant i for whom the
expected cost of release is exactly equal to the perceived benefit of release, i.e. E[αji |ri = r] = tjr(Vi).
We simplify our notation moving forward by letting this expected cost of release for the marginal
defendant for judge j and race r be denoted by αjr.

Based on the above framework and Definition 1, the model yields the familiar outcome-based
test for racial bias from Becker (1957, 1993):

Proposition 1. If judge j is racially biased against black defendants, then αjW>αjB. Thus, for
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racially biased judges, the expected cost of release for the marginal white defendant is higher
than the expected cost of release for the marginal black defendant.

Proposition 1 predicts that marginal white and marginal black defendants should have the same
probability of pre-trial misconduct if judge j is racially unbiased, but marginal white defendants
should have a higher probability of misconduct if judge j is racially biased against black defendants.

2. Racially Biased Prediction Errors in Risk. In the taste-based model of discrimination out-
lined above, we assume that judges agree on the (true) expected cost of release, E[αi|ri], but not
the perceived benefit of release, tjr(Vi). An alternative approach is to assume that judges disagree
on their (potentially inaccurate) predictions of the expected cost of release, as would be the case
if judges systematically overestimate the probability of pre-trial misconduct for black defendants
relative to white defendants. We show that a model motivated by these kinds of racially biased
prediction errors in risk can generate the same predictions as a model of taste-based discrimination.

Let i again denote defendants and Vi denote all case and defendant characteristics considered by
the bail judge, excluding defendant race ri. The perceived benefit of releasing defendant i assigned
to judge j is now defined as t(Vi), which does not vary by judge.

The perceived cost of release for defendant i conditional on observable characteristics Vi is
equal to the perceived probability of pre-trial misconduct, Ej [αi|Vi, ri], which is now allowed to
vary across judges. We can write the perceived cost of release as:

(2) Ej [αi|Vi, ri] = E[αi|Vi, ri] + τ jr (Vi)

where τ jr (Vi) is a prediction error that is allowed to vary by judge j and defendant race ri. To
simplify our notation, we let the true expected probability of pre-trial misconduct conditional on
all variables observed by the judge be denoted by E[αi|ri].

Definition 2. We define judge j as making racially biased prediction errors in risk against black
defendants if τ jB(Vi) > τ jW (Vi). Thus, judges making racially biased prediction errors system-
atically overestimate the true cost of release for black defendants relative to white defendants.

Following the taste-based model, bail judge j will release defendant i if and only if the benefit of
pre-trial release is greater than the perceived cost of release:

(3) Ej [αi|Vi, ri = r] = E[αi|ri = r] + τ jr (Vi) ≤ t(Vi)

Given the above setup, it is straightforward to show that the prediction error model can be reduced
to the taste-based model of discrimination outlined above if we relabel t(Vi)− τ jr (Vi) = tjr(Vi). As
a result, we can generate identical empirical predictions using the prediction error and taste-based
models.

Following this logic, our model of racially biased prediction errors in risk yields a similar outcome-
based test for racial bias:
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Proposition 2. If judge j systematically overestimates the true expected cost of release of black
defendants relative to white defendants, then αjW>αjB. Thus, for judges who make racially bi-
ased prediction errors in risk, the true expected cost of release for the marginal white defendant
is higher than the true expected cost of release for the marginal black defendant.

Parallel to Proposition 1, Proposition 2 predicts that marginal white and marginal black defendants
should have the same probability of pre-trial misconduct if judge j does not systematically make
prediction errors in risk that vary with race, but marginal white defendants should have a higher
probability of misconduct if judge j systematically overestimates the true expected cost of release
of black defendants relative to white defendants.

Regardless of the underlying behavioral model that drives the differences in judge behavior,
the empirical predictions generated by these outcome-based tests are identical: if there is racial
bias against black defendants, then marginal white defendants will have a higher probability of
misconduct than marginal black defendants. In contrast, marginal white defendants will not have
a higher probability of misconduct than marginal black defendants if observed racial disparities in
bail setting are solely due to statistical discrimination.4 Of course, finding higher misconduct rates
for marginal white versus marginal black defendants does have a different interpretation depending
on the underlying behavioral model. We will return to this issue in Section IV when we discuss
more speculative evidence that allows us to differentiate between these two forms of racial bias.

I.C. Empirical Test of Racial Bias in Bail Setting

The goal of our analysis is to empirically test for racial bias in bail setting using the rate of
pre-trial misconduct for white defendants and black defendants at the margin of release. Following
the theory model, let the weighted average of pre-trial misconduct rates for defendants of race r at
the margin for judge j, αjr, for some weighting scheme, wj , across all bail judges, j = 1...J , be given
by:

α∗,wr =
J∑
j=1

wjαjr(4)

=

J∑
j=1

wjtjr

where wj are non-negative weights which sum to one that will be discussed in further detail below.
By definition, αjr = tjr, where tjr represents judge j’s threshold for release for defendants of race

4In contrast to the two models we consider in this section, models of (accurate) statistical discrimination suggest
that blacks may be treated worse than observably identical whites if either (1) blacks are, on average, riskier given an
identical signal of risk (e.g., Phelps 1972, Arrow 1973) or (2) blacks have less precise signals of risk (e.g., Aigner and
Cain 1977). In both types of (accurate) statistical discrimination models, however, judges use race to form accurate
predictions of risk, both on average and at the margin of release. As a result, neither form of (accurate) statistical
discrimination will lead to marginal white defendants having a higher probability of misconduct than marginal black
defendants.
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r. In our context, pre-trial misconduct rates can be identified by the treatment effect of pre-trial
release on misconduct, as defendants detained before trial cannot, by definition, commit pre-trial
misconduct. Thus, α∗,wr represents a weighted average of the treatment effects for defendants of
race r at the margin of release across all judges.

Following this notation, the average level of racial bias among bail judges, D∗,w, for the weighting
scheme wj is given by:

D∗,w =
J∑
j=1

wj
(
tjW − t

j
B

)
(5)

=

J∑
j=1

wjtjW −
J∑
j=1

wjtjB

= α∗,wW − α∗,wB

From Equation (4), we can express D∗,w as a weighted average across all judges of the difference in
treatment effects for white and black defendants at the margin of release.

Standard OLS estimates will typically not recover unbiased estimates of the weighted average
of racial bias, D∗,w, for two reasons. First, characteristics observable to the judge but not the
econometrician may be correlated with pre-trial release, resulting in omitted variable bias when
estimating the treatment effects for black and white defendants. The second, and more important,
reason OLS estimates will not recover unbiased estimates of racial bias is that the average treatment
effect identified by OLS will not equal the treatment effect at the margin required by the outcome
test unless one is willing to assume either identical risk distributions for black and white defendants
or constant treatment effects across the entire distribution of both black and white defendants (e.g.,
Ayres 2002). Thus, even if the econometrician observes the full set of observables known to the bail
judge, OLS estimates are still not sufficient to test for racial bias without restrictive assumptions.5

We therefore develop two complementary estimators for racial bias that use variation in the
release tendencies of quasi-randomly assigned bail judges to identify differences in pre-trial miscon-
duct rates at the margin of release. Our first estimator uses the standard IV framework to identify
the difference in LATEs for white and black defendants near the margin of release. Our IV estimator
allows us to estimate a weighted average of racial bias across bail judges with relatively few auxiliary
assumptions, but with the caveats that we cannot estimate judge-specific treatment effects and the
weighting scheme underlying the IV estimator may not be policy relevant. In contrast, our second
estimator uses the MTE framework developed by Heckman and Vytlacil (1999, 2005) to estimate
judge-specific treatment effects for white and black defendants at the margin of release, allowing
us to choose our own weighting scheme when calculating racial bias in our data. In practice, we
choose to impose equal weights on each judge – a parameter with a clear economic interpretation –

5In Online Appendix C, we use a series of simple graphical examples to illustrate how a standard OLS estima-
tor suffers from infra-marginality bias whenever there are differences in the risk distributions of black and white
defendants. We then use a simple two-judge example to illustrate how a judge IV estimator can alleviate the infra-
marginality bias.
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meaning that our MTE estimates can be interpreted as the average level of bias across judges.

1. Setup. We first briefly review the econometric properties of a race-specific estimator that uses
judge leniency as an instrumental variable for pre-trial release, baseline assumptions that underlie
both our IV and MTE estimators. Online Appendix B provides empirical tests of each assumption.

Let Zi be a scalar measure of the assigned judge’s propensity for pre-trial release for defendant-
case i that takes on values ordered {z0, ..., zJ}, where J + 1 is the number of total judges in the
bail system. For example, a value of zj = 0.5 indicates that judge j releases 50 percent of all
defendants. In practice, we construct Zi using a standard leave-out procedure that captures the
pre-trial release tendencies of judges. We calculate Zi separately for white and black defendants to
relax the standard monotonicity assumption that the judge ordering produced by the scalar Zi is
the same for both white and black defendants, implicitly allowing judges to exhibit different levels
of racial bias.

Following Imbens and Angrist (1994), a race-specific estimator using Zi as an instrumental
variable for pre-trial release is valid and well-defined under the following three assumptions:

Assumption 1. (Existence) Cov(Releasedi, Zi) 6= 0

Assumption 2. (Exclusion) Cov(Zi,vi) = 0

Assumption 3. (Monotonicity) Releasedi(zj)−Releasedi(zj−1) ≥ 0

where vi = Ui + εi consists of characteristics unobserved by the econometrician but observed
by the judge, Ui, and idiosyncratic variation unobserved by both the econometrician and judge,
εi. Assumption 1 ensures that there is a first-stage relationship between our instrument Zi and
the probability of pre-trial release Releasedi. Assumption 2 ensures that our instrument Zi is
orthogonal to characteristics unobserved by the econometrician, vi. In other words, Assumption 2
assumes that the assigned judge only affects pre-trial misconduct through the channel of pre-trial
release. Assumption 3 implies that for a given case, any defendant released by a strict judge would
also be released by a more lenient judge, and any defendant detained by a lenient judge would also
be detained by a more strict judge.

2. IV Estimator for Racial Bias Given Assumptions 1-3, we now formally define our IV esti-
mator for racial bias, provide conditions for consistency, and discuss the interpretation of the IV
weights.

a. Defining our IV estimator. Let the true IV-weighted level of racial bias, D∗,IV be defined as:

D∗,IV =

J∑
j=1

wj
(
tjW − t

j
B

)
(6)

=

J∑
j=1

λj
(
tjW − t

j
B

)

where wj = λj , the standard IV weights defined in Imbens and Angrist (1994).

10



Let our IV estimator that uses judge leniency as an instrumental variable for pre-trial release
be defined as:

DIV = αIVW − αIVB(7)

=
J∑
j=1

λjWα
j,j−1
W −

J∑
j=1

λjBα
j,j−1
B

where λjr are again the standard IV weights and each pairwise treatment effect αj,j−1
r captures the

treatment effects of compliers within each j, j − 1 pair. As we discuss in Online Appendix B,
compliers for judge j and j − 1 are individuals such that αj,j−1

r ∈ (tj−1
r , tjr].

b. Consistency of our IV estimator: Our IV estimator DIV provides a consistent estimate
of D∗,IV under two conditions: (1) Zi is continuous and (2) λjr is constant by race. See Online
Appendix B for proofs of consistency. The first condition is that our judge leniency measure Zi
is continuously distributed over some interval [z, z̄]. Intuitively, each defendant becomes marginal
to a judge as the distance between any two judge leniency measures converges to zero, i.e. the
instrument becomes more continuous. Under this first condition, each race-specific IV estimate,
αIVr , approaches a weighted average of treatment effects for defendants at the margin of release. In
Online Appendix B, we discuss the potential infra-marginality bias that may result if our instrument
is discrete, as is the case in our data. In practice, we find that the maximum infra-marginality bias
of our IV estimator DIV from D∗,IV is 1.1 percentage points in our setting. The second condition
for consistency is that the weights on the pairwise LATEs must be equal across race. This equal
weights assumption ensures that the race-specific IV estimates from Equation (7), αIVW and αIVB ,
provide the same weighted averages of αj,j−1

W and αj,j−1
B . In Online Appendix B, we empirically

test whether the IV weights λjr are constant by race in our data, finding that the distributions of
black and white IV weights are visually indistinguishable from each other and that the IV weights
for each judge-by-year cell are highly correlated across race.

c. Interpretation of the IV weights: As discussed above, our IV estimator yields a weighted
average of racial bias across bail judges, where the weights λj are the standard IV weights defined
in Imbens and Angrist (1994). To better understand the economic interpretation of an IV-weighted
estimate of racial bias, Online Appendix B investigates the relationship between our IV weights and
judge-by-year characteristics. We find that our IV weights are positively correlated with both the
number of cases in a judge-by-year cell and judge-by-year specific estimates of racial bias, implying
that the IV-weighted estimate of racial bias may be larger than an equal-weighted estimate of
racial bias. We return to this issue below when discussing the difference between our IV and MTE
estimates.

3. MTE Estimator for Racial Bias Finally, we formally define our MTE estimator of racial
bias and provide conditions for consistency. Without loss of generality, we focus on an estimate of
racial bias that places equal weight on each bail judge.
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a. Defining our MTE estimator: Let the true equal-weighted MTE estimate of racial bias,
D∗,MTE be defined as:

D∗,MTE =
J∑
j=1

wj
(
tjW − t

j
B

)
(8)

=
J∑
j=1

1

J

(
tjW − t

j
B

)

where wj = 1
J , such that D∗,MTE can be interpreted as the average level of racial bias across judges.

Let our equal-weighted MTE estimator of racial bias, DMTE , be defined as:

(9) DMTE =
J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)

where pjr is the probability that judge j releases a defendant of race r calculated using only the
variation in pre-trial release due to our judge leniency measure Zi (i.e. judge j’s race-specific
propensity score). MTEr(p

j
r) is the estimated MTE at the propensity score for judge j calculated

separately for each defendant race r. In Online Appendix B, we show that MTEr(p
j
r) = αjr when

we map each judge j’s release decision under our theory model to the MTE framework developed
by Heckman and Vytlacil (2005).

b. Consistency of our MTE estimator: Our MTE estimatorDMTE provides a consistent estimate
of D∗,MTE if the race-specific MTEs are identified over the entire support of the propensity score
calculated using variation in Zi. If Zi is continuous, the local instrumental variables (LIV) estimand
provides a consistent estimate of the MTE over the support of the propensity score with no additional
assumptions (Heckman and Vytlacil 2005, Cornelissen et al. 2016). With a discrete instrument,
however, our MTE estimator is only consistent under additional functional form restrictions that
allow us to interpolate the MTEs between the values of the propensity score we observe in the data.
Following Heckman and Vytlacil (2005) and Doyle (2007), we use a local polynomial function and
information from the observed values of the propensity score to estimate the MTE curve over the
full support of the propensity score. In Online Appendix B, we provide support for our functional
form assumption by showing that we can recover each nonparametric LATE using the appropriately
weighted MTE up to sampling error (Cornelissen et al. 2016).

I.D. Discussion and Extensions

In this section, we discuss the interpretation of our test of racial bias under different assumptions
and extensions.

1. Racial Differences in Arrest Probability. Our test for racial bias assumes that any measure-
ment error in the outcome is uncorrelated with race. This assumption would be violated if, for
example, judges minimize new crime, not just new arrests, and police are more likely to rearrest
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black defendants conditional on having committed a new crime (Fryer 2016, Goncalves and Mello
2018). In this scenario, we will overestimate the probability of pre-trial misconduct for black versus
white defendants at the margin and, as a result, underestimate the true amount of racial bias in
bail setting. It is therefore possible that our estimates reflect a lower bound on the true amount of
racial bias among bail judges to the extent that judges minimize new crime.

2. Omitted Objectives for Release. We also assume that judges do not consider other objectives
or outcomes, or what Kleinberg et al. (2018) refer to as “omitted payoff bias.” We will have this
kind of omitted payoff bias if, for example, bail judges consider how pre-trial detention impacts a
defendant’s employment status and this outcome is correlated with race.

We explore the empirical relevance of omitted payoff bias in several ways. First, as will be
discussed below, we find that our estimates are nearly identical if we measure pre-trial misconduct
using only rearrests versus using rearrests or failures to appear. These results are also consistent
with Kleinberg et al. (2018), who find similar evidence of prediction errors using rearrests or failures
to appear. Second, as will be discussed below, we also find similar estimates when we measure pre-
trial misconduct using crime-specific rearrest rates to address the concern that judges may be most
concerned about reducing violent crimes. Third, we note that Dobbie et al. (2018) find that white
defendants at the margin of release are no more likely to be employed in the formal labor market up
to four years after the bail hearing compared to black defendants at the margin of release. This goes
against the idea that judges may be trading off minimizing pre-trial misconduct with maximizing
employment. Finally, as will be discussed below, we find that racial bias against black defendants is
larger for part-time and inexperienced judges compared to full-time and experienced judges. There
are few conceivable stories where omitted payoffs differ by judge experience. Taken together, we
therefore believe that any omitted payoff bias is likely to be small in practice.

3. Racial Differences in Ability to Pay Monetary Bail. In our model, we abstract away from
the fact that bail judges may set different levels of monetary bail that, by law, should take into
account a defendant’s ability to pay. Extending our model to incorporate these institutional details
means that racial bias could also be driven by judges systematically over-predicting the relative
ability of black defendants to pay monetary bail at the margin.

We explore the empirical relevance of racial differences in ability to pay monetary bail in two
ways. First, we test whether the assignment of non-monetary bail (i.e., either ROR or non-monetary
conditions) versus monetary bail has a larger impact on the probability of release for marginal black
defendants,6 which could occur if judges systematically over-predict black defendants’ ability to pay
monetary bail at the margin. To test this idea, Panel A of Online Appendix Table A1 presents
two-stage least squares estimates of the impact of non-monetary versus monetary bail on pre-trial
release using a leave-out measure based on non-monetary bail decisions as an instrumental variable.
We find that the assignment of non-monetary bail versus monetary bail has a nearly identical impact

6Dobbie et al. (2018) show that the assignment of ROR and non-monetary conditions have a statistically iden-
tical impact on defendant outcomes, including pre-trial misconduct. We therefore combine ROR and non-monetary
conditions into a single category in our analysis.
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on the pre-trial release rates for marginal black defendants and marginal white defendants. Second,
we directly estimate racial bias in the setting of non-monetary versus monetary bail to incorporate
any additional bias stemming from this margin. We estimate these effects using a two-stage least
squares regression of pre-trial misconduct on non-monetary bail, again using a leave-out measure
based on non-monetary bail decisions as an instrumental variable. Panel B of Online Appendix
Table A1 presents these estimates. We find similar estimates of racial bias when focusing on the
non-monetary versus monetary bail decision when we scale the estimated treatment effects by the
“first stage” effect of non-monetary bail on pre-trial release from Panel A.

4. Judge Preferences for Non-Race Characteristics. Another extension to our model concerns
two distinct views about what constitutes racial bias. The first is that racial bias includes not only
any bias due to phenotype, but also bias due to seemingly non-race factors that are correlated with,
if not driven by, race. For example, judges could be biased against defendants charged with drug
offenses because blacks are more likely to be charged with these types of crimes. Our preferred
estimates are consistent with this broader view of racial bias, measuring the disparate treatment
of black and white defendants at the margin for all reasons unrelated to true risk of pre-trial
misconduct, including reasons related to seemingly non-race characteristics such as crime type.

A second view is that racial bias is disparate treatment due to phenotype alone, not other corre-
lated factors such as crime type. In Online Appendix B, we show that it is possible to test for this
narrower form of racial bias using a re-weighting procedure that weights the distribution of observ-
ables of blacks to match observables of whites in the spirit of DiNardo, Fortin, and Lemieux (1996)
and Angrist and Fernández-Val (2013). This narrower test for racial bias relies on the assumption
that judge preferences vary only by observable characteristics Xi, i.e. tjr(Vi) = tjr(Xi). We find
nearly identical estimates of racial bias using this re-weighting procedure, suggesting that judge
preferences over non-race characteristics are a relatively unimportant contributor to our findings.
We discuss these results in robustness checks below.

II. Data and Instrument Construction

This section summarizes the most relevant information regarding our administrative court data
from Philadelphia and Miami-Dade, describes the construction of our judge leniency measure, and
provides support for the baseline assumptions required for our IV and MTE estimators of racial
bias. Further details on the cleaning and coding of variables are contained in Online Appendix D.

II.A. Data Sources and Descriptive Statistics

Philadelphia court records are available for all defendants arrested and charged between 2010-
2014 and Miami-Dade court records are available for all defendants arrested and charged between
2006-2014. For both jurisdictions, the court data contain information on defendant’s name, gender,
race, date of birth, and zip code of residence. Because our ethnicity identifier does not distinguish
between non-Hispanic white and Hispanic white, we match the surnames in our dataset to census
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genealogical records of surnames. If the probability a given surname is Hispanic is greater than
70 percent, we label this individual as Hispanic. In our main analysis, we include all defendants
and compare outcomes for marginal black and white (Hispanic and non-Hispanic) defendants. In
robustness checks, we present results comparing marginal black and non-Hispanic white defendants.7

The court data also include information on the original arrest charge, the filing charge, and the
final disposition charge. We also have information on the severity of each charge based on state-
specific offense grades, the outcome for each charge, and the punishment for each guilty disposition.
Finally, the case-level data include information on attorney type, arrest date, and the date of and
judge presiding over each court appearance from arraignment to sentencing. Importantly, the case-
level data also include information on bail type, bail amount when monetary bail is set, and whether
bail was met. Because the data contain defendant identifiers, we can measure whether a defendant
was subsequently arrested for a new crime before case disposition. In Philadelphia, we also observe
whether a defendant failed to appear for a required court appearance.

We make three restrictions to the court data to isolate cases that are quasi-randomly assigned
to judges. First, we drop a small set of cases with missing bail judge information or missing
race information. Second, we drop the 30 percent of defendants in Miami-Dade who never have
a bail hearing because they post bail immediately following the arrest; below we show that the
characteristics of defendants who have a bail hearing are uncorrelated with our judge leniency
measure. Third, we drop all weekday cases in Miami-Dade because, as explained in Online Appendix
E, bail judges in Miami-Dade are assigned on a quasi-random basis only on the weekends. The final
sample contains 162,836 cases from 93,914 unique defendants in Philadelphia and 93,417 cases from
65,944 unique defendants in Miami-Dade.

Table I reports summary statistics for our estimation sample separately by race and pre-trial
release status. On average, black defendants are 3.6 percentage points more likely to be assigned
monetary bail compared to white defendants and receive bail amounts that are $7,281 greater than
white defendants (including zeros). Conversely, black defendants are 2.0 percentage points and
1.6 percentage points less likely to be released on their own recognizance or to be assigned non-
monetary conditions compared to white defendants, respectively. As a result, black defendants are
2.4 percentage points more likely to be detained pre-trial compared to white defendants.

Compared to white defendants, released black defendants are also 1.9 percentage points more
likely to be rearrested for a new crime before case disposition, our preferred measure of pre-trial
misconduct. Released black defendants are also 0.9 percentage points, 0.7 percentage points, and 3.0
percentage points more likely to be rearrested for a drug, property, and violent crime, respectively.
In Philadelphia, released black defendants are 1.4 percentage points more likely to fail to appear in
court compared to white defendants. Defining pre-trial misconduct as either failure to appear or
rearrest in Philadelphia, and only rearrest in Miami, released black defendants are 4.1 percentage
points more likely to commit any form of pre-trial misconduct compared to white defendants. We

7Online Appendix Table A2 presents results for marginal Hispanic white defendants compared to non-Hispanic
white defendants. Perhaps in some part because of measurement error in our coding of Hispanic ethnicity, we find
no evidence of racial bias against Hispanics.
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also find that approximately four percent of detained defendants are rearrested for a new crime
prior to case disposition – an outcome that should be impossible. We show that our results are
unaffected by dropping these cases in robustness checks.8

II.B. Construction of the Instrumental Variable

We estimate the causal impact of pre-trial release for the marginal defendant using a measure
of the tendency of a quasi-randomly assigned bail judge to release a defendant as an instrument for
release. In both Philadelphia and Miami-Dade, there are multiple bail judges serving at each point
in time, allowing us to utilize variation in bail setting across judges. Both jurisdictions also assign
cases to bail judges in a quasi-random fashion in order to balance caseloads: Philadelphia utilizes
a rotation system where three judges work together in five-day shifts, with one judge working an
eight-hour morning shift (7:30AM-3:30PM), another judge working the eight-hour afternoon shift
(3:30PM-11:30PM), and the final judge working the eight-hour evening shift (11:30PM-7:30AM).
Similarly, bail judges in Miami-Dade rotate through the weekend felony and misdemeanor bail
hearings. See Online Appendix E for additional details.

Following Dobbie et al. (2018), we construct our instrument using a residualized, leave-out judge
leniency measure that accounts for the case assignment processes in Philadelphia and Miami-Dade.
To construct this residualized judge leniency measure, we first regress pre-trial release decisions on
an exhaustive set of court-by-time fixed effects, the level at which defendants are quasi-randomly
assigned to judges. In Miami, these court-by-time fixed effects include court-by-bail year-by-bail
day of week fixed effects and court-by-bail month-by-bail day of week fixed effects. In Philadelphia,
we add bail-day of week-by-bail shift fixed effects. We then use the residuals from this regression
to calculate the leave-out mean judge release rate for each defendant. We calculate our instrument
across all case types, but allow the instrument to vary across years and defendant race.9

Figure 1 presents the distribution of our residualized judge leniency measure for pre-trial release
at the judge-by-year level for all defendants, white defendants, and black defendants. Our sam-
ple includes seven total bail judges in Philadelphia and 170 total bail judges in Miami-Dade. In
Philadelphia, the average number of cases per judge is 23,262 during the sample period of 2010-
2014, with the typical judge-by-year cell including 5,253 cases. In Miami-Dade, the average number
of cases per judge is 550 during the sample period of 2006-2014, with the typical judge-by-year
cell including 179 cases. Controlling for the exhaustive set of court-by-time fixed effects, the judge
release measure ranges from -0.283 to 0.253 with a standard deviation of 0.040. In other words,
moving from the least to most lenient judge increases the probability of pre-trial release by 53.6

8To understand how these miscodings impact the interpretation of results, we follow Dahl et al. (2014) in
calculating mean rearrest rates for marginally detained defendants. These estimates imply that the rate of rearrest
for marginally released defendants is approximately 2.0 to 3.0 percentage points higher than our estimated treatment
effects.

9Our leave-out procedure is essentially a reduced-form version of jackknife IV, with the leave-out leniency measure
for judge j being algebraically equivalent to judge j’s fixed effect from a leave-out regression of residualized pre-trial
release on the full set of judge fixed effects and court-by-time fixed effects. In unreported results, jackknife IV and
LIML estimates using the full set of judge fixed effects as instruments yield similar results.
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percentage points, a 76.8 percent change from the mean release rate of 69.8 percentage points.

II.C. Instrument Validity

1. Existence of First Stage. To examine the first-stage relationship between judge leniency
(Zitj) and whether a defendant is released pre-trial (Releaseditj), we estimate the following equation
for defendant-case i, assigned to judge j at time t using a linear probability model, estimated
separately for white and black defendants:

Releaseditj = γWZitj + πWXit + vitj(10)

Releaseditj = γBZitj + πBXit + vitj(11)

where the vector Xit includes court-by-time fixed effects. The error term vitj is composed of char-
acteristics unobserved by the econometrician but observed by the judge, as well as idiosyncratic
variation unobserved to both the judge and econometrician. As described previously, Zitj are leave-
out (jackknife) measures of judge leniency that are allowed to vary across years and defendant race.
Robust standard errors are two-way clustered at the individual and judge-by-shift level.

Figure 1 provides graphical representations of the first stage relationship, for all defendants
and separately by race, between our residualized measure of judge leniency and the residualized
probability of pre-trial release that accounts for our exhaustive set of court-by-time fixed effects.
The graphs are a flexible analog to Equations (10) and (11), where we plot a local linear regression
of residualized pre-trial release against judge leniency. The individual rate of residualized pre-trial
release is monotonically increasing in our leniency measure for both races.

Table II presents formal first stage results from Equations (10) and (11) for all defendants,
white defendants, and black defendants. Columns 1, 3, and 5 begin by reporting results with only
court-by-time fixed effects. Columns 2, 4, and 6 add our baseline crime and defendant controls:
race, gender, age, whether the defendant had a prior offense in the past year, whether the defendant
had a prior history of pre-trial crime in the past year, whether the defendant had a prior history of
failure to appear in the past year, the number of charged offenses, indicators for crime type (drug,
DUI, property, violent, or other), crime severity (felony or misdemeanor), and indicators for any
missing characteristics.

We find that our residualized judge instrument is highly predictive of whether a defendant is
released pre-trial. Our results show that a defendant assigned to a bail judge that is 10 percentage
points more likely to release a defendant pre-trial is 38.9 percentage points more likely to be released
pre-trial. Judge leniency is also highly predictive of pre-trial release for both white and black
defendants, with the first-stage coefficient being 0.360 and 0.415, respectively.10

10Consistent with prior work using judge leniency as an instrumental variable (e.g., Bhuller et al. 2016), the
probability of being released pre-trial does not increase one-for-one with our measure of judge leniency, likely because
of attenuation bias due to sampling variation in the construction of our instrument. Consistent with this explanation,
we find first stage coefficients ranging from 0.6 to 0.7 in Monte Carlo simulations when judge tendencies are fixed over
the course of the year, and 0.2 to 0.4 when judge tendencies are allowed to change within each year. It is important
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2. Exclusion Restriction. Table III verifies that assignment of cases to bail judges is random
after we condition on our court-by-time fixed effects. Columns 1, 3, and 5 of Table III use a linear
probability model to test whether case and defendant characteristics are predictive of pre-trial
release. These estimates capture both differences in the bail conditions set by the bail judges and
differences in these defendants’ ability to meet the bail conditions. We control for court-by-time
fixed effects and two-way cluster standard errors at the individual and judge-by-shift level. For
example, we find that black male defendants are 10.4 percentage points less likely to be released
pre-trial compared to similar female defendants, while white male defendants are 8.6 percentage
points less likely to be released pre-trial compared to similar female defendants. White defendants
with at least one prior offense in the past year are 16.8 percentage points less likely to be released
compared to defendants with no prior offenses, while black defendants with at least one prior offense
in the past year are 13.4 percentage points less likely to be released compared to defendants with
no prior offenses. Columns 2, 4, and 6 assess whether these same case and defendant characteristics
are predictive of our judge leniency measure using an identical specification. We find that judges
with differing leniencies are assigned cases with very similar defendants.

Even with random assignment, the exclusion restriction could be violated if bail judge assignment
impacts the probability of pre-trial misconduct through channels other than pre-trial release. The
assumption that judges only systematically affect defendant outcomes through pre-trial release is
fundamentally untestable, and our estimates should be interpreted with this potential caveat in
mind. However, we argue that the exclusion restriction assumption is reasonable in our setting.
Bail judges exclusively handle one decision, limiting the potential channels through which they
could affect defendants. In addition, we are specifically interested in short-term outcomes (pre-trial
misconduct) which occur prior to disposition, further limiting the role of alternative channels that
could affect longer-term outcomes. Finally, Dobbie et al. (2018) find that there are no independent
effects of the money bail amount or non-monetary bail conditions on defendant outcomes, and that
bail judge assignment is uncorrelated with the assignment of public defenders and trial judges.

3. Monotonicity. The final condition needed for our IV and MTE estimators is that the impact
of judge assignment on the probability of pre-trial release is monotonic across defendants of the same
race. In our setting, the monotonicity assumption requires that individuals released by a strict judge
would also be released by a more lenient judge, and that individuals detained by a lenient judge
would also be detained by a stricter judge. The monotonicity assumption is required in order to
identify and interpret our IV estimator as a well-defined LATE and to estimate marginal treatment
effects using the standard local instrument variables (LIV) approach. See Angrist et al. (1996)
and Heckman and Vytlacil (2005) for additional details. Importantly, we allow our judge leniency
measure to vary by defendant race to allow for the possibility that the degree of racial bias varies
across judges. In practice, we observe that judge behavior is only imperfectly monotonic with respect
to race (see Online Appendix Figure A1), with a regression of the ranking of each judge’s leniency

to note that attenuation bias due to sampling variation in our leniency measure does not bias our estimates since it
affects both the first stage and reduced form proportionally.
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measure for whites on the ranking of each judge’s leniency measure for blacks yielding a coefficient
equal to 0.827 (se=0.010). The non-monotonic behavior we observe with respect to race is driven
by approximately 17.9 percent of judges who hear about 8.2 percent of all cases. Consistent with
the monotonicity assumption within race, we find a strong first-stage relationship across various
case and defendant types (see Online Appendix Table A3).11

III. Results

In this section, we present our main results applying our empirical test for racial bias. We then
show the robustness of our results to alternative specifications, before comparing the results from
our empirical test with the alternative outcome-based tests developed by Knowles et al. (2001) and
Anwar and Fang (2006).

III.A. Empirical Test for Racial Bias

1. IV Estimates. We begin by presenting IV estimates of racial bias that rely on relatively
few auxiliary assumptions, but with the caveat that the weighting scheme underlying the estimator
may not always be policy relevant. We estimate these IV results using the following two-stage least
squares specifications for defendant-case i assigned to judge j at time t, estimated separately for
white and black defendants:

Yitj = αIVW Releaseditj + βWXit + vitj(12)

Yitj = αIVB Releaseditj + βBXit + vitj(13)

where Yitj is the probability of pre-trial misconduct, as measured by the probability of rearrest
prior to case disposition. The vector Xit includes court-by-time fixed effects and baseline crime and
defendant controls: race, gender, age, whether the defendant had a prior offense in the past year,
whether the defendant had a prior history of pre-trial crime in the past year, whether the defendant
had a prior history of failure to appear in the past year, the number of charged offenses, indicators
for crime type (drug, DUI, property, violent, or other), crime severity (felony or misdemeanor), and
indicators for any missing characteristics. As described previously, the error term vitj = Uitj + εitj

consists of characteristics unobserved by the econometrician but observed by the judge, Uitj , and
idiosyncratic variation unobserved by both the econometrician and judge, εitj . We instrument for
pre-trial release, Releaseditj , with our measure of judge leniency, Zitj , that is allowed to vary across

11One specific concern is that lenient judges may be better at using unobservable information to predict the risk of
pre-trial misconduct, as this would result in some high-risk defendants being released by only strict judges. Following
Kleinberg et al. (2018), we test for this possibility in Online Appendix Figure A2 by examining pre-trial misconduct
rates among observably identical defendants released by either lenient or strict judges. We find that predicted risk
largely tracks true risk in all judge leniency quintiles, suggesting that lenient judges are neither more nor less skilled
in predicting defendant risk. These results are broadly consistent with Kleinberg et al. (2018), who find that judges
more or less agree on how to rank-order defendants based on their observable characteristics.
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years and defendant race. Robust standard errors are two-way clustered at the individual and
judge-by-shift level.

Estimates from Equations (12) and (13) are presented in columns 1-2 of Table IV. Column 3
reports our IV estimate of racial bias DIV . Panel A of Table IV presents results for the probability
of rearrest for any crime prior to case disposition, while Panel B presents results for rearrest rates for
drug, property, and violent offenses separately. In total, 17.8 percent of defendants are rearrested for
a new crime prior to disposition, with 7.9 percent of defendants rearrested for a crime that includes
a drug offense, 6.7 percent of defendants rearrested for a crime that includes a property offense, and
6.1 percent of defendants rearrested for a crime that includes a violent offense.12

We find convincing evidence of racial bias against black defendants using our IV estimator. We
find that marginally released white defendants are 23.6 percentage points more likely to be rear-
rested for any crime compared to marginally detained white defendants (column 1). In contrast,
the effect of pre-trial release on rearrest rates for marginally released black defendants is a statis-
tically insignificant 1.4 percentage points (column 2). Loosely, these estimates imply that there
is a 23.6 percent rate of rearrest for marginally released white defendants and a 1.4 percent rate
of rearrest for marginally released black defendants, as detained defendants cannot be rearrested
before trial.13 Taken together, these IV estimates imply that marginally released white defendants
are 22.2 percentage points more likely to be rearrested prior to disposition than marginally released
black defendants (column 3), consistent with racial bias against blacks (p = .027). Importantly, we
can reject the null hypothesis of no racial bias even assuming the maximum infra-marginality bias
in our IV estimator of 1.1 percentage points (see Online Appendix B).

In Panel B, we find suggestive evidence of racial bias against black defendants across all crime
types, although the point estimates are too imprecise to make definitive conclusions. For example, we
find that marginally released whites are about 8.0 percentage points more likely to be rearrested for
a violent crime prior to disposition than marginally released blacks (p = .173). Marginally released
white defendants are also 4.7 percentage points more likely to be rearrested for a drug crime prior
to case disposition than marginally released black defendants (p = .430), and 16.3 percentage points
more likely to be rearrested for a property crime (p = .025). These results suggest that judges are
likely racially biased against black defendants even if they are most concerned about minimizing
specific types of new crime, such as violent crimes.

12For completeness, Figure 1 provides a graphical representation of our reduced form results separately by race.
Following the first stage results, we plot the reduced form relationship between our judge leniency measure and
the residualized rate of rearrest prior to case disposition, estimated on the full sample using local linear regression.
Consistent with the first stage estimates in Table II and IV estimates in Table IV, the reduced form relationship
between judge leniency and rearrest rates is much flatter for black defendants compared to white defendants.

13Online Appendix Table A4 presents OLS results that measure the average level of risk among released white
and black defendants conditional on observables. Taken together with our results in Table IV, these OLS estimates
imply that the marginally released white defendant is riskier than the average released white defendant, while the
marginally released black defendant is less risky than the average released black defendant. These results suggest that
judges make substantial errors in predicting rearrest rates for black defendants, with all judges releasing relatively
risky black defendants while disagreeing over relatively less risky black defendants. These findings are consistent with
Kleinberg et al. (2018), who find that bail judges release many observably high-risk defendants while detaining many
observably low-risk defendants.
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2. MTE Estimates. Our second set of estimates comes from our MTE estimator that allows us
to put equal weight on each judge in our sample, but at the cost of additional auxiliary assumptions.
We estimate these MTE results using a two-step procedure. First, we estimate the entire distribution
of MTEs using the derivative of residualized rearrest before case disposition, Ÿitj , with respect to
variation in the propensity score provided by our instrument, pjr, separately for white and black
defendants:

MTEW (pjW ) =
∂

∂pjW
E(Ÿitj |pjW ,W )(14)

MTEB(pjB) =
∂

∂pjB
E(Ÿitj |pjB, B)(15)

where pjr is the propensity score for release for judge j and defendant race r and Ÿitj is rearrest
residualized using the full set of court-by-time fixed effects and baseline crime and defendant controls,
Xit. Following Heckman, Urzua, and Vytlacil (2006) and Doyle (2007), we also residualize Zitj and
Releaseditj using Xit. We then regress the residualized release variable on the residualized judge
leniency measure to calculate pjr, a race-specific propensity score. Next, we compute the numerical
derivative of a local quadratic estimator relating Ÿitj to pjr to estimate race-specific MTEs. See
Figure 2 for estimates of the full distribution of MTEs by defendant race.

Second, we use the race-specific MTEs to calculate the level of racial bias for each judge j. We
calculate the average level of bias across all bail judges using a simple average of these judge-specific
estimates:

J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)
(16)

We calculate standard errors by bootstrapping this two-step procedure at the judge-by-shift level.
See Online Appendix B for additional details.

Estimates from Equations (14) and (15) are presented in columns 4-5 of Table IV, with column
6 reporting our MTE equal-weighted estimate of racial bias DMTE from Equation (16). Consistent
with our IV estimates, we find that marginally released white defendants are 24.9 percentage points
more likely to be rearrested for any crime compared to marginally detained white defendants (column
4), while the effect of pre-trial release on rearrest rates for marginally released black defendants is
a statistically insignificant 1.7 percentage points (column 5). Our MTE estimates therefore imply
that marginally released white defendants are 23.1 percentage points more likely to be rearrested
prior to disposition than marginally released black defendants (column 6), consistent with racial
bias against black defendants (p = .048).

In addition, Figure 2 shows that the MTEs for white defendants lie strictly above the MTEs for
black defendants, implying that marginally released white defendants are riskier than marginally
released black defendants at all points in the judge leniency distribution. In other words, the results
from Figure 2 show that there is racial bias against black defendants at every part of the judge
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leniency distribution. These results, along with the fact that both IV and MTE approaches yield
qualitatively similar estimates of racial bias, suggest that both the choice of IV weights and the
additional parametric assumptions required to estimate the race-specific MTEs do not greatly affect
our estimates of racial bias.

III.B. Robustness

Online Appendix Tables A5-A6 explore whether our main findings are subject to omitted payoff
bias. We find that our estimates are qualitatively similar when we use a measure of pre-trial mis-
conduct defined as failure to appear in Philadelphia, the only city where we observe this information
(columns 1-2 of Online Appendix Table A5), or when we define pre-trial misconduct as either failure
to appear or rearrest in Philadelphia and only rearrest in Miami (columns 5-6 of Online Appendix
Table A5). We also find that marginally released white defendants generate larger social costs than
marginally released black defendants when we estimate results separately for a subset of more seri-
ous crimes and weight each individual estimate by the corresponding social cost (Online Appendix
Table A6).

Online Appendix Table A7 explores the sensitivity of our main results to a number of different
specifications. Columns 1 and 6 drop a small number of defendants who the data indicate were re-
arrested prior to disposition despite never being released. Column 2 presents re-weighted estimates
with the weights chosen to match the distribution of observable characteristics by race (see Section
I.D and Online Appendix B for details). Columns 3 and 7 presents results comparing outcomes for
marginal non-Hispanic white defendants and black defendants. Columns 4 and 8 presents results
clustering more conservatively at the individual and judge level. Column 5 assesses whether mone-
tary bail amounts have an independent effect on the probability of pre-trial misconduct – a potential
violation of the exclusion restriction – by controlling for monetary bail amount as an additional re-
gressor in both our first- and second-stage regressions.14 Under these alternative specifications, we
continue to find evidence of racial bias against black defendants.

III.C. Comparison to Other Outcome Tests

Online Appendix Tables A4 and A9 replicate the outcome tests from Knowles et al. (2001) and
Anwar and Fang (2006). The Knowles et al. (2001) test relies on the prediction that, under the null
hypothesis of no racial bias, the average pre-trial misconduct rate given by standard OLS estimates
will not vary by defendant race. In contrast to our IV and MTE tests, however, standard OLS
estimates suggest racial bias against white defendants. The Anwar and Fang (2006) test instead
relies on the prediction that, under the null hypothesis of no relative racial bias, the treatment of
black and white defendants will not depend on judge race. However, this test also fails to find
racial bias in our setting because both white and black judges are racially biased against black

14In these specifications, the coefficient on monetary bail amount is -0.002 (p = .500) for white defendants and
-0.001 (p = .184) for black defendants, suggesting that monetary bail amount has no significant independent effect
on pre-trial misconduct, consistent with findings reported in Dobbie et al. (2018).

22



defendants. We also find that the IV and MTE estimates of racial bias are similar among white and
black judges, although the confidence intervals for these estimates are large. Taken together, these
results highlight the importance of accounting for both infra-marginality and omitted variables,
as well as the importance of developing empirical tests that can detect absolute racial bias in the
criminal justice system. See Arnold et al. (2017) for additional details on these results.

IV. Potential Mechanisms

In this section, we attempt to differentiate between two alternative forms of racial bias that could
explain our findings: (1) racial animus (e.g., Becker 1957, 1993) and (2) racially biased prediction
errors in risk (e.g., Bordalo et al. 2016).

IV.A. Racial Animus

The first potential explanation for our results is that judges either knowingly or unknowingly
discriminate against black defendants at the margin of release as originally modeled by Becker (1957,
1993). Bail judges could, for example, harbor explicit animus against black defendants that leads
them to value the freedom of black defendants less than the freedom of observably similar white
defendants. Bail judges could also harbor implicit biases against black defendants, leading to the
relative over-detention of blacks despite the lack of any explicit animus. Racial animus may be
a particular concern in bail setting due to the relatively low number of minority bail judges, the
rapid-fire determination of bail decisions, and the lack of face-to-face contact between defendants
and judges. Prior work has shown that it is exactly these types of settings where racial prejudice is
most likely to translate into the disparate treatment of minorities (e.g., Greenwald et al. 2009).

One suggestive piece of evidence against this hypothesis is provided by the Anwar and Fang
(2006) test of relative racial bias discussed above, which indicates that bail judges are monolithic in
their treatment of white and black defendants. Consistent with these results, we also find that IV
and MTE estimates of racial bias are similar among white and black judges, although the confidence
intervals for these estimates are extremely large. These estimates suggest that either racial animus
is not driving our results or that black and white bail judges harbor equal levels of racial animus
towards black defendants.

IV.B. Racially Biased Prediction Errors in Risk

A second explanation for our results is that bail judges are making racially biased prediction
errors in risk, potentially due to inaccurate anti-black stereotypes. Bordalo et al. (2016) show,
for example, that representativeness heuristics – that is, probability judgments based on the most
distinctive differences between groups – can exaggerate perceived differences between groups. In
our setting, these kinds of race-based heuristics or anti-black stereotypes could lead bail judges to
exaggerate the relative danger of releasing black defendants versus white defendants at the margin

23



of release. These race-based prediction errors could also be exacerbated by the fact that bail judges
must make quick judgments on the basis of limited information and with virtually no training.

1. Representativeness of Black and White Defendants. We first explore whether our data are
consistent with the formation of anti-black stereotypes that could lead to racially biased prediction
errors. Extending Bordalo et al. (2016) to our setting, these anti-black stereotypes should only be
present if blacks are over-represented among the right tail of the predicted risk distribution relative
to whites (both Hispanic and non-Hispanic). To test this idea, Figure 3 presents the distribution
of the predicted risk of rearrest prior to case disposition calculated using the full set of crime and
defendant characteristics, as well as the likelihood ratios, E(x|Black)/E(x|White), throughout the
risk distribution.15 Results for each individual characteristic in our predicted risk measure are also
presented in Online Appendix Table A10. Consistent with the potential formation of anti-black
stereotypes, we find that black defendants are significantly under-represented in the left tail of the
predicted risk distribution and over-represented in the right tail of the predicted risk distribution.
For example, black defendants are 1.2 times less likely than whites to be represented among the
bottom 25 percent of the predicted risk distribution, but 1.1 times more likely to be represented
among the top 25 percent and 1.2 times more likely to be represented among the top five percent
of the predicted risk distribution.

In Online Appendix F, we show that these black-white differences in the predicted risk distri-
bution are large enough to rationalize the black-white differences in pre-trial release rates under
the Bordalo et al. (2016) stereotypes model. First, as a benchmark for the stereotypes model, we
compute the fraction of black defendants that would be released if judges applied the same release
threshold for whites to blacks. We rank-order both black and white defendants using our predicted
risk measure, finding that 70.8 percent of black defendants would be released pre-trial if judges use
the white release threshold for both black and white defendants. By comparison, only 68.8 percent
of black defendants are actually released pre-trial. Thus, to rationalize the black-white difference in
release rates, the stereotypes model will require that judges believe that black defendants are riskier
than they actually are.

In the stereotypes model, judges form beliefs about the distribution of risk through a representativeness-
based discounting model, where the weight attached to a given risk type t is increasing in the repre-
sentativeness of t. Formally, let πt,r be the probability that a defendant of race r is in risk category
t. The stereotyped beliefs for black defendants, πstt,B, is given by:

(17) πstt,B = πt,B

(
πt,B
πt,W

)θ
∑

s∈T πs,B

(
πs,B
πs,W

)θ
15Our measures of representativeness and predicted risk may be biased if judges base their decisions on variables

that are not observed by the econometrician (e.g., demeanor at the bail hearing). Following Kleinberg et al. (2018),
we can test for the importance of unobservables in bail decisions by splitting our sample into a training set to generate
the risk predictions and a test set to test those predictions. We find that our measure of predicted risk from the
training set is a strong predictor of true risk in the test set, indicating that our measure of predicted risk is not
systematically biased by unobservables (see Online Appendix Figure A3).
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where θ captures the extent to which representativeness distorts beliefs and the representativeness
ratio, πt,B

πt,W
, is equal to the probability a defendant is black given risk category t divided by the

probability a defendant is white given risk category t.
Using the definition of πstt,B from Equation (17), we can calculate the full stereotyped risk distri-

bution for black defendants under different values of θ. For each value of θ, we can then calculate
the implied release rate for black defendants under the above assumption that judges use the white
release threshold for both black and white defendants. By iterating over different values of θ, we
can then find the level of θ that equates the implied and true release rates for black defendants.
Using this approach, we find that θ = 1.9 can rationalize the true average release rate for blacks. To
understand how far these beliefs are from the true distribution of risk, we plot the stereotyped distri-
bution for blacks with θ = 1.9 alongside the true distribution of risk for blacks in Online Appendix
Figure A4. The mean predicted risk is 0.235 under the true distribution of risk for blacks, compared
to 0.288 under the stereotyped distribution for blacks with θ = 1.9.16 These results indicate that a
relatively modest shift in the true risk distribution for black defendants is sufficient to explain the
large racial disparities we observe in our setting. See Online Appendix F for additional details on
the stereotypes model and these calculations.

Further evidence in support of anti-black stereotypes comes from a comparison of the crime-
specific distributions of risk. Black defendants are most over-represented in the right tail of the
predicted risk distribution for new violent crimes (see Online Appendix Figure A5), where we also
tend to find strong evidence of racial bias.

A final piece of evidence in support of stereotyping comes from a comparison of the Hispanic and
black distributions of risk relative to the non-Hispanic white distribution. Recall that we find no
evidence of racial bias against Hispanic defendants (see Online Appendix Table A2). Consistent with
the stereotyping model, we also find that the risk distributions of Hispanic and white defendants
overlap considerably. In contrast, the risk distribution for blacks is shifted to the right relative
to both the Hispanic and white distributions (see Online Appendix Figure A6). Thus, all of our
results are broadly consistent with bail judges making race-based prediction errors due to anti-black
stereotypes and representativeness-based thinking, which in turn leads to the over-detention of black
defendants at the margin of release.

2. Racial Bias and Prediction Errors in Risk. We can also test for race-based prediction errors
by examining situations where prediction errors of any kind are more likely to occur. One such test
for race-based prediction errors uses a comparison of experienced and inexperienced judges. When
a defendant violates the conditions of release, such as by committing a new crime, he or she is taken
into custody and brought to court for a hearing during which a bail judge decides whether to revoke
bail. As a result, judges may be less likely to rely on inaccurate racial stereotypes as they acquire
greater on-the-job experience, at least in settings with limited information and contact. Consistent
with this idea, we find that more experienced bail judges are more likely to release defendants, but

16Our estimate of θ is quantitatively similar to the magnitude of stereotypes in explaining investor overreaction
to stock market news and the formation of credit cycles (Bordalo et al. 2018, Bordalo et al. 2017).
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not make misclassification errors (see Online Appendix Figure A7). In contrast, while it appears
plausible that race-based prediction errors will decrease with experience, there is no reason to believe
that racial animus will change with experience.

To test this idea, columns 1-4 of Table V presents our estimates of racial bias, DIV and DMTE ,
separately by court. Although we caution that there are likely many differences in the criminal
justice systems of the two cities in our sample, one distinction is the degree to which bail judges
specialize in conducting bail hearings. In Philadelphia, bail judges are full-time judges who special-
ize in setting bail 24 hours a day, seven days a week, hearing an average of 5,253 cases each year.
Conversely, the Miami bail judges in our sample are part-time generalists who work as trial court
judges on weekdays and assist the bail court on weekend, hearing an average of only 179 bail cases
each year. Consistent with racially biased prediction errors being more common among inexperi-
enced judges, we find that racial bias is higher in Miami than Philadelphia (p = .325 for IV, p =
.442 for MTE). In Miami, we find that marginally released white defendants are 25.1 percentage
points more likely to be rearrested using our IV estimator (p = .029) and 24.9 percentage points
more likely to be rearrested using our MTE estimator (p = .040), compared to marginally released
black defendants. In Philadelphia, we find no statistically significant evidence of racial bias under
either our IV or MTE estimates, suggesting the possible importance of experience in alleviating any
prediction errors.17

Columns 5-8 of Table V provide additional evidence on this issue by exploiting the substantial
variation in the experience profiles of the Miami bail judges in our sample. Splitting by the median
number of years hearing bail cases, the average experienced Miami judge has 9.5 years of experience
working in the bail system, while the average inexperienced Miami judge has only 2.5 years of
experience. Consistent with our across-court findings, we find suggestive evidence that inexperienced
judges are more racially biased than experienced judges (p = .193 for IV, p= .095 for MTE). Among
inexperienced judges, we find that marginally released white defendants are 48.7 percentage points
more likely to be rearrested using our IV estimator (p = .040) and 51.0 percentage points more
likely to be rearrested using our MTE estimator (p = .029), compared to marginally released black
defendants. Among experienced judges, we find no statistically significant evidence of racial bias
under either our IV or MTE estimates.

Taken together, our results suggest that bail judges make racially biased prediction errors in
risk. In contrast, we find limited evidence in support of the hypothesis that bail judges harbor
racial animus towards black defendants. These results are broadly consistent with recent work by
Kleinberg et al. (2018) showing that bail judges make significant prediction errors in risk for all
defendants, perhaps due to over-weighting the most salient case and defendant characteristics such
as race and the nature of the charged offense. Our results also provide additional support for the

17Our IV estimate of racial bias in Philadelphia should be interpreted with some caution given that we only observe
seven judges for this city in our data. The maximum infra-marginality bias of our IV estimator in Philadelphia is
16.4 percentage points, compared to only 1.6 percentage points in Miami-Dade. We note, however, that there is
no infra-marginality bias of our MTE estimator for either city if we have correctly specified the shape of the MTE
function.
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stereotyping model developed by Bordalo et al. (2016), which suggests that probability judgments
based on the most distinctive differences between groups – such as the significant over-representation
of blacks relative to whites in the right tail of the risk distribution – can lead to anti-black stereotypes
and, as a result, racial bias against black defendants.

V. Conclusion

In this paper, we test for racial bias in bail setting using the quasi-random assignment of bail
judges to identify pre-trial misconduct rates for marginal white and marginal black defendants. We
find evidence that there is substantial bias against black defendants, ruling out statistical discrimi-
nation as the sole explanation for the racial disparities in bail. Our estimates are nearly identical if
we account for observable crime and defendant differences by race, indicating that our results can-
not be explained by black-white differences in the probability of being arrested for certain types of
crimes (e.g., the proportion of felonies versus misdemeanors) or black-white differences in defendant
characteristics (e.g., the proportion of defendants with prior offenses versus no prior offenses).

We find several pieces of evidence consistent with our results being driven by racially biased
prediction errors in risk, as opposed to racial animus among bail judges. First, we find that both
white and black bail judges are racially biased against black defendants, a finding that is inconsistent
with most models of racial animus. Second, we find that black defendants are sufficiently over-
represented in the right tail of the predicted risk distribution to rationalize observed racial disparities
in release rates under a theory of stereotyping. Finally, racial bias is significantly higher among both
part-time and inexperienced judges, and descriptive evidence suggests that experienced judges can
better predict misconduct risk for all defendants. Taken together, these results are most consistent
with a model of bail judges relying on inaccurate stereotypes that exaggerate the relative danger of
releasing black defendants versus white defendants at the margin.

The findings from this paper have a number of important implications. If racially biased predic-
tion errors among inexperienced judges are an important driver of black-white disparities in pre-trial
detention, providing judges with increased opportunities for training or on-the-job feedback could
play an important role in decreasing racial disparities in the criminal justice system. Consistent
with recent work by Kleinberg et al. (2018), our findings also suggest that providing judges with
data-based risk assessments may also help decrease unwarranted racial disparities.

The empirical test developed in this paper can also be used to test for bias in other settings. Our
test for bias is appropriate whenever there is the quasi-random assignment of decision makers and
the objective of these decision makers is both known and well-measured. Our test can therefore be
used to explore bias in settings as varied as parole board decisions, Disability Insurance applications,
bankruptcy filings, and hospital care decisions.

Princeton University

Princeton University and NBER

Harvard Law School and NBER
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Table II: First Stage Results

All Defendants White Black
(1) (2) (3) (4) (5) (6)

Pre-trial Release 0.405∗∗∗ 0.389∗∗∗ 0.373∗∗∗ 0.360∗∗∗ 0.434∗∗∗ 0.415∗∗∗

(0.027) (0.025) (0.036) (0.032) (0.036) (0.033)
[0.698] [0.698] [0.711] [0.711] [0.688] [0.688]

Court x Year FE Yes Yes Yes Yes Yes Yes
Baseline Controls No Yes No Yes No Yes
Observations 256,253 256,253 106,846 106,846 149,407 149,407

Note: This table reports the first-stage relationship between pre-trial release and judge leniency. The regressions are
estimated on the sample as described in the notes to Table 1. Judge leniency is estimated using data from other
cases assigned to a bail judge in the same year, constructed separately by defendant race, following the procedure
described in Section II.B. All regressions include court-by-time fixed effects. Baseline controls include race, gender,
age, whether the defendant had a prior offense in the past year, whether the defendant had a prior history of pre-trial
crime in the past year, whether the defendant had a prior history of failure to appear in the past year, the number
of charged offenses, indicators for crime type (drug, DUI, property, violent, and other), crime severity (felony and
misdemeanor), and indicators for any missing controls. The sample mean of the dependent variable is reported
in brackets. Robust standard errors two-way clustered at the individual and judge-by-shift level are reported in
parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent
level.
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Figure 1: First Stage and Reduced Form Results

Panel A: First Stage for All Defendants Panel B: Reduced Form for All Defendants
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Panel C: First Stage for White Defendants Panel D: Reduced Form for White Defendants
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Panel E: First Stage for Black Defendants Panel F: Reduced Form for Black Defendants
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Note: These figures report the first stage and reduced form relationships between defendant outcomes and judge
leniency. The regressions are estimated on the sample as described in the notes to Table 1. Judge leniency is
estimated using data from other cases assigned to a bail judge in the same year, constructed separately by defendant
race, following the procedure described in Section II.B. In the first stage regressions, the solid line is a local linear
regression of residualized pre-trial release on judge leniency. In the reduced form regressions, the solid line is a local
linear regression of residualized pre-trial misconduct on judge leniency. Pre-trial release and pre-trial misconduct
are residualized using court-by-time fixed effects in the full sample. Standard errors are two-way clustered at the
individual and judge-by-shift level.
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Figure 2: Marginal Treatment Effects
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Note: This figure reports the marginal treatment effects (MTEs) of pre-trial release on pre-trial rearrest separately by
race. To estimate each MTE, we first estimate the predicted probability of release using only judge leniency. We then
estimate the relationship between the predicted probability of release and rearrest prior to disposition using a local
quadratic estimator (bandwidth = 0.030). Finally, we use the numerical derivative of the local quadratic estimator to
calculate the MTE at each point in the distribution. Standard errors are computed using 500 bootstrap replications
clustered at the judge-by-shift level. See the text for additional details.
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Figure 3: Predicted Risk Distribution by Defendant Race
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Note: This figure reports the predicted distribution of pre-trial misconduct risk separately by race. Pre-trial miscon-
duct risk is estimated using the machine learning algorithm described in Online Appendix F. The solid line represents
the representativeness ratio for black versus white defendants as described in the text, or the estimated misconduct
risk for blacks divided by the estimated misconduct risk for whites. See the text for additional details.
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Online Appendix A: Additional Results

Online Appendix Table A1: Racial Bias in the Assignment of Non-Monetary Bail

White Black DIV

Panel A: Pre-Trial Release (1) (2) (3)
Pre-trial Release 0.490∗∗∗ 0.511∗∗∗ −0.021

(0.081) (0.045) (0.092)
[0.711] [0.688] –

Panel B: Pre-Trial Misconduct
Rearrest Prior to Disposition 0.085∗ −0.009 0.094

(0.050) (0.039) (0.065)
[0.172] [0.182] –

Rearrest for Drug Crime 0.060∗∗ −0.026 0.086∗∗

(0.030) (0.026) (0.041)
[0.077] [0.081] –

Rearrest for Property Crime 0.087∗∗ 0.001 0.086∗

(0.037) (0.029) (0.048)
[0.065] [0.068] –

Rearrest for Violent Crime 0.033 0.010 0.022
(0.029) (0.027) (0.040)
[0.047] [0.071] –

Observations 106,846 149,407 –

Note: This table reports estimates of the impact of assigning non-monetary bail (defined as both ROR and non-
monetary conditions) versus monetary bail on pre-trial release (Panel A) and pre-trial misconduct (Panel B). Columns
1-2 report two-stage least squares results of the impact of pre-trial release on the probability of pre-trial misconduct
separately by race, while column 3 reports the difference between the white and black two-stage least squares coef-
ficients, or DIV as described in the text. All specifications use IV weights for each specification and report robust
standard errors two-way clustered at the individual and judge-by-shift level in parentheses. All specifications also
control for court-by-time fixed effects and defendant race, gender, age, whether the defendant had a prior offense in
the past year, whether the defendant had a prior history of pre-trial crime in the past year, whether the defendant
had a prior history of failure to appear in the past year, the number of charged offenses, indicators for crime type
(drug, DUI, property, violent, or other), crime severity (felony or misdemeanor), and indicators for any missing char-
acteristics. The sample means of the dependent variables are reported in brackets. *** = significant at 1 percent
level, ** = significant at 5 percent level, * = significant at 10 percent level.
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Online Appendix Table A3: First Stage Results by Case Characteristics

Crime Severity Crime Type Defendant Type
Misd. Felony Property Drug Violent Prior No Prior
(1) (2) (3) (4) (5) (6) (7)

Pre-trial Release 0.584∗∗∗ 0.204∗∗∗ 0.516∗∗∗ 0.364∗∗∗ 0.119∗∗∗ 0.452∗∗∗ 0.346∗∗∗

(0.042) (0.035) (0.046) (0.048) (0.041) (0.038) (0.028)
[0.721] [0.674] [0.607] [0.785] [0.685] [0.587] [0.587]

Court x Year FE Yes Yes Yes Yes Yes Yes Yes
Crime Controls Yes Yes Yes Yes Yes Yes Yes
Observations 128,409 127,844 55,432 83,277 74,193 87,424 168,829

Note: This table reports the first stage relationship between pre-trial release and judge leniency in different subsam-
ples. The regressions are estimated on the sample as described in the notes to Table 1. Judge leniency is estimated
using data from other cases assigned to a bail judge in the same year, constructed separately by defendant race,
following the procedure described in Section II.B. All regressions include court-by-time fixed effects and baseline
controls for race, gender, age, whether the defendant had a prior offense in the past year, whether the defendant had
a prior history of pre-trial crime in the past year, whether the defendant had a prior history of failure to appear in
the past year, the number of charged offenses, indicators for crime type (drug, DUI, property, violent, and other),
crime severity (felony and misdemeanor), and indicators for any missing controls. The sample mean of the dependent
variable is reported in brackets. Robust standard errors two-way clustered at the individual and judge-by-shift level
are reported in parentheses. *** = significant at 1 percent level, ** = significant at 5 percent level, * = significant
at 10 percent level.
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Online Appendix Table A4: OLS Results

White Black Difference
Panel A: Rearrest for All Crimes (1) (2) (3)
Rearrest Prior to Disposition 0.181∗∗∗ 0.188∗∗∗ −0.007∗∗

(0.003) (0.002) (0.004)
[0.172] [0.182] –

Panel B: Rearrest by Crime Type
Rearrest for Drug Crime 0.097∗∗∗ 0.103∗∗∗ −0.006∗∗

(0.002) (0.002) (0.002)
[0.077] [0.081] –

Rearrest for Property Crime 0.067∗∗∗ 0.073∗∗∗ −0.006∗

(0.002) (0.002) (0.003)
[0.065] [0.068] –

Rearrest for Violent Crime 0.052∗∗∗ 0.063∗∗∗ −0.010∗∗∗

(0.002) (0.002) (0.002)
[0.047] [0.071] –

Observations 106,846 149,407 –

Note: This table reports OLS results of racial bias in pre-trial release based on rearrest prior to case disposition. The
regressions are estimated on the sample as described in the notes to Table 1. Columns 1-2 report OLS estimates of the
impact of pre-trial release on the probability of pre-trial misconduct separately by race, while column 3 reports the
difference between the white and black OLS coefficients. Robust standard errors two-way clustered at the individual
and judge-by-shift level are reported in parentheses. The sample means of the dependent variables are reported
in brackets. All specifications control for court-by-time fixed effects and defendant race, gender, age, whether the
defendant had a prior offense in the past year, whether the defendant had a prior history of pre-trial crime in the
past year, whether the defendant had a prior history of failure to appear in the past year, the number of charged
offenses, indicators for crime type (drug, DUI, property, violent, or other), crime severity (felony or misdemeanor),
and indicators for any missing characteristics. *** = significant at 1 percent level, ** = significant at 5 percent level,
* = significant at 10 percent level.
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Online Appendix Table A5: Results for Other Definitions of Pre-Trial Misconduct

Philadelphia Miami Pooled
DIV DMTE DIV DMTE DIV DMTE

(1) (2) (3) (4) (5) (6)
Rearrest 0.045 0.078 0.263∗∗ 0.249∗∗ 0.222∗∗ 0.231∗∗

(0.183) (0.194) (0.115) (0.121) (0.101) (0.117)
[0.194] [0.194] [0.149] [0.149] [0.178] [0.178]

FTA −0.024 0.006 – – – –
(0.187) (0.202)
[0.204] [0.204] – – – –

FTA or Rearrest 0.008 0.042 0.263∗∗ 0.249∗∗ 0.208∗∗ 0.314∗

(0.209) (0.221) (0.115) (0.121) (0.102) (0.189)
[0.318] [0.318] [0.149] [0.149] [0.256] [0.256]

Observations 162,836 162,836 93,417 93,417 256,253 256,253

Note: This table reports estimates of racial bias in pre-trial release based on rearrest prior to case disposition, FTA
(available only in Philadelphia), and either rearrest or FTA. Columns 1-2 report two-stage least squares estimates of
DIV and MTE estimates of DMTE for Philadelphia. Columns 3-4 report two-stage least squares estimates of DIV

and MTE estimates of DMTE for Miami. Columns 5-6 report two-stage least squares estimates of DIV and MTE
estimates of DMTE for the pooled sample. For IV specifications, robust standard errors two-way clustered at the
individual and judge-by-shift level reported in parentheses. For MTE specifications, bootstrapped standard errors
clustered at the judge-by-shift level are reported in parentheses. All specifications control for court-by-time fixed
effects and defendant race, gender, age, whether the defendant had a prior offense in the past year, whether the
defendant had a prior history of pre-trial crime in the past year, whether the defendant had a prior history of failure
to appear in the past year, the number of charged offenses, indicators for crime type (drug, DUI, property, violent,
or other), crime severity (felony or misdemeanor), and indicators for any missing characteristics. The sample means
of the dependent variables are reported in brackets. *** = significant at 1 percent level, ** = significant at 5 percent
level, * = significant at 10 percent level.
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Online Appendix Table A6: Social Cost of Crime Results

DIV DMTE Lower Upper
Estimate Estimate Bound Bound

(1) (2) (3) (4)
Rearrest for Robbery 0.028 0.035 $73,196 $333,701

(0.034) (0.037)
Rearrest for Assault 0.068 0.065 $41,046 $109,903

(0.050) (0.057)
Rearrest for Burglary 0.047 0.018 $50,291 $50,291

(0.048) (0.058)
Rearrest for Theft 0.118∗ 0.081 $9,598 $9,974

(0.062) (0.075)
Rearrest for Drug 0.047 0.097 $2,544 $2,544

(0.060) (0.067)
Rearrest for DUI 0.007 0.016 $25,842 $25,842

(0.009) (0.012)

Note: This table reports the difference in two-stage least squares and marginal treatment effect
estimates of the impact of pre-trial release on the probability of pre-trial misconduct between white
and black defendants for different crimes. We exclude rearrest for crime types that are extremely
rare, e.g. murder and rape, and crime types that cannot be categorized into the listed categories,
e.g. disorderly conduct. The regressions are estimated on the sample as described in the notes
to Table 1. The dependent variable is listed in each row. In column 1, robust standard errors
two-way clustered at the individual and judge-by-shift level are reported in parentheses. In column
2, bootstrap standard errors clustered at the judge-by-shift level are reported in parentheses. All
specifications control for court-by-time fixed effects and defendant race, gender, age, whether the
defendant had a prior offense in the past year, whether the defendant had a prior history of pre-trial
crime in the past year, whether the defendant had a prior history of failure to appear in the past
year, the number of charged offenses, indicators for crime type (drug, DUI, property, violent, or
other), crime severity (felony or misdemeanor), and indicators for any missing characteristics. ***
= significant at 1 percent level, ** = significant at 5 percent level, * = significant at 10 percent
level.
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Online Appendix Table A8: Mean Pre-Trial Release and Misconduct Rates by
Judge and Defendant Race

Race of Judge
White Black

Panel A: Pre-Trial Release Rates (1) (2)
White Defendant Release Rate 0.557 0.552

(0.497) (0.497)
Black Defendant Release Rate 0.535 0.530

(0.499) (0.499)

Panel B: Pre-Trial Rearrest Rates
White Defendant Rearrest Rate 0.207 0.202

(0.405) (0.402)
Black Defendant Rearrest Rate 0.280 0.294

(0.449) (0.456)

Note: This table presents mean rates of pre-trial release and pre-trial misconduct conditional on release by defendant
and judge race in Miami. The means are calculated using the Miami sample reported in Table 1. See text for
additional details.
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Online Appendix Table A9: p-values from Tests of Relative Racial Prejudice

p-Value
(1)

Pre-Trial Release 0.782
Pre-Trial Rearrest 0.580

Note: This table replicates the Anwar and Fang (2006) test for pre-trial release rates and pre-trial misconduct rates.
This table presents bootstrapped p-values testing for relative racial bias. The null hypothesis is rejected if white
judges are more lenient on white defendants, and black judges are more lenient on black defendants.

48



Online Appendix Table A10: Representativeness Statistics

E(x|Black)/E(x|White)
Panel A: Defendant Characteristics (1)
Male 1.026
Age at Bail Decision 0.978
Prior Offense in Past Year 1.072
Arrested on Bail in Past Year 1.048
Failed to Appear in Court in Past Year 1.028

Panel B: Charge Characteristics
Number of Offenses 1.200
Felony Offense 1.160
Misdemeanor Only 0.866
Any Drug Offense 1.077
Any DUI Offense 0.839
Any Violent Offense 1.260
Any Property Offense 0.983

Panel C: Outcomes
Rearrest Prior to Disposition 1.061
Drug Crime 1.059
Property Crime 1.044
Violent Crime 1.496
Failure to Appear in Court 0.983
Failure to Appear in Court or Rearrested 1.102

Observations 256,253

Note: This table reports the mean of the variable listed in the row given the defendant is black, divided by
the mean of the variable listed in the row given the defendant is white. The sample is described in the notes
to Table 1.
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Online Appendix Figure A1: Judge Leniency by Race
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Note: These figures show the correlation between our residualized measure of judge leniency by defendant race over
all available years of data. We also plot the linear best fit line estimated using OLS.
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Online Appendix Figure A2: Predicted and Actual Risk by Judge Leniency

Panel A: First Quintile of Judge Leniency Panel B: Second Quintile of Judge Leniency
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Panel C: Third Quintile of Judge Leniency Panel D: Fourth Quintile of Judge Leniency
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Note: These figures plot predicted pre-trial misconduct risk against actual pre-trial misconduct for different judge-
leniency quintiles. Predicted risk is calculated using only cases from the most lenient quintile of judges and the
machine learning algorithm described in Online Appendix F. See the text for additional details.
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Online Appendix Figure A3: Relationship between Predicted Risk and True Risk
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Note: This figure reports the distribution of the pre-trial misconduct risk and plots the predicted pre-trial misconduct
risk against actual pre-trial misconduct for the test sample. Predicted risk is calculated using the machine learning
algorithm described in Online Appendix F. The dashed line is the 45 degree line. See the text for additional details.
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Online Appendix Figure A4: Stereotyped and True Distribution of Risk for Black
Defendants
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Note: This figure plots the true distribution of risk for black defendants alongside the perceived distribution of risk
for black defendants. The stereotyped beliefs are generated by a representativeness-based discounting model with
θ = 1.9. This value of θ rationalizes an average release rate of black defendants equal to 68.8 percent, the actual rate
of release in the data. See the text and Online Appendix F for additional details.
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Online Appendix Figure A5: Crime-Specific Predicted Risk Distributions by Race
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Panel C: Rearrest for Violent Crime
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Note: These figures report the distribution of crime-specific risk separately by defendant race. Predicted risk is
calculated using the machine learning algorithm described in Online Appendix F. The solid line in each figure
represents the representativeness ratio for black versus white defendants. See the text for additional details.
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Online Appendix Figure A6: Predicted Risk Distribution by Hispanic and Black
versus White
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Note: This figure reports the distribution of the risk of pre-trial misconduct separately by Hispanic, black, and white
defendants. Predicted risk is calculated using the machine learning algorithm described in Online Appendix F. The
dashed line represents the representativeness ratio for black versus white defendants and the solid line represents the
representativeness ratio for Hispanic versus white defendants. See the text for additional details.
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Online Appendix Figure A7: Probability of Release and Pre-trial Misconduct with
Experience
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Note: This figure plots the relationship between judicial experience and both the residualized rate of pre-trial release
and the residualized rate of pre-trial crime conditional on release (i.e. the mistake rate). Pre-trial release and pre-trial
rearrest are both residualized using the full set of court-by-time fixed effects. See the text for additional details.
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Online Appendix B: Proofs of Consistency for IV and MTE Estimators

This appendix reviews our empirical test for racial bias before providing additional details and
proofs for both our IV and MTE estimation approaches. For completeness, we also include all
relevant information from the main text in this appendix.

B.1. Overview

Recall that the goal of our analysis is to empirically test for racial bias in bail setting using the
rate of pre-trial misconduct for white defendants and black defendants at the margin of release. Let
the true weighted average of treatment effects for defendants of race r at the margin of release for
judge j, αjr, for some weighting scheme, wj , across all bail judges, j = 1...J , be given by:

α∗,wr =

J∑
j=1

wjαjr(B.1)

=

J∑
j=1

wjtjr

where wj are non-negative weights which sum to one that will be discussed in further detail below.
Recall that, by definition, αjr = tjr. Intuitively, α∗,wr represents a weighted average of the treatment
effects for defendants of race r at the margin of release across all judges.

Following this notation, the true average level of racial bias among bail judges, D∗,w, for the
weighting scheme wj is given by:

D∗,w =
J∑
j=1

wj
(
tjW − t

j
B

)
(B.2)

=
J∑
j=1

wjtjW −
J∑
j=1

wjtjB

= α∗,wW − α∗,wB

From Equation (B.1), we can express D∗,w as a weighted average across all judges of the difference
in treatment effects for white defendants at the margin of release and black defendants at the margin
of release.

We develop two estimators for racial bias that use variation in the release tendencies of quasi-
randomly assigned bail judges to identify differences in pre-trial misconduct rates at the margin of
release. In theory, an estimator for D∗,w should satisfy three criteria: (1) rely on minimal auxil-
iary assumptions to estimate judge-specific thresholds of release, tjr, (2) yield statistically precise
estimates of the average level of bias, D∗,w, and (3) use a policy-relevant weighting scheme, wj . In
practice, however, no single estimator can accomplish all three criteria in our setting. The two-stage
least squares IV estimator, for example, relies on relatively few auxiliary assumptions and provides
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statistically precise estimates by giving greater weight to more precise LATEs, but the particular
weighting of the pairwise LATEs may not always yield a policy-relevant estimate of racial bias. In
contrast, a fully non-parametric approach where one reports each pairwise LATE separately and
allows a researcher to choose a weighting scheme can yield a policy-relevant interpretation of racial
bias with minimal assumptions, but often comes at the cost of statistical precision since any partic-
ular LATE is often estimated with considerable noise. The MTE framework developed by Heckman
and Vytlacil (1999, 2005) provides a third option, allowing a researcher to estimate judge-specific
treatment effects for white and black defendants at the margin of release and thus choose a weighting
scheme, but with estimation of racial bias for each judge, and relatedly statistical precision, coming
at the cost of additional auxiliary assumptions.

In this Online Appendix, we show that both IV and MTE estimators yield qualitatively similar
estimates of the average level of racial bias in our setting, suggesting that neither the choice of IV
weights nor the additional parametric assumptions required under our MTE approach greatly affect
our estimates. In contrast, we show that the fully non-parametric approach yields uninformative
estimates of the average level of racial bias due to very imprecise estimates of the individual pairwise
LATEs.

B.2. Instrumental Variables Framework

Our first estimator uses IV weights, defined as wj = λj , when estimating the weighted average
level of bias, D∗,w. Recall that λj are the standard IV weights defined in Imbens and Angrist
(1994). Our IV estimator allows us to estimate a weighted average of racial bias across bail judges
with relatively few auxiliary assumptions, but with the caveats that we cannot estimate judge-
specific treatment effects and the weighting scheme underlying the IV estimator may not be policy
relevant. If the IV weights are uncorrelated with the level of racial bias for a given judge, then
our IV estimator will estimate the average level of discrimination across all bail judges. If the IV
weights are correlated with the level of racial bias, however, then our IV estimator may under or
overestimate the average level of racial bias across all bail judges, but may still be of policy relevance
depending on the parameter of interest (e.g., an estimate of racial bias that puts more weights on
judges with higher caseloads).

In this subsection, we present a formal definition of the IV-weighted level of racial bias and
our IV estimator, provide proofs for consistency, discuss tests of the identifying assumptions, the
interpretation of the IV-weighted estimate, and the potential bias of our IV estimator from using
a discrete instrument. We then consider a re-weighting procedure that accounts for judge bias on
observable non-race characteristics.
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1. Definition and Consistency of IV Estimator Let the IV-weighted level of racial bias, D∗,IV

be defined as:

D∗,IV =

J∑
j=1

wj
(
tjW − t

j
B

)
(B.3)

=
J∑
j=1

λj
(
tjW − t

j
B

)

where wj = λj , the instrumental variable weights defined in Imbens and Angrist (1994) and de-
scribed in the main text.

Following the definition in the main text, let our IV estimator be defined as:

DIV = αIVW − αIVB(B.4)

=

J∑
j=1

λjWα
j,j−1
W −

J∑
j=1

λjBα
j,j−1
B

where each pairwise LATE, αj,j−1
r , is again the average treatment effect of compliers between judges

j − 1 and j.

Building on the standard IV framework, we now establish the two conditions under which our
IV estimator for racial bias DIV provides a consistent estimate of the IV-weighted level of racial
bias, D∗,IV .

First Condition for Consistency: The first condition for our IV estimatorDIV to provide a consistent
estimate ofD∗,IV is that our judge leniency measure Zi is continuously distributed over some interval
[z, z̄]. Formally, as our instrument becomes continuous, for any judge j and any ε > 0, there exists
a judge k such that |zj − zk| < ε.

Proposition B.1. As Zi becomes continuously distributed, each race-specific IV estimate, αIVr ,
converges to a weighted average of treatment effects for defendants at the margin of release.

Proof of Proposition B.1. To see why this proposition holds, first define the treatment effect for
a defendant at the margin of release at zj as:

(B.5) αjr = αr(z = zj) = lim
dz→0

E[Yi(1)− Yi(0)|Releasedi(z)−Releasedi(z − dz) = 1]

With a continuous instrument Zi, Angrist, Graddy, and Imbens (2000) show that the IV estimate,
αIVr , converges to:

(B.6) αr =

∫
λr(z)αr(z)dz
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where the weights, λr(z) are given by:

(B.7) λr(z) =
∂Releasedr

∂z (z) ·
∫ z̄
z (y − E[z]) · fzr (y)dy∫ z̄

z
∂Releasedr

∂z (v) ·
∫ z̄
v (y − E[z]) · fzr (y)dydv

where ∂Releasedr
∂z is the derivative of the probability of release with respect to leniency and fzr

is the probability density function of leniency. If ∂Releasedr
∂z ≥ 0 for all z, then the weights are

nonnegative. Therefore, as Zi becomes continuously distributed, our race-specific IV estimate will
return a weighted average of treatment effects of defendants on the margin of release.

Second Condition for Consistency: The second condition for our IV estimator DIV to provide a
consistent estimate of D∗,IV is that the weights λjr must be equal across race. Equal weights ensure
that the race-specific IV estimates from Equation (7) in the main text, αIVW and αIVB , provide the
same weighted averages of αj,j−1

W and αj,j−1
B . If the weights λjW = λjB = λj , our IV estimator can

then be rewritten as a simple weighted average of the difference in pairwise LATEs for white and
black defendants:

(B.8) DIV =
J∑
j=1

λj(αj,j−1
W − αj,j−1

B )

Proof of Consistency. We combine these two conditions to establish the consistency of our IV
estimator. Recall that our IV estimator DIV provides a consistent estimate of racial bias D∗,IV if
(1) Zi is continuous and (2) λjr is constant by race.

To begin, we write DIV as:

DIV = αIVW − αIVB(B.9)

=

J∑
j=1

λjWα
j,j−1
W −

J∑
j=1

λjBα
j,j−1
B

If λjr = λj , then:

(B.10) DIV =

J∑
j=1

λj
(
αj,j−1
W − αj,j−1

B

)

Following Proposition B.1, as Zi becomes continuously distributed, we can rewrite DIV as:

DIV =

∫
λ(z) (αW (z)− αB(z)) dz(B.11)

= D∗,IV

Therefore, in the limit, DIV estimates a weighted average of differences in treatment effects for
defendants at the margin of release, and therefore provides a consistent estimate of D∗,IV .
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2. Empirical Implementation

a. Testing the equal weights assumption: A key assumption for the consistency of our IV
estimator is that the IV weights are the same across race. Following Cornelissen et al. (2016), we
calculate white and black IV weights for each judge-by-year cell by replacing the terms in Equation
(B.7) with their sample analogues. Noting that our instrument is linear by construction and, as a
result, that ∂Releasedr(z)

∂z (z) = c, we drop the term ∂Releasedr(z)
∂z (z) = c, as this appears in both the

numerator and denominator of Equation (B.7). We then use kernel density methods to retrieve an
estimate f̂zr , which is the density of leniency for race r. With this estimate of the density of leniency
for race r, we can plug in the sample analogue of E[z] and use numerical integration to estimate the
remaining terms and estimate IV weights by race for each point in the distribution.

One implication of the equal weights assumption is that the distributions of black and white
IV weights over the distribution of judge leniency are statistically identical. To implement this
test, Online Appendix Figure B1 plots the IV weights for each judge-by-year cell, the level of our
variation, by race. The distributions of black and white IV weights are visually indistinguishable
from each other and a Kolmogorov-Smirnov test cannot reject the hypothesis that the two estimated
distributions are drawn from the same continuous distribution (p = .431).

A second implication of the equal weights assumption is that the relationship between the black
IV weights and the white IV weights should fit a 45-degree line up to sampling error. Online
Appendix Figure B2 plots the black IV weights and the white IV weights for each judge-by-year
cell, where we discretize the continuous weights to retrieve an estimate of the weights for each
judge-by-year cell and then normalize the weights so that the weights sum to one (in the continuous
version the weights integrate to one). The black and white IV weights for each judge-by-year cell
are highly correlated across race. To formally test for violations of the equal weights assumption,
we regress each black IV weight for each judge-by-year cell on the white IV weight for the same cell.
This regression yields a coefficient on the white IV weight equal to 1.028 with a standard error of
0.033. Thus, both tests suggest that our assumption of equal IV weights by race is satisfied in the
data.

b. Understanding the IV weights: We now investigate the relationship between IV weights and
judge characteristics to better understand the economic interpretation of an IV-weighted estimate of
racial bias. Online Appendix Table B1 presents OLS estimates of IV weights in each judge-by-year
cell on observable judge-by-year characteristics separately by race. The correlation between the IV
weights and both average leniency and whether the judge is a minority is statistically zero in both
the white and black distribution, with only a weak correlation between the IV weights and judge
experience in a given year. Conversely, the IV weights are positively correlated with the number
of cases in a judge-by-year cell and a judge being from Philadelphia (where each judge-by-year cell
has more observations). These results suggest that the additional precision in our IV regressions
comes, at least in part, from placing more weight on judge-by-year cells with more observations.
The IV weights are also positively correlated with judge-by-year specific estimates of racial bias
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(estimated using the MTE approach discussed in Section B.4 below), although not differentially by
defendant race. The positive correlation between the IV weights and the judge-by-year estimates
of bias implies that the IV-weighted estimate of racial bias will be larger than an equal-weighted
estimate of racial bias. All of our IV results should be interpreted with these correlations in mind.

c. Bounding the maximum bias of the IV estimator with a discrete instrument: Our approach
assumes continuity of the instrument Zi. If the instrument is discrete, we can characterize the
maximum potential bias of our IV estimator DIV relative to D∗,IV , e.g. “infra-marginality bias.”

Proposition B.2. If the instrumental variable weights are equal by race, the maximum bias of our
IV estimator DIV from D∗,IV is given by max

j
(λj)(αmax − αmin), where αmax is the largest

treatment effect among compliers, αmin is the smallest treatment effect among compliers, and
λj is given by:

(B.12) λj =
(zj − zj−1) ·

∑J
l=jπ

l(zl − E[Z])∑J
m=1(zj − zj−1) ·

∑J
l=mπ

l(zl − E[Z])

where πl is the probability of being assigned to judge j.

Proof of Proposition B.2. To prove that this proposition holds, we proceed in five steps. First,
we show that D∗,IV is equal to DIV plus a bias term, which we refer to as “infra-marginality bias.”
Second, we derive an upper bound for the bias term by replacing αj,j−1

W with its minimum possible
value for every judge j, and we derive a lower bound by replacing αj,j−1

B with its maximum value
for every j. Third, we show that the upper bound and lower bound of DIV both converge to D∗,IV

as Zi becomes continuously distributed. Fourth, we develop a formula for the maximum potential
bias with a discrete instrument using the derived upper and lower bounds, and provide intuition
for how we derive this estimation bias. Fifth, we show how to empirically estimate the maximum
potential bias in the case of a discrete instrument.

Recall that under our theory model, compliers for judge j and j − 1 are individuals such that
tj−1
r (Vi) < E[αi|ri] ≤ tjr(Vi). For illustrative purposes, we drop conditioning on Vi. Under this
definition of compliers, we know that:

(B.13) αj,j−1
r ∈ (tj−1

r , tjr]
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Note that we can rewrite D∗,IV as:

D∗,IV =

J∑
j=1

λj
(
tjW − t

j
B

)

=
J∑
j=1

λj
(
αj,j−1
W − αj,j−1

B

)
+

J∑
j=1

λj
(
tjW − α

j,j−1
W

)
+

J∑
j=1

λj
(
αj,j−1
B − tjB

)

= DIV +

J∑
j=1

λj
(
tjW − α

j,j−1
W

)
+

J∑
j=1

λj
(
αj,j−1
B − tjB

)
︸ ︷︷ ︸

infra-marginality bias

(B.14)

The second line follows from adding and subtracting
∑J

j=1 λ
jαj,j−1

W and
∑J

j=1 λ
jαj,j−1

B to D∗,IV

and rearranging terms. The third line follows from assuming equal IV weights by race. Equation
B.14 shows that D∗,IV is equal to DIV plus a bias term, which we refer to as “infra-marginality
bias.”

We will now derive an upper bound for D∗,IV . First, note that Equation (B.13) implies αj,j−1
B ≤

tjB. Therefore
∑J

j=1 λ
j
(
αj,j−1
B − tjB

)
≤ 0, given λj ≥ 0 for all j. We can drop this term from

Equation (B.14) to obtain an upper bound on D∗,IV :

D∗,IV ≤ DIV +
J∑
j=1

λj
(
tjW − α

j,j−1
W

)

< DIV +

J∑
j=1

λj
(
tjW − t

j−1
W

)
(B.15)

where the second line follows from Equation (B.13) (tj−1
W < αj,j−1

W ).
Using similar logic, we can also derive a lower bound for D∗,IV . Equation (B.13) implies tjW ≥

αj,j−1
W . Therefore

∑J
j=1 λ

j
(
tjW − α

j,j−1
W

)
≥ 0, given λj ≥ 0 for all j. We can drop this term from

Equation (B.14) to obtain a lower bound on D∗,IV :

D∗,IV ≥ DIV +
J∑
j=1

λj
(
αj,j−1
B − tjB

)

= DIV −
J∑
j=1

λj
(
tjB − α

j,j−1
B

)

> DIV −
J∑
j=1

λj
(
tjB − t

j−1
B

)
(B.16)

where again, the last line follows from Equation (B.13) (tj−1
B < αj,j−1

B ).

63



We can now bound D∗,IV using Equation (B.16) and Equation (B.15):

(B.17) DIV −
J∑
j=1

λj
(
tjB − t

j−1
B

)
< D∗,IV < DIV +

J∑
j=1

λj
(
tjW − t

j−1
W

)
It is straightforward to see that the infra-marginality bias goes to zero as Zi becomes continuous.
Given that λj are non-negative weights which sum to one,

∑J
j=1 λ

j
(
tjr − tj−1

r

)
≤ maxj(t

j
r − tj−1

r )

(i.e. the average is less than the maximum). Therefore, if Zi becomes continuous, then tjr−tj−1
r → 0

for all j, and so infra-marginality bias shrinks to zero. Intuitively, at the limit, every complier is at
the margin, and so there is no infra-marginality bias. As a result, DIV converges to D∗,IV as Zi
becomes continuous.

Note that tjr−tj−1
r is positive for all j, implying

∑J
j=1 λ

j
(
tjr − tj−1

r

)
≤ maxj(λ

j)
∑J

j=1

(
tjr − tj−1

r

)
,

where maxj(λ
j) is the maximum weight across all judges. Given the recursive structure of

∑J
j=1

(
tjr − tj−1

r

)
:

(B.18) max
j

(λj)
J∑
j=1

(
tjr − tj−1

r

)
= max

j
(λj)(tJr − t0r)

Note that tJr = αmaxr (i.e. the largest treatment effect is associated with the most lenient judge)
and t0r = αminr (i.e. the smallest treatment effect is associated with the most strict judge). There-
fore, letting αmax and αmin equal the maximum treatment effect and minimum treatment effect
respectively across races, yields:

(B.19) DIV −max
j

(λj)(αmax − αmin) < D∗,IV < DIV + max
j

(λj)(αmax − αmin)

which proves Proposition B.2. In other words, the maximum bias of our IV estimator DIV from
D∗,IV is given by max

j
(λj)(αmax − αmin).

Next, we simplify these bounds to retrieve estimable bounds. Note that αmax ≤ 1 and αmin ≥ 0

in theory, which implies (αmax − αmin) ≤ 1. Therefore, the bounds in Equation (B.19) can be
re-written as:

(B.20) DIV −max
j

(λj) < D∗,IV < DIV + max
j

(λj)

Rearranging terms yields:

(B.21) −max
j

(λj) < D∗,IV −DIV < max
j

(λj)

Under this worst-case assumption, the maximum bias of our IV estimator DIV from D∗,IV is given
by max

j
(λj).

To understand the intuition of our maximum bias formula, note that under Proposition B.2,
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the maximum bias of DIV relative to D∗,IV decreases as (1) the heterogeneity in treatment effects
among compliers decreases (αmax → αmin) and (2) the maximum of the judge weights decreases
(maxj(λ

j) → 0), as would occur when there are more judges distributed over the range of the
instrument. If treatment effects are homogeneous among compliers such that αmax = αmin, our IV
estimator DIV continues to provide a consistent estimate of D∗,IV . In practice, we calculate the
maximum bias of our estimator under the worst-case assumption of treatment effect heterogeneity
(i.e. αmax − αmin = 1) (the maximum possible value). Because the weights λj are identified in our
data, the maximum bias due to infra-marginality concerns can be conservatively estimated to be
equal to maxj(λ

j).
In general, the IV weights, λj , will not be equal across judges. In particular, the weights depend

partially on the share of compliers between any two adjacent judges. For example, if there are more
infra-marginal defendants for lenient judges, then lenient judges will be given more weight in the
estimation of racial bias. However, our bounding procedure of the maximum bias does not rely on
any assumption about equal weights across judges. For example, consider an extreme case where
although there are many judges, defendants are only infra-marginal to the most-strict and second
most-strict judge. Then, the entire share of compliers will be defendants who are detained by the
most-strict judge and released by the second most-strict judge. Therefore, the pairwise LATE for
the most-strict judge and the second most-strict judge will receive the entire weight in estimating
the effect of release on the probability of pre-trial misconduct. In this case, we would conclude that
the maximum bias of our estimator is equal to one, and therefore, we would be unable to provide
informative bounds on the true level of racial bias.

We can illustrate this point with a simple two judge case where both judges use the same release
thresholds for both white and black defendants, tjW = tjB, such that there is no racial bias, D∗,IV = 0.
Suppose that the more lenient judge releases defendants with an expected pre-trial misconduct rate
of less than 20 percent, while the more strict judge releases defendants with an expected pre-trial
misconduct rate of less than 10 percent. Then, the race-specific LATEs estimated using our IV
strategy are the average treatment effects of all defendants with expected misconduct rates between
10 and 20 percent. Within this range of compliers, suppose that all black defendants have expected
rates of pre-trial misconduct of 10 percent, while all white defendants have expected rates of pre-trial
misconduct of 20 percent. Then, our IV estimator will yield a LATE for whites (αIVW = 0.2) that is
larger in magnitude than the LATE for blacks (αIVB = 0.1), causing us to estimate DIV = 0.1 > 0.
Our IV estimator would thus lead us to incorrectly conclude that there was racial bias. A similar
exercise can be used to show that we may find DIV = 0 even if D∗,IV > 0. Under the worst-case
scenario where we assume the maximum heterogeneity in treatment effects (αmax − αmin = 1), the
maximum infra-marginality bias is maxj(λ

j) = 1 because 100 percent of compliers fall within the
two judges. In this case, infra-marginality bias makes our IV estimator uninformative on the true
level of racial bias. However, using the same logic, it is straightforward to show that the magnitude
of this infra-marginality bias decreases when there are many judges because the share of compliers
within any two judges decreases, thus decreasing maxj(λ

j).
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We can now illustrate how we empirically estimate the maximum potential bias of our IV
estimator from D∗,IV using the formula in Proposition B.2. Again, because we do not observe
αmax − αmin, we take the most conservative approach and assume that this value is equal to 1.
Imbens and Angrist (1994) show that the instrumental variables weights, λj , for a discrete multi-
valued instrument are given by the following formula:

(B.22) λj =
(Pr(Released|zj)− Pr(Released|zj−1)) ·

∑J
l=j π

l(g(zl)− E[g(Z)])∑J
m=1(Pr(Released|zm)− Pr(Released|zm−1)) ·

∑J
l=m π

l(g(zl)− E[g(Z)])

where πl is the probability a defendant is assigned to judge l, g(zl) is a function of the instrument,
and Pr(Released|zj) if the probability a defendant is released if assigned to judge j. While λj is
not indexed by r, we estimate the weights completely separately by race. In both cases, we find the
maximum weight to be the same. To proceed, we residualize both the endogenous variable Released
and the judge leniency instrument using all exogenous regressors. An instrumental variables regres-
sion utilizing residualized variables yields a numerically identical estimate as the specification in
the main text (Evdokimov and Kolesár 2018). To estimate the weight λj we simply replace each
expression in Equation (B.22) with the empirical counterpart. Formally:

(B.23) Pr(Released|zj)− Pr(Released|zj−1) = E[R̈|z̈j ]− E[R̈|z̈j−1]

where R̈ is Released residualized by the exogenous regressors and z̈j is the residualized value of
the instrument. Since we use residualized judge leniency as the instrument we replace g(z̈l) = z̈l.
Lastly, we replace πj and E[Z] with their empirical counterparts:

(B.24) π̂j =
N∑
i=1

1{Z̈i = z̈j}
N

(B.25) E[Z] =
1

N

N∑
i=1

Z̈i

Plugging these quantities into the formula for the weights yields an estimate of the weight attached
to each pairwise LATE. We then take the maximum of our weights and interpret this estimate as the
maximum potential bias between our IV estimator and D∗,IV . This procedure yields a maximum
bias of 0.011 or 1.1 percentage points.

From Equation (B.20), we know:

D∗,IV < DIV + max
j

(λj) = DIV + 0.011

D∗,IV > DIV −max
j

(λj) = DIV − 0.011

Therefore, in our setting, D∗,IV is bounded within 1.1 percentage points of our IV estimate for
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racial bias.

3. Re-weighting Procedure to Allow Judge Preferences for Non-Race Characteristics In this
subsection, we show that a re-weighting procedure using our IV estimator can be used to estimate
direct racial bias (i.e. racial bias which cannot be explained by the composition of crimes). To
begin, let the weights for all white defendants be equal to 1. We construct the weights for a black
defendant with observables equal to Xi = x as:

(B.26) Ψ(x) =
Pr(W |x)Pr(B)

Pr(B|x)Pr(W )

where Pr(W |x) is the probability of being white given observables Xi = x, Pr(B|x) is the prob-
ability of being black given observables Xi = x, Pr(B) is the unconditional probability of being
black, and Pr(W ) is the unconditional probability of being white.

Define the covariate-specific LATE as:

(B.27) αj,j−1
r (x) = E[Yi(1)− Yi(0)|Ri(zj)−Ri(zj−1) = 1|ri = r,Xi = x]

As noted by Fröhlich (2007) and discussed in Angrist and Fernández-Val (2013), the uncondi-
tional LATE can be expressed as:

(B.28) αj,j−1
r =

∑
x∈X

αj,j−1
r (x)

Pr(Released|zj , x, r)− Pr(Released|zj−1, x, r)

Pr(Released|zj , r)− Pr(Released|zj−1, r)
P (x|r)

We assume:

(B.29)
Pr(Released|zj , x, r)− Pr(Released|zj−1, x, r)

Pr(Released|zj , r)− Pr(Released|zj−1, r)
= ξ(x)

In words, while the first stage may vary based on covariates, it varies in the same way for white
and black defendants. Therefore, in the re-weighted sample, αj,j−1

B is given by:

αj,j−1
B =

∑
x∈X

αj,j−1
B (x)ξ(x)Pr(x|B)Ψ(x)

=
∑
x∈X

αj,j−1
B (x)ξ(x)Pr(x|B)

Pr(W |x)Pr(B)

Pr(B|x)Pr(W )

=
∑
x∈X

αj,j−1
B (x)ξ(x)

Pr(B|x)Pr(x)

Pr(B)

Pr(W |x)Pr(B)

Pr(B|x)Pr(W )

=
∑
x∈X

αj,j−1
B (x)ξ(x)

Pr(W |x)Pr(x)

Pr(W )

=
∑
x∈X

αj,j−1
B (x)ξ(x)Pr(x|W )
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where line 2 follows by plugging in the formula for Ψ(x) and lines 3 and 5 follow from Bayes’ rule.
These steps closely follow DiNardo, Fortin, and Lemieux (1996), although our parameter of interest
is a treatment effect rather than a distribution. Given that the weights for all white defendants are
equal to 1, DIV is given by:

(B.30) DIV =

J∑
j=1

λj

(∑
x∈X

ξ(x)Pr(x|W )
(
αj,j−1
W (x)− αj,j−1

B (x)
))

B.3. Non-Parametric Pairwise LATE Framework

A second approach to estimating the average level of racial bias is to estimate each pairwise LATE
separately and then impose the preferred weighting scheme across these non-parametric estimates.
We consider, for example, an approach that places equal weight on each judge to estimate the average
level of racial bias across judges all judges in the sample. This fully non-parametric approach can
yield a policy-relevant interpretation of racial bias with minimal assumptions, but often comes at
the cost of statistical precision since any particular LATE is often estimated with considerable noise.

In this subsection, we present a formal definition of the equal-weighted level of bias and our
non-parametric estimator, provide proofs for consistency, and evaluate the feasibility of this non-
parametric approach using Monte Carlo simulations.

1. Definition and Consistency of Pairwise LATE Estimator Let the equal-weighted LATE
estimate of racial bias based on the non-parametric pairwise estimates, D∗,PW be defined as:

D∗,PW =
J∑
j=1

wj
(
tjW − t

j
B

)
(B.31)

=
J∑
j=1

1

J

(
tjW − t

j
B

)

where wj = 1
J , such that D∗,PW can be interpreted as the average level of racial bias across judges

– an estimate with clear economic interpretation.
Let the equal-weighted pairwise LATE estimator of racial bias, DPW , be defined as:

(B.32) DPW =
J∑
j=1

1

J
(αj,j−1

W − αj,j−1
B )

where each pairwise LATE, αj,j−1
r , is again the average treatment effect of compliers between judges

j − 1 and j.

Conditions for Consistency: Following the proofs for the IV estimator, DPW provides a consistent
estimate of racial bias D∗,PW if (1) Zi is continuous and (2) wj is constant by race, which is satisfied
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because the weights are chosen ex post to be equal (wj = 1
J ).

2. Empirical Implementation

a. Estimating the pairwise LATEs: We estimate non-parametric LATEs using the following
Wald estimator for each pair of judges j and judge j − 1:

(B.33) α̂j,j−1
r =

E[Yi|Zi = zj , r]− E[Yi|Zi = zj−1, r]

E[Releasedi|Zi = zj , r]− E[Releasedi|Zi = zj−1, r]

where E[Yi|Zi = zj , r] is the probability a defendant of race r assigned to judge j is rearrested
and E[Releasedi|Zi = zj , r] is the probability a defendant of race r assigned to judge j is released.
Following the above discussion, our equal-weighted estimate of racial bias is equal to the simple
difference between the average estimated pairwise LATE for white defendants and the average
estimated pairwise LATE for black defendants.

b. Monte Carlo simulation: As discussed above, a fully non-parametric approach can yield
a policy-relevant interpretation of racial bias with minimal assumptions, but often comes at the
cost of statistical precision since any particular LATE is often estimated with considerable noise.
We therefore begin by examining the performance of our non-parametric estimator using Monte
Carlo simulations. Specifically, we create a simulated dataset with 170 judges, where each judge is
assigned 500 cases with black defendants and 500 cases with white defendants. The latent risk of
rearrest before disposition for each defendant is drawn from a uniform distribution between 0 and 1.
Each judge releases defendants if and only if the risk of rearrest is less than his or her race-specific
threshold. In the simulated data, each judge’s threshold for white defendants is set to match the
distribution of judge leniencies observed in the true data. For each judge, we then impose a 10
percentage point higher threshold for black defendants, so that the “true” level of racial bias in the
simulated data is exactly equal to 0.100. The probability that a released defendant is rearrested
(Yi = 1) conditional on release is equal to the risk of the released defendant.

In each draw of the simulated data, we estimate non-parametric LATEs using the Wald estima-
tor described above. Our estimate of racial bias in each draw of the simulated data is equal to the
difference between the average release threshold for white defendants and the average release thresh-
old for black defendants. We repeat this entire process 500 times and plot the resulting estimates
of the average level of racial bias across all bail judges.

Panel A of Online Appendix Figure B3 presents the results from this Monte Carlo exercise. The
average level of racial bias across all simulations is equal to 0.125, close to the true level. However,
the variance of the estimates is extremely large, with nearly 20 percent of the simulations yielding an
estimate of racial bias that is greater than one in absolute value. The high variance in the estimates
stems from weak first stages between judges that are very close in the leniency distribution. We
conclude from this exercise that a fully non-parametric approach yields uninformative estimates of
average racial bias in our setting, and do not explore this approach further.18

18In unreported results, we also examine the performance of a non-parametric estimator where estimates of αj
r
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B.4. Marginal Treatment Effects Framework

Our final estimator uses the MTE framework developed by Heckman and Vytlacil (1999, 2005)
to estimate the average level of bias, D∗,w, where we impose equal weights for each judge. The MTE
framework allows us to estimate judge-specific treatment effects for white and black defendants at
the margin of release and choose a weighting scheme across all judges, but with the identification and
estimation of the judge-specific estimates, tjr, coming at the cost of additional auxiliary assumptions.

In this subsection, we present a formal definition of the equal-weighted level of bias and our
MTE estimator, provide details on the mapping of the MTE framework to our test of racial bias,
provide proofs for consistency, and discuss the details of the empirical implementation and tests of
the parametric assumptions.

1. Definition and Consistency of MTE Estimator

Following the discussion of the equal-weighted non-parametric estimator, let the equal-weighted
MTE estimate of racial bias, D∗,MTE be defined as:

D∗,MTE =
J∑
j=1

wj
(
tjW − t

j
B

)
(B.34)

=

J∑
j=1

1

J

(
tjW − t

j
B

)

where wj = 1
J , such that D∗,MTE can again be interpreted as the average level of racial bias across

judges.
Let our equal-weighted MTE estimator of racial bias, DMTE , be defined as:

(B.35) DMTE =

J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)

where pjr is the probability judge j releases a defendant of race r (i.e. judge j’s propensity score)
and MTEr(p

j
r) is the estimated MTE at the propensity score for judge j calculated separately for

each defendant of race r.

2. MTE Framework:

To formally map our model of racial bias from the main text to the MTE framework developed
by Heckman and Vytlacil (2005), we first characterize judge j’s pre-trial release decision as:

(B.36) Releasedi(zj , r) = 1{E[αi|r] ≤ tjr}

are formed using a Wald estimator between judge j to judge j − k, where k > 1. We find that increasing k decreases
variance in the simulated estimates, but increases estimation bias, as judges further away in the distribution are used
to estimate judge j’s threshold. Even with relatively large k, we find the MTE procedure described in Section B.4 is
more precise than the pairwise LATE procedure.
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where Releasedi(zj , r) indicates the probability defendant i of race r is released by judge j, and αi,
and tjr are defined as in the main text. Let Fα,r be the cumulative density function of E[αi|r], which
we assume is continuous on the interval [0, 1]. Judge j’s release decision can now be expressed as
the following latent-index model:

Releasedi(zj , r) = 1{Fα,r(E[αi|r]) ≤ Fα,r(tjr)}(B.37)

= 1{Ui,r ≤ pjr}

where Ui,r ∈ [0, 1] by construction. In this latent-index model, defendants with Ui,r ≤ pjr are
released, defendants with Ui,r > pjr are detained, and defendants with Ui,r = pjr are on the margin
of release for judge j.

Following Heckman and Vytlacil (2005), we define the race-specific marginal treatment effect as
the treatment effect for defendants on the margin of release:

(B.38) MTEr(u) = E[αi|r, Ui,r = u]

where E[αi|r, Ui,r = pjr] denotes the treatment effect for a defendant of race r who is on the margin
of release to a judge with propensity score equal pjr. For simplicity, we denote judge j’s propensity
score as pjr.

Using the above framework, we can now describe how the race-specific MTEs defined by Equation
(B.38) allow us estimate racial bias for each judge in our sample. First, recall that the estimand of
interest is the treatment effect of pre-trial release for white and black defendants at the margin of
release:

(B.39) αjr = E[αi|r,E[αi|r] = tjr]

Because E[αi|r] = tjr can be replaced with the equivalent condition, Ui,r = pjr, both of which state
defendant i is marginal to judge j, we can equate αjr to the MTE function at pjr:

αjr = E[αi|r,E[αi|r] = tjr](B.40)

= E[αi|r, Ui,r = pjr]

= MTEr(p
j
r)

Equation (B.40) shows that we can use the race-specific MTEs to identify the race-specific
treatment effect of each judge, αjr, and as a result, race-specific thresholds of release, tjr. We
can then estimate the level of racial bias for each judge j, tjW − tjB. To see this, let judge j
have a propensity score to release white defendants equal to pjW and a propensity to release black
defendants equal to pjB. Given Equation (B.40), the level of racial bias for judge j is therefore equal
to MTEW (pjW ) −MTEB(pjB). From these judge-specific estimates of racial bias, we can then ex
post impose equal weights across judges to estimate DMTE , the average level of racial bias.
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Conditions for Consistency: In addition to the assumptions required for a causal interpretation of
the IV estimator (existence, exclusion restriction, and monotonicity), our MTE estimator DMTE

provides a consistent estimate of D∗,MTE if the race-specific MTEs are identified over the entire
support of the propensity score calculated using variation in Zi.

If Zi is continuous, the local instrumental variables (LIV) estimand provides a consistent estimate
of the MTE over the support of the propensity score with no additional assumptions (Heckman and
Vytlacil 2005, Cornelissen et al. 2016). With a discrete instrument, however, our MTE estimator is
only consistent under additional functional form restrictions that allow us to interpolate the MTEs
between the values of the propensity score we observe in the data. In our MTE framework, if our
specification of the MTE is flexible enough to capture the true shape of the MTE function, then
there will be no infra-marginality bias. If the specification is too restrictive, then there may be
misspecification bias in estimating the MTE.

Recall that our goal is to construct the average level of racial bias across judges:

D∗,MTE =
J∑
j=1

1

J

(
tjW − t

j
B

)

=

J∑
j=1

1

J

(
αjW − α

j
B

)
(B.41)

With a continuous instrument, αjW and αjB are identified by evaluating MTE(pjW ) and MTE(pjB).
Heckman and Vytlacil (1999) show local instrumental variables (LIV) can be used to identify
the MTE non-parametrically. With a discrete instrument, however, MTE(pjr) is no longer non-
parametrically identified.

Following Heckman and Vytlacil (2005) and Doyle (2007), we use a local polynomial function and
information from the observed values of the propensity score to estimate the MTE curve over the
full support of the propensity score. Specifically, we use a local quadratic estimator to approximate
E[Yi|pjr], and then estimate the MTE as the numerical derivative of the local quadratic function. In
this estimation, we specify a bandwidth, and therefore use information from all judges in a given
bandwidth to estimate the threshold for a given judge.

Let the estimated MTE be denoted by ˆMTE(pjr). We can express our MTE estimator DMTE

as:

DMTE =
J∑
j=1

1

J

(
ˆMTE(pjW )− ˆMTE(pjB)

)
︸ ︷︷ ︸

Estimated MTE

+(B.42)

J∑
j=1

1

J

(
MTE(pjW )− ˆMTE(pjW )

)
+

J∑
j=1

1

J

(
ˆMTE(pjB)−MTE(pjB)

)
︸ ︷︷ ︸

infra-marginality bias
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In this case, infra-marginality bias arises because we allow for the possibility that the local quadratic
function does not provide enough flexibility to accurately capture the shape of the MTE. If we
assume our specification of the MTE is flexible enough to capture the shape of the MTE, then
E[ ˆMTE(pjr)] = MTE(pjr), indicating there is no infra-marginality bias. Therefore, if we correctly
specify the form of the MTE function, then DMTE provides a consistent estimate of D∗,MTE :

DMTE =
J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)
(B.43)

=
J∑
j=1

1

J

(
tjW − t

j
B

)
= D∗,MTE

3. Empirical Implementation

a. Estimating the MTE curve: We estimate DMTE using a two-step procedure. First, we
estimate the entire distribution of MTEs. To estimate each race-specific MTE, we estimate the
derivative of our outcome measure (i.e. rearrest before case disposition) with respect to variation
in the propensity score provided by our instrument (i.e. variation in the predicted probability of
being released from the variation in judge leniency) separately for white and black defendants:

MTEW (pjW ) =
∂

∂pjW
E(Ÿi|pjW ,W )(B.44)

MTEB(pjB) =
∂

∂pjB
E(Ÿi|pjB, B)(B.45)

where pjr is the propensity score for release for judge j and defendant race r and Ÿi is rearrest
residualized on all observables: an using exhaustive set of court-by-time fixed effects as well as our
baseline crime and defendant controls: gender, age, whether the defendant had a prior offense in
the past year, whether the defendant had a prior history of pre-trial crime in the past year, whether
the defendant had a prior history of failure to appear in the past year, the number of charged
offenses, indicators for crime type (drug, DUI, property, violent, or other), crime severity (felony or
misdemeanor), and indicators for any missing characteristics.

Following Heckman, Urzua, and Vytlacil (2006) and Doyle (2007), we begin by residualizing
our measure of pre-trial misconduct, pre-trial release, and judge leniency using the full set of fixed
effects and observables. We can then calculate the race-specific propensity score using a regression
of the residualized release variable on our residualized measure of judge leniency, capturing only the
variation in pre-trial release due to variation in the instrument.19 Next, we compute the numerical

19A common approach in the MTE literature is to exploit variation in the propensity score that arises from
covariates. Many treatment effect parameters, such as the average treatment effect, rely on having wide support of
the propensity score. However, in practice, it is difficult to identify such strong instruments, so researchers rely on
utilizing variation driven by observables. In our setting, we rely on the continuity of the propensity score to estimate
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derivative of a smoothed function relating residualized pre-trial misconduct to the race-specific
propensity score. Specifically, we estimate the relationship between the residualized misconduct
variable and the race-specific propensity score using a local quadratic estimator. We then compute
the numerical derivative of the local quadratic estimator for each race separately to obtain the
race-specific MTEs. In unreported results, we also find nearly identical results using alternative
estimation procedures, such as the global polynomials used in Kowalski (2016).

Second, we use the race-specific MTE distributions to calculate the level of racial bias for each
judge j. We aggregate these judge-specific estimates of racial bias to calculate an equal-weighted
estimate of racial bias:

DMTE =

J∑
j=1

1

J

(
MTEW (pjW )−MTEB(pjB)

)
(B.46)

We calculate standard errors of this equal-weighted estimate by bootstrapping this two-step proce-
dure 500 times at the judge-by-shift level.

b. Monte Carlo simulation: To examine the performance of our MTE estimator, we again use
a Monte Carlo simulation. Following the simulation used to test the non-parametric estimator,
we create a simulated dataset with 170 judges, where each judge is assigned 500 cases with black
defendants and 500 cases with white defendants. The latent risk of rearrest before disposition
for each defendant is drawn from a uniform distribution between 0 and 1. Each judge releases
defendants if and only if the risk of rearrest is less than his or her race-specific threshold. In the
simulated data, each judge’s threshold for white defendants is set to match the distribution of judge
leniencies observed in the true data. For each judge, we then impose a 10 percentage point higher
threshold for black defendants, so that the “true” level of racial bias in the simulated data is exactly
equal to 0.100. The probability that a released defendant is rearrested (Yi = 1) conditional on
release is equal to the risk of the released defendant.

In each draw of the simulated data, we use the MTE estimation procedure outlined above to
estimate both the race-specific MTEs and the average level of racial bias when each judge is weighted
equally. We repeat this entire process 500 times and plot the resulting estimates of the average level
of racial bias across all bail judges.

Panel B of Online Appendix Figure B3 presents the results from this Monte Carlo exercise.
The average level of racial bias across all simulations is equal to 0.090 with a standard deviation of
only 0.051. In addition, the 10th percentile of estimates is equal to 0.036 and the 90th percentile
equal to 0.143. These results stand in sharp contrast to the statistically uninformative results from
our non-parametric estimator and suggest that, in practice, our MTE estimator is likely to yield
statistically precise estimates of the average level of racial bias across all bail judges.

c. Testing the MTE functional form assumption: Following Cornelissen et al. (2016), we test

the MTE, but require no assumptions concerning the range of the propensity score. In particular, the treatment
effects we are interested in are identified by variation in judge leniency by definition.
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whether the MTE is misspecified by constructing a non-parametric IV estimate of racial bias by
taking the correct weighted average of the MTE. Specifically, we re-estimate the IV weights from
Equation (B.7), but substitute p(zj) in for zj , given that we estimate the MTE curve over the
distribution of the propensity score, and not the distribution of leniency. We denote these weights
ωIVr . As shown in Heckman and Vytlacil (2005), the IV estimate, αIVr is related to the MTEr by:

(B.47) αIVr =

∫
MTEr(u)ωIVr (u)du

Intuitively, the MTE approach relies on identifying the MTE curve. To do so, we must impose
structure on the relationship between the propensity score and the outcome of interest. This implies
we also impose structure on the derivative of this relationship, which is equal to the MTE curve.
If the structure does not bias our estimate of the MTE curve, then we should be able to construct
the non-parametric IV by taking the weighted average of the MTE curve shown in Equation (B.47).
However, if the estimated MTE is biased, then in general, the weighted average of the MTE will not
be equal to the non-parametric IV estimate. We find that our MTE weighted by the IV weights is
very close to the non-parametric IV estimate of racial bias. Specifically, the white IV estimate for
the effect of release on rearrest is equal to 0.236, while the MTE weighted by the white IV weights
yields an estimate of 0.261. Similarly, the black IV estimate for the effect of release on rearrest is
equal to 0.014, while the MTE weighted by the black IV weights yields an estimate of 0.021. These
results indicate that our MTE is likely to be correctly specified.
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Online Appendix Table B1: Correlation between IV Weights and Observables

White IV Black IV
Weights x 100 Weights x 100

(1) (2)
Discrimination 0.424∗∗∗ 0.518∗∗∗

(0.066) (0.062)
Philadelphia 0.117∗∗∗ 0.104∗∗∗

(0.016) (0.016)
Case Load (100s) 0.004∗∗∗ 0.006∗∗∗

(0.001) (0.001)
Average Leniency 0.044 0.000

(0.055) (0.054)
Experience −0.000 0.002∗

(0.001) (0.001)
Minority Judge 0.003 0.004

(0.008) (0.008)

Observations 552 552

Note: This table estimates the relationship between instrumental variable weights assigned to a given judge-by-year
cell on observables of the judge-by-year cell. To ease readability, the coefficients are multiplied by a 100. Column 1
presents results for IV weights calculated for white defendants. Column 2 presents results for IV weights calculated
for black defendants. To compute the weight assigned to a judge-by-year cell, we first compute the continuous weights
by constructing sample analogues to the terms which appear in Equation (B.7) following the procedure described
in Cornelissen et al. (2016) and Appendix B. To move from the continuous weights to a weight associated with a
given judge, we compute the average leniency of each judge-by-year cell in the data. We then compute the weight
associated with the average leniency of the judge-by-year cell using the results from the continuous weights estimation.
We divide the resulting weights by the sum total to ensure the discretized weights sum to one.
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Online Appendix Figure B1: Distribution of IV Weights by Race Across Judge
Leniency Distribution

0
.0

01
.0

02
.0

03
IV

 W
ei

gh
ts

-.25 -.2 -.15 -.1 -.05 0 .05 .1 .15 .2 .25
Judge Leniency

Black IV Weights White IV Weights

Note: This figure plots the instrumental variables weights over the distribution of judge leniency for both black
and white defendants. To compute the instrumental variable weights, we first compute the continuous weights by
constructing sample analogues to the terms which appear in Equation (B.7) following the procedure described in
Cornelissen et al. (2016) and Online Appendix B. To move from the continuous weights to a weight associated with
a given judge-by-year, we compute the average leniency of each judge-by-year cell in the data. We then compute the
weight associated with the average leniency of the judge-by-year cell using the results from the continuous weights
estimation. We divide the resulting weights by the sum total to ensure the discretized weights sum to one.
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Online Appendix Figure B2: Correlation Between White IV Weights and Black IV
Weights

β = 1.028 
(0.033)

0
.0

01
.0

02
.0

03
Bl

ac
k 

IV
 W

ei
gh

ts

0 .001 .002 .003
White IV Weights

Note: This figure plots the instrumental variables weight assigned to judge j in year t in the white leniency distribution
vs. the instrumental variables weight assigned to judge j in year t in the black distribution. To compute the weight
assigned to a judge-by-year cell, we first compute the continuous weights by constructing sample analogues to the
terms which appear in Equation (B.7) following the procedure described in Cornelissen et al. (2016) and Online
Appendix B. To move from the continuous weights to a weight associated with a given judge, we compute the average
leniency of each judge-by-year cell in the data. We then compute the weight associated with the average leniency of
the judge-by-year cell using the results from the continuous weights estimation. We divide the resulting weights by
the sum total to ensure the discretized weights sum to one.
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Online Appendix Figure B3: Monte Carlo Simulations of Racial Bias Estimators

Panel A: Non-Parametric Pairwise LATEs Panel B: Semi-Parametric MTEs
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Note: This figure reports the distribution of estimated racial bias using a race-specific judge leniency measure in
simulated data with a “true” level of racial bias of 0.100. The simulated data include 170 judges, where each judge
is assigned 500 black defendants and 500 white defendants. Defendant risk in the simulated data is drawn from a
uniform distribution between 0 and 1. Judges release defendants if the risk is less than a judge-specific threshold,
where the distribution of judge-specific threshold matches the empirical distribution of judge leniency. For each judge,
we impose a 10 percentage point higher threshold for black defendants, so that the “true” level of racial bias in the
simulated data is equal to 0.100. Panel A presents estimates from a non-parametric LATE procedure, where we form
the Wald estimator between judge j and judge j − 1 to estimate the release threshold for judge j. Panel B presents
estimates from the MTE procedure. The estimate of racial bias is equal to the average estimated release threshold
for white defendants minus the average estimated release threshold for black defendants across judges.
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Online Appendix C: Simple Graphical Example

In this appendix, we use a series of simple graphical examples to illustrate how a judge IV
estimator for racial bias improves upon the standard OLS estimator. We first consider the OLS
estimator in settings with either a single race-neutral judge or a single racially biased judge, showing
that the standard estimator suffers from infra-marginality bias whenever there are differences in the
risk distributions of black and white defendants. We then use a simple two-judge example to
illustrate how a judge IV estimator can alleviate the infra-marginality bias in both settings.

C.1. OLS Estimator

To illustrate the potential for infra-marginality bias when using a standard OLS estimator, we
begin with the case of a single race-neutral judge. The judge perfectly observes risk and chooses
the same threshold for white and black defendants, but the distributions of risk differ by defendant
race. Panel A of Online Appendix Figure C1 illustrates such a case, where we assume that white
defendants have more mass in the left tail of the risk distribution, i.e. that whites are, on average,
less risky than blacks. Letting the vertical lines denote the judge’s release threshold, standard
OLS estimates of αW and αB measure the average risk of released defendants for white and black
defendants, respectively. In the case illustrated in Panel A, the standard OLS estimator indicates
that the judge is biased against white defendants, when, in reality, the judge is race-neutral.

To further illustrate this point, Panel B of Online Appendix Figure C1 considers the case of
a single judge that is racially biased against black defendants. Once again, the distributions of
risk differ by defendant race, but now the judge chooses different thresholds for white and black
defendants. In the case illustrated in Panel B, white and black defendants have the exact same
expected risk conditional on release. As a result, the standard OLS estimator indicates that the
judge is race-neutral, when, in reality, the judge is biased against black defendants. Following the
same logic, we could choose risk distributions and release thresholds such that the OLS estimator
indicates racial bias against white defendants or racial bias against black defendants. In other words,
the OLS estimator is uninformative about the extent of racial bias in bail decisions without strong
assumptions about differences in the underlying distributions of risk by defendant race.

C.2. IV Estimators

We now illustrate how a judge IV estimator for racial bias can potentially solve this infra-
marginality problem by focusing the analysis on defendants at the margin of release. We use a
simple two-judge example to illustrate the intuition behind our approach, while maintaining our
assumption that judges perfectly observe risk and that the distributions of risk differ by defendant
race. Throughout, we assume that judge 2 is more lenient than judge 1.

Panel C of Online Appendix Figure C1 considers the case where both judges are race-neutral,
such that both judges use the same thresholds of release for white and black defendants. In this case,
an IV estimator using judge leniency as an instrument for pre-trial release will estimate the average
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risk for defendants who are released by the lenient judge but detained by the strict judge (i.e. the
average risk of compliers), αIVW and αIVB . When the two judges are “close enough” in leniency, the IV
estimator for racial bias will approximately estimate the risk of marginally released black defendants
and marginally released white defendants. Intuitively, the IV estimator measures misconduct risk
only for defendants near the margin of release, essentially ignoring the risk of defendants who are
infra-marginal to the judge thresholds. As our measure of judge leniency becomes more continuous,
our IV estimator will consistently estimate racial bias as the difference between αIVW and αIVB . The
IV estimator will therefore indicate that marginal black and marginal white defendants have similar
misconduct rates, allowing us to correctly conclude that the judges are race-neutral.

To further illustrate this point, Panel D of Online Appendix Figure C1 considers the case
where both judges are racially biased against black defendants, such that both judges have higher
thresholds of release for white defendants relative to black defendants. Following the same logic as
above, the IV estimator measures the pre-trial misconduct risk of marginally released white and
black defendants, αIVW and αIVB , so long as the two judges are “close enough” in leniency. The
IV estimator will therefore indicate that marginal black defendants are lower risk than marginal
white defendants, allowing us to correctly conclude that judges are racially biased against black
defendants.
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Online Appendix Figure C1: Infra-marginality Bias with OLS and Judge IV Estima-
tors

Panel A: OLS Estimator with Race-Neutral Judge Panel B: OLS Estimator with Biased Judge
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Note: These figures plot hypothetical risk distributions for white and black defendants. Panel A illustrates the OLS
estimator with a race-neutral judge that chooses the same threshold for release for white and black defendants. Panel
B illustrates the OLS estimator with a racially biased judge that chooses a higher threshold for release for white
defendants compared to black defendants. Panel C illustrates the judge IV estimator with two race-neutral judges.
Panel D illustrates the judge IV estimator with two racially biased judges.
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Online Appendix D: Data Appendix

Judge Leniency: We calculate judge leniency as the leave-out mean residualized pre-trial release
decisions of the assigned judge within a bail year. We use the residual pre-trial release decision
after removing court-by-time fixed effects. In our main results, we define pre-trial release based on
whether a defendant was ever released prior to case disposition.

Release on Recognizance: An indicator for whether the defendant was released on recognizance
(ROR), where the defendant secures release on the promise to return to court for his next scheduled
hearing. ROR is used for defendants who show minimal risk of flight, no history of failure to appear
for court proceedings, and pose no apparent threat of harm to the public.

Non-Monetary Bail w/Conditions: An indicator for whether the defendant was released on non-
monetary bail with conditions, also known as conditional release. Non-monetary conditions include
monitoring, supervision, halfway houses, and treatments of various sorts, among other options.

Monetary Bail: An indicator for whether the defendant was assigned monetary bail. Under mon-
etary bail, a defendant is generally required to post a bail payment to secure release, typically 10
percent of the bail amount, which can be posted directly by the defendant or by sureties such as
bail bondsmen.

Bail Amount: Assigned monetary bail amount in thousands, set equal to zero for defendants who
receive non-monetary bail with conditions or ROR.

Race: Indicator for whether the defendant is black (versus non-black).

Hispanic: We match the surnames in our data to census genealogical records of surnames. If
the probability a given surname is Hispanic is greater than 70 percent, we label the defendant as
Hispanic.

Prior Offense in Past Year: An indicator for whether the defendant had been charged for a prior
offense in the past year of the bail hearing within the same county, set to missing for defendants
who we cannot observe for a full year prior to their bail hearing.

Arrested on Bail in Past Year: An indicator for whether the defendant had been arrested while
out on bail in the past year within the same county, set to missing for defendants who we cannot
observe for a full year prior to their bail hearing.

Failed to Appear in Court in Past Year: An indicator for whether the defendant failed to appear
in court while out on bail in the past year within the same county, set to missing for defendants
who we cannot observe for a full year prior to their bail hearing. This variable is only available in
Philadelphia.
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Number of Offenses: Total number of charged offenses.

Felony Offense: An indicator for whether the defendant is charged with a felony offense.

Misdemeanor Offense: An indicator for whether the defendant is charged with only misdemeanor
offenses.

Any Drug Offense: An indicator for whether the defendant is charged with a drug offense.

Any DUI Offense: An indicator for whether the defendant is charged with a DUI offense.

Any Violent Offense: An indicator for whether the defendant is charged with a violent offense.

Any Property Offense: An indicator for whether the defendant is charged with a property offense.

Rearrest Prior to Disposition: An indicator for whether the defendant was rearrested for a new
crime prior to case disposition.

Failure to Appear in Court: An indicator for whether the defendant failed to appear for a required
court appearance, as proxied by the issuance of a bench warrant. This outcome is only available in
Philadelphia.

Failure to Appear in Court or Rearrest Prior to Disposition: An indicator for whether a defen-
dant failed to appear in court or was rearrested in Philadelphia, and for whether a defendant was
rearrested in Miami.

Judge Race: We collect information on judge race from court directories and conversations with
court officials. All judges in Philadelphia are white. Information on judge race in Miami is missing
for two of the 170 judges in our sample.

Judge Experience: We use historical court records back to 1999 to compute experience, which we
define as the difference between bail year and start year (earliest 1999). In our sample, years of
experience range from zero to 15 years.
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Online Appendix E: Institutional Details

The institutional details described in this Online Appendix follow directly from Dobbie et al.
(2018). Like the federal government, both Pennsylvania and Florida grant a constitutional right to
some form of bail for most defendants. For instance, Article I, §14 of the Pennsylvania Constitution
states that “[a]ll prisoners shall be bailable by sufficient sureties, unless for capital offenses or for
offenses for which the maximum sentence is life imprisonment or unless no condition or combination
of conditions other than imprisonment will reasonably assure the safety of any person and the
community....” Article I, §14 of the Florida Constitution states that “[u]nless charged with a capital
offense or an offense punishable by life imprisonment...every person charged with a crime...shall be
entitled to pretrial release on reasonable conditions.”

Philadelphia County: In Philadelphia County, defendants are brought to one of six police stations
immediately following their arrest, where they are interviewed by the city’s Pre-Trial Services Bail
Unit. The Philadelphia Bail Unit interviews all adults charged with offenses in Philadelphia through
videoconference, collecting information on each defendant’s charge severity, personal and financial
history, family or community ties, and criminal history. The Bail Unit then uses this information to
generate a release recommendation based on a four-by-ten grid of bail guidelines that is presented
to the bail judge at the bail hearing. However, these bail guidelines are only followed by the bail
judge about half the time, with judges often imposing monetary bail instead of the recommended
non-monetary options (Shubik-Richards and Stemen 2010).

After the Pre-Trial Services interview is completed and the charges are approved by the Philadel-
phia District Attorney’s Office, defendants are brought in for a bail hearing. Bail hearings are
conducted through videoconference by the bail judge on duty, with representatives from both the
district attorney and local public defender’s offices (or private defense counsel) present. However,
while a defense attorney is present at the bail hearing, there is usually no real opportunity for
defendants to speak with the attorney prior to the hearing. At the hearing itself, the bail judge
reads the charges against the defendant, informs the defendant of his right to counsel, sets bail after
hearing from representatives from the prosecutor’s office and the defendant’s counsel, and schedules
the next court date. After the bail hearing, the defendant has an opportunity to post bail, secure
counsel, and notify others of the arrest. If the defendant is unable to post bail, he is detained but
has the opportunity to petition for a bail modification in subsequent court proceedings.

Under the Pennsylvania Rules of Criminal Procedure, “the bail authority shall consider all
available information as that information is relevant to the defendant’s appearance or nonappearance
at subsequent proceedings, or compliance or noncompliance with the conditions of the bail bond,”
including information such as the nature of the offense, the defendant’s employment status and
relationships, and whether the defendant has a record of bail violations or flight. Pa. R. Crim. P.
523. In setting monetary bail, “[t]he amount of the monetary condition shall not be greater than
is necessary to reasonably ensure the defendant’s appearance and compliance with the conditions
of the bail bond.” Pa. R. Crim. P. 524. Under Pa. R. Crim. 526, a required condition of any
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bail bond is that the defendant “refrain from criminal activity.” In Philadelphia, it is well known
that bail judges consider the risk of new crime when setting bail (see Goldkamp and Gottfredson
1988), and in fact, the Philadelphia bail guidelines are designed to “reduce the risk of releasing
dangerous defendants into the community while ensuring that defendants who pose minimal risk
are not confined to prison to await trial.”20

Miami-Dade County: The Miami-Dade bail system follows a similar procedure, with one important
exception. As opposed to Philadelphia where all defendants are required to have a bail hearing, most
defendants in Miami-Dade can be immediately released following arrest and booking by posting an
amount designated by a standard bail schedule. The standard bail schedule ranks offenses according
to their seriousness and assigns an amount of bond that must be posted before release. Critics
have argued that this kind of standardized bail schedule discriminates against poor defendants by
setting a fixed price for release according to the charged offense rather than taking into account a
defendant’s ability to pay, or propensity to flee or commit a new crime. Approximately 30 percent of
all defendants in Miami-Dade are released prior to a bail hearing through the standard bail schedule,
with the other 70 percent of defendants attending a bail hearing (Goldkamp and Gottfredson 1988).

If a defendant is unable to post the standard bail amount in Miami-Dade, there is a bail hearing
within 24 hours of arrest where defendants can argue for a reduced bail amount. Miami-Dade
conducts separate daily hearings for felony and misdemeanor cases through videoconference by the
bail judge on duty. At the bail hearing, the court will determine whether or not there is sufficient
probable cause to detain the arrestee and if so, the appropriate bail conditions. The standard bail
amount may be lowered, raised, or remain the same as the standard bail amount depending on the
case situation and the arguments made by defense counsel and the prosecutor. While monetary
bail amounts at this stage often follow the standard bail schedule, the choice between monetary
versus non-monetary bail conditions varies widely across judges in Miami-Dade (Goldkamp and
Gottfredson 1988).

Under the Florida Rules of Criminal Procedure, “[t]he judicial officer shall impose the first ...
conditions of release that will reasonably protect the community from risk of physical harm to
persons, assure the presence of the accused at trial, or assure the integrity of the judicial process.”
Fl. R. Crim. P. 3.131. As noted in Florida’s bail statute, “[i]t is the intent of the Legislature that the
primary consideration be the protection of the community from risk of physical harm to persons.”
Fla. Stat. Ann. §907.041(1).

Institutional Features Relevant to the Empirical Design: Our empirical strategy exploits variation in
the pre-trial release tendencies of the assigned bail judge. There are three features of the Philadel-
phia and Miami-Dade bail systems that make them an appropriate setting for our research design.
First, there are multiple bail judges serving simultaneously, allowing us to measure variation in bail
decisions across judges. At any point in time, Philadelphia has six bail judges that only make bail
decisions. In Miami-Dade, weekday cases are handled by a single bail judge, but weekend cases are

20See https://www.courts.phila.gov/pdf/notices/2012/6-12-12-Notice-to-Bar-Proposed-Bail-Guidelines.pdf.
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handled by approximately 60 different judges on a rotating basis. These weekend bail judges are
trial court judges from the misdemeanor and felony courts in Miami-Dade that assist the bail court
with weekend cases.

Second, the assignment of judges is based on rotation systems, providing quasi-random variation
in which bail judge a defendant is assigned to. In Philadelphia, the six bail judges serve rotating
eight-hour shifts in order to balance caseloads. Three judges serve together every five days, with
one bail judge serving the morning shift (7:30AM-3:30PM), another serving the afternoon shift
(3:30PM-11:30PM), and the final judge serving the night shift (11:30PM-7:30AM). In Miami-Dade,
the weekend bail judges rotate through the felony and misdemeanor bail hearings each weekend to
ensure balanced caseloads during the year. Every Saturday and Sunday beginning at 9:00AM, one
judge works the misdemeanor shift and another judge works the felony shift.

Third, there is very limited scope for influencing which bail judge will hear the case, as most
individuals are brought for a bail hearing shortly following the arrest. In Philadelphia, all adults
arrested and charged with a felony or misdemeanor appear before a bail judge for a formal bail
hearing, which is usually scheduled within 24 hours of arrest. A defendant is automatically assigned
to the bail judge on duty. There is also limited room for influencing which bail judge will hear the
case in Miami-Dade, as arrested felony and misdemeanor defendants are brought in for their hearing
within 24 hours following arrest to the bail judge on duty.
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Online Appendix F: Model of Stereotypes

In this appendix, we consider whether a model of stereotypes can generate the pre-trial release
rates we observe in our data. To do so, we assume a functional form for how judges form perceptions
of risk and ask if this model can match the patterns we observe in the data.

F.1. Calculating Predicted Risk:

We begin by estimating predicted risk using a machine learning algorithm that efficiently uses
all observable crime and defendant characteristics. In short, we use a randomly-selected subset of
the data to train the model using all individuals released on bail. In training the model, we must
choose the shrinkage, the number of trees, and the depth of each tree. Following common practice,
we choose the smallest shrinkage parameter (i.e. 0.005) that allows the training process to run in a
reasonable time frame. We use a 5-fold cross validation on the training sample in order to choose
the optimal number of trees for the predictions. The interaction depth is set to 5, which allows each
tree to use at most 5 variables. Using the optimal number of trees from the cross validation step,
predicted probabilities are then created for the full sample.

Following the construction of the continuous predicted risk variable, we split the predicted risk
measure into 100 equal sized bins. One potential concern with this procedure is that observably
high-risk defendants may actually be low-risk based on variables observed by the judges, but not
by the econometrician. To better understand the importance of this issue, we follow Kleinberg et
al. (2018) and plot the relationship between predicted risk and true risk in the test sample. We
find that predicted risk is a strong predictor of true risk, indicating that the defendants released
by judges do not have unusual unobservables which make their outcomes systematically diverge
from what is expected (see Online Appendix Figure A3). This is true for both white and black
defendants. Therefore, we interpret the predicted distributions of risk based on observables as the
true distributions of risk throughout.

F.2. No Stereotypes Benchmark:

Following the construction of our predicted risk measure, we compute the fraction of black
defendants that would be released if they were treated the same as white defendants. This calculation
will serve as a benchmark for the stereotype model discussed below. To make this benchmark
calculation, we assume judges accurately predict the risk of white defendants so that we can generate
a relationship between release and risk, which we can then apply to black defendants. Under this
assumption, we find that the implied release rate for black defendants is 70.7 percent if they were
treated the same as white defendants. This implied release rate is lower than the true release rate
of white defendants (71.2 percent), but higher than the true release rate for black defendants (68.9
percent), consistent with our main finding that judges over-detain black defendants.
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F.3. Model with Stereotypes:

We can now consider whether a simple model of stereotypes can rationalize the difference in true
release rates. Following Bordalo et al. (2016), we assume judges form beliefs about the distribution
of risk through a representativeness-based discounting model. Basically, the weight attached to a
given risk type t is increasing in the representativeness of t. Formally, let πt,r be the probability
that a defendant of race r is in risk category t ∈ {1, ..., 100}. In our data, a defendant with t = 1

has a 2.7 percent expected probability of being rearrested before disposition while a defendant with
t = 100 has a 74.5 percent probability of being rearrested before disposition.

Let πstt,r be the stereotyped belief that a defendant of race r is in risk category t. The stereotyped
beliefs for black defendants, πstt,B, is given by:

(F.1) πstt,B = πt,B

(
πt,B
πt,W

)θ
∑

s∈T πs,B

(
πs,B
πs,W

)θ
where θ captures the extent to which representativeness distorts beliefs and the representativeness
ratio, πt,B

πt,W
, is equal to the probability a defendant is black given risk category t divided by the

probability a defendant is white given risk category t. Recall from Figure 3 that representativeness
of blacks is strictly increasing in risk. Therefore, a representativeness-based discounting model will
over-weight the right tail of risk for black defendants.

To compute the stereotyped distribution, we first assume a value of θ, and then compute πt,r
for every risk category t and race r. We can then compute πstt,B by plugging in the values for πt,r
and the assumed value of θ into Equation (F.1).

From the distribution of πstt,B, we compute the implied average release rate by multiplying the
fraction of defendants believed to be at a given risk level by the probability of release for that risk
level and summing up over all risk levels. Formally,

(F.2) E[Releasedi = 1|ri = B] =
100∑
s=1

πsts,BE[Releasedi = 1|t = s, ri = B]

In the equation above, we cannot compute E[Releasedi = 1|t = s, ri = B] given that we
explicitly assume judges make prediction errors for black defendants. That is, we do not know
at what rate judges would release black defendants with risk equal to s, given that judges do
not accurately predict risk for black defendants. However, in a stereotypes model, we can replace
E[Releasedi = 1|t = s, ri = B] = E[Releasedi = 1|t = s, ri = W ] (i.e. given that if there is no
taste-based discrimination, then conditional on perceived risk, the release rate will be equal between
races). Under our additional assumption that judges accurately predict the risk of whites, we can
estimate E[Releasedi = 1|t = s, ri = W ] for all s. Therefore, we can compute every value on the
right hand side of Equation (F.2), from which we can back out the average release rate for black
defendants from the stereotyped distribution.
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We find that θ = 1.9 rationalizes the average release rate for blacks we observe in the data
(68.8 percent). That is, if judges use a representativeness-based discounting model with θ = 1.9

to form perceptions of the risk distribution, we would expect judges to release 68.8 percent of all
black defendants. To understand how far these beliefs are from the true distribution of risk, we
plot the stereotyped distribution for blacks with θ = 1.9 alongside the true distribution of risk for
blacks in Online Appendix Figure A4. The average risk in the stereotyped distribution is about 5.4
percentage points greater than the mean in the true distribution of risk.
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