Equilibrium Predictability, Term-Structure of Equity Premia, and Other Return Characteristics

Satadru Hore1

1Federal Reserve Bank of Boston

Abstract. This paper presents a structural model of aggregate return characteristics based on a one-channel Bansal and Yaron (2004) economy under recursive preferences. The results rest on an endogenously determined price-dividend ratio that is not exponentially affine which implies time variation and predictability of equity premia. The predictability coefficient is stochastic which provides theoretical foundations for recent works in predictability like Dangl and Halling (2011). In longer horizon, the predictability relationship is highly volatile making it difficult to make inference about long-horizon predictability.

\textit{JEL Classification: G12}

1. Introduction

This paper investigates structural return predictability and term structure of equity premia within a one-channel long-run risk framework of Bansal and Yaron (2004). Starting with recursive preferences and simple joint dynamics of aggregate consumption and dividend growth where the expected growth rates of both share a common stochastic component, I find that equity premium is time-varying. This separates my model from the extant long-run risk literature which focuses on stochastic volatility in macroeconomic dynamics to generate time-varying equity premium. In this economic set-up, I explore two interesting applications of equity returns. The first is time-varying coefficient of return predictability which is consistent with recent empirical works in return forecasting. In my model, dividend yield and the coefficient of return predictability are inversely related - a decrease in dividend yield corresponds to a rapid increase in the return predicting coefficient which increases equity premium. The second application I consider is term structure of equity premia. In
this case, however, the model fails to deliver a downward sloping term structure of equity returns and volatilities as has been shown empirically.

The theory presented here can be considered to be the simplest dynamic model which can still deliver time-varying equity premium. My model and Bansal and Yaron (2004) can both produce economically significant level of expected returns. However, the difference between the two is the amount of variation in expected returns that can be produced by each model. The one-factor model can produce only small variations, whereas models with stochastic volatility can generate large time-variation in expected returns. Even though the model here produces small variation in expected returns, it is sufficient to make the central points about equilibrium return predictability. First of all, the model can produce significant time-variation in the predictability coefficient across all return horizons. Secondly, this time-variation leads to high variance in return predictability, especially over longer horizons. In essence, even using a model that can only generate small variation in expected returns, the predictability results show that there is quite a bit of uncertainty in long-horizon expected returns. Given less than a hundred years of return sample, there is a lot of uncertainty about the true magnitude of variation in expected returns in the data, and my model can generate this effect in a one-factor long-run risk model. The result on long-horizon predictability differs markedly from other structural models like Bansal and Yaron (2004) and Campbell and Cochrane (1999) who treat the predictability coefficient as a constant. At the same time, this model fails to generate the downward sloping term-structure of equity premia and volatility. Long-run risk can generate the level of equity premia observed in the data by heavily discounting cash-flows farther out in the future. Unfortunately, it is this feature of the model which generates an upward sloping term structure of equity premia.
In this paper, I start with Duffie-Epstein preferences with elasticity of intertemporal substitution equal to unity, which allows me to solve for the Hamilton-Jacobi-Bellman equation of the representative agent in closed form. Subsequently, this gives me a closed form expression of the pricing kernel which allows me to get an analytical expression for the PD ratio that is no longer exponentially affine. The non-linearity in the log PD ratio creates time-varying volatility in returns, which gives rise to time-varying risk-premia and predictability. The non-linearity in the PD ratio implies that the quantity of risk is time-varying. In response to a good expected dividend growth shock, the agent buys more of the asset that pays aggregate dividends which increases the quantity of risk that the agent bears. The opposite happens in response to a bad shock. Furthermore, in the Appendix I relaxed the assumption of unit EIS and found that the above dynamics of PD ratio is consistent with EIS greater than unity. Additionally, equity-premium is positive and pro-cyclical as long as risk-aversion is greater than the inverse of EIS, i.e. as long as the agent has preference for early resolution of uncertainty. The economic effect of this non-linearity in the PD ratio manifests itself in the coefficient on return predictability.

Given the closed form solution of PD ratio, I can directly solve for the long-horizon return predictability coefficient in a semi-closed form. This coefficient is time-varying and reflects at any time \(t \), the agent’s expectation of price and dividend growth over a particular horizon. The time-variation in predictability coefficients is yet unexplored in the equilibrium literature although it has gained significant attention in the empirical works of Lettau and Van Nieuwerburgh (2008) and Dangl and Holling (2011). These recent works on predictability show substantial uncertainty in estimating the predictability coefficient and Dangl and Holling (2011) address that by modelling the coefficient in a state-space framework. The time-varying coefficient significantly helps out-of-sample forecasts, and in-
vestors armed with such models outperform investors with constant coefficient models. My model provides theoretical foundation for time-varying predictability coefficients. An immediate conclusion from my model is that OLS regressions for predictability can be deeply misspecified and the parameter uncertainty that these papers encounter is precisely due to the time-variation in the predictability coefficient derived here.

Long-horizon predictability has received a lot of attention in the empirical literature since the early studies of Shiller (1981), Rozeff (1984), Campbell and Shiller (1988), Fama and French (1988), among others. Fama and French (1988) were the first to show long-horizon predictability reporting coefficients and R^2-s that increase with horizon. Since then, others have cast doubt on long-horizon predictability. Stambaugh (1999) finds severe biases in small sample estimators. For long-horizon predictability, Valkanov (2003) shows that the coefficients have limiting distributions that are functionals of Brownian shocks and the OLS estimators of them are inconsistent. Goetzmann and Jorion (1993) find spurious R^2's in long-horizon regressions in their simulation based study. Recently, Boudoukh, et. al. (2008) show that there is no extra information in long-horizon regressions than what is already factored in short-horizon ones. They show that their return predicting coefficients and R^2's, when represented as multiples of one-year coefficient or R^2's, scale perfectly with time.

Other equilibrium asset pricing models like Campbell and Cochrane (1999) and Bansal and Yaron (2004) do not investigate time-variation in predictability coefficients. These models simulate long-horizon returns and run OLS regressions to show evidence of long-horizon predictability characterized by increasing coefficients and R^2's. I replicate these regressions in my model and get the same results. However, in my model, I am able to solve for the predictability coefficient and without running any regressions I can evaluate
quantitative and qualitative properties of the coefficients. The coefficients show significant time-variation, especially in longer horizon. However, this time-variation comes with a price. To gauge what kind of unconditional inference can be drawn, I summarize the variance of long-horizon predictability in a pseudo-R^2 quantity. This pseudo-R^2 increases over the horizon purely due to the fact that the variance of the predictability component increases faster than the variance of overall returns. Thus, over longer horizon this pseudo-R^2 increases artificially, whereas, at least qualitatively it is hard to justify predictive power when this increase in pseudo-R^2 is due to the increase in variance of the predictability component. In essence, my equilibrium model tells the following story - the parameters that comply with macroeconomic dynamics and can match key asset pricing quantities imply significant time-variation in predictability coefficients. This time-variation implies large unconditional variances of the predictable component of long-horizon returns which creates doubt about return predictability in the long horizon.

The model also allows me to price dividend strips by considering them to be finite horizon equity, i.e. present value of dividends between times t and T as has been defined in Binsbergen, et al. (2012). The closed-form solution allows me to consider the term-structure of expected return, volatility and β of these assets in an analytical form. The high discount rate required to discount dividends farther out in the future - a feature of long-run risk preferences and growth rate dynamics, generates an upward sloping term structure for all of these quantities. However, this is contrary to what the empirical literature has found in Binsbergen, et al. (2012) by constructing dividend strips from put-call parity. Other structural models have also shown their limitation in generating this downward sloping term-structure. The long-run risk model of Bansal and Yaron (2004), habit formation model of Campbell and Cochrane (1999) and rare disasters model of Gabaix (2012) cannot
generate this effect as well, although a reduced form model of Lettau and Wachter (2007) has been able to replicate this pattern. This raises the challenge to incorporate the Lettau and Wachter (2007) dynamics within a long-run risk framework to study which structural shocks are responsible for the downward sloping equity premia.

The paper is subdivided into the following parts: section 1 discusses the details of the model and establishes the predictability results. Section 2 discusses the estimation methodology. Section 3 covers the empirical findings on asset pricing quantities and equilibrium predictability.

2. The Model

2.1 PREFERENCES AND DYNAMICS

Power utility puts a heavy restriction on risk-aversion and elasticity of intertemporal substitution (EIS)- they are reciprocals of each other. EIS measures willingness to exchange non-stochastic consumption today for tomorrow given a particular interest rate today. As such, the restriction that power utility imposes is too strict on two very different concepts - risk aversion is about preference over a random variable and EIS is substitution across deterministic consumption paths. In equilibrium asset pricing, the power utility restriction amounts to jointly establishing both the risk-free rate and equity premium through the same parameter - risk aversion. Empirically, the power utility restriction is a dismal failure giving rise to the equity premium puzzle and the corresponding risk-free rate puzzle. To break the strict relationship between the two, recursive utility functions are introduced a la Epstein-Zin-Weil that considers the concepts separately.

The utility function that is considered here is due to Duffie and Epstein (1992) which
is a continuous time counterpart of Kreps-Porteus and Epstein-Zin-Weil preferences. The normalized utility function considered here is

$$f(C, J) = \frac{\beta(1 - \gamma) J}{1 - \lambda} \left[C^{1 - \frac{\lambda}{\psi}} ((1 - \gamma)J)^{\frac{\lambda - 1}{1 - \gamma}} - 1 \right]$$

where C is the current period consumption, J is the value function, ψ is the EIS, β is the discount rate and γ is the risk-aversion. Assume furthermore that the representative investor is endowed with a log-recursive utility, which is a special case of the above preference with $\psi = 1$. The above utility function simplifies substantially in the $\psi = 1$ special case to

$$f(C, J) = \beta(1 - \gamma)J \left[\log C - \frac{\log(1 - \gamma)J}{1 - \gamma} \right]$$

The appendix also solves the model for the general case using log-linearization.

Assume that consumption and dividend growth jointly follow a geometric path with mean reverting growth rate X_t,

$$\frac{dD}{D} = (\mu_D + X_t)dt + \sigma_DdW_D$$ \hspace{1cm} (1)$$
$$\frac{dC}{C} = (\mu_C + \lambda X_t)dt + \sigma_CdW_C$$ \hspace{1cm} (2)$$
$$dX_t = -\kappa X_t dt + \sigma_x dW_x$$ \hspace{1cm} (3)$$

where the Brownian motion shocks are all uncorrelated. This formulation has its origin in Abel (1999) and this is very similar to the one-channel model of Bansal and Yaron (2004) except for one caveat - the parameter λ loads on the latent shock in consumption growth rate instead of dividends. When a growth rate shock jointly hits expected dividend and consumption growth, $\lambda < 1$ has the effect of tempering down the corresponding expected
consumption growth rate relative to dividend growth rate. This fact is also borne out in the data.

Figure 1 shows that real dividend growth rate has a lot of time-series variation whereas the corresponding real consumption growth is quite smooth, and $\lambda < 1$ helps us achieve that. At the same time, the volatilities of dividend and consumption growth are non-stochastic. Furthermore, correlations between all Brownian motion shocks is set to zero, so that I can devote the full attention to market price of risk and risk-premia stemming from the long-run risk due to growth rate X_t.

The utility process J satisfies the Bellman equation with respect to equilibrium consumption

$$DJ(C, X, t) + f(C, J) = 0$$

where DJ is the differential operator applied to J with respect to $\{C, X, t\}$ with the boundary condition $J(C, X, T) = 0$. I am interested in the equilibrium as $T \to \infty$. Thus, I drop the explicit time dependence assuming that the agent is infinitely long-lived and has reached equilibrium over time.

Proposition 1 The solution to the Bellman equation in (4) corresponding to growth rate dynamics in (1)-(3) and preferences given by Duffie-Epstein utility with $EIS=1$ is

$$J(C_t, X_t) = \frac{C_t^{1-\gamma}}{1-\gamma} \exp (u_1 X_t + u_2)$$
where

\[u_1 = \frac{\lambda(1 - \gamma)}{\kappa + \beta} \]

\[u_2 = \frac{1 - \gamma}{\beta} \left[\mu_C - \frac{1}{2} \gamma \sigma_C^2 + \frac{\lambda^2(1 - \gamma)\sigma_x^2}{2(\kappa + \beta)^2} \right] \]

Proof: See Appendix.

2.2 ASSET PRICING

Duffie and Epstein (1992) show that the pricing kernel for stochastic differential utility, \(\Lambda_t \), is given by \(\Lambda_t = \exp(\int_0^t f_s ds) f_c \). It has a particularly nice and elegant expression in closed form for \(\psi = 1 \), and the appendix shows a version corresponding to the log-linearized solution of the value function for \(\psi \neq 1 \).

Proposition 2 The pricing kernel for \(EIS=1 \) is given by

\[
\frac{d\Lambda}{\Lambda} = -r_f^t dt - \gamma \sigma_C dW_C - \frac{(\gamma - 1)\lambda}{\kappa + \beta} \sigma_x dW_X
\]

(6)

where

\[r_f^t = \mu_C + \lambda X_t + \beta - \gamma \sigma_C^2 \]

(7)

Proof: See Appendix.

The risk-free rate in (7) has many desirable properties which we do not observe in risk-free rate derived from standard power utility setting. In this case, risk-free rate is actually decreasing *uniformly* as risk-aversion, \(\gamma \), increases, whereas in power utility I would need \(\gamma \) really high for the precautionary savings term to kick-in and generate the same effect. At that high level of risk-aversion, power utility implies that a one-percent increase in
consumption growth would increase the risk-free rate by γ-percent - a claim not supported by the data. In the log-recursive case, a one-percent increase in consumption growth signifies a one-percent increase in the risk-free rate due to $\psi = 1$. The proposition that risk-free rate decreases in risk-aversion uniformly in the log-recursive case is not surprising. Recall, that in the log-recursive case $\gamma > 1$ is sufficient to generate preference for early resolution of uncertainty. The preference for early resolution increases the price of certainty equivalence resulting in a lower real interest rate. For $\psi > 1$ and higher preference for early resolution of uncertainty, the appendix shows that the risk-free rate falls sharply and is less responsive to changes in consumption growth rate than in the unit EIS case.

Since there are two sources of consumption risk in this economy there are two market prices of risk in (6). The first one is the traditional transient consumption risk term from power utility coming from volatility of consumption growth, and the second is due to the stochastic growth rate of consumption and recursive preferences and is popularly termed long-run risk. Notice that if $\lambda = 0$ and there was no stochastic growth rate of consumption then the long-run risk term will be zero. Moreover, notice that the long-run risk coefficient

\[
\frac{(\gamma-1)\lambda}{\kappa+\beta} \sigma_x = \frac{J_x}{\sigma_x} \sigma_x
\]

measures change in the value function of the agent with respect to the growth rate X_t. In recursive preferences, the value function is embedded within the utility function. Thus volatility in marginal utility necessarily measures volatility in the life-term utility of the agent - hence the name long-run risk.

Long-run risk is increasing in γ, but the effect is magnified due to κ and β in the denominator. Recall, that the stationary distribution of $X_t \sim N\left(0, \frac{\sigma_x}{\sqrt{2\kappa}}\right)$. Thus, as κ decreases and the growth rate becomes more persistent, the volatility of growth rate increases and an agent exposed to long-run risk from the volatile growth rate shocks seeks higher compensation for bearing this risk. Notice, that the magnitude of the size of long-run risk can
be much higher vis-a-vis the risk from the transient consumption volatility as is shown in Table II.

The long-run market price of risk for $\psi \neq 1$ is directly proportional to $\gamma - \frac{1}{\psi}$, which distinguishes Duffie-Epstein preferences from standard time-separable preferences where $\gamma = \frac{1}{\psi}$. Clearly, for time-separable preferences long-run risk vanishes. The quantity $\gamma - \frac{1}{\psi}$ also determines preference for early resolution of uncertainty. Thus, stronger the preference for early resolution of uncertainty of the growth rates the higher the market price of risk.

Given the pricing kernel of the stochastic differential utility, I establish the equilibrium price-dividend ratio and return dynamics.

Proposition 3 Equilibrium price-dividend ratio is given by

$$\frac{P_t}{D_t} = G(X_t)$$ (8)

where $G(X_t) = \int_t^\infty \exp(P_1(\tau)X_t + P_2(\tau))d\tau$, where $\tau = s - t$, $P_1(\tau)$ and $P_2(\tau)$ are solutions of a system of ODEs given in the appendix. The dynamics for cumulative excess return is given by

$$dR = \frac{dP + Ddt}{P} - \mu^R dt = \mu^R dt + \sigma_D dW_D + \frac{GX}{G} \sigma_x dW_x$$

where equilibrium expected excess return is

$$\mu^R_t = \frac{\lambda(\gamma - 1)GX}{\kappa + \beta} \sigma_x^2$$ (9)

and the volatility of cumulative return given by

$$\sigma^R_t = \sqrt{\sigma_D^2 + \left(\frac{GX}{G} \sigma_x^2\right)^2}$$ (10)
Proof: See Appendix.

This is the central result in the paper. The PD ratio in this one-channel economy is not exponentially affine but is non-linear in the expected growth rate. This non-linearity is responsible for generating time-varying equity premia and a dynamic predictability relationship. In the presence of a constant price of risk from the X shock, the non-linearities in the log PD ratio creates time-varying volatilities in PD ratio which creates time-varying equity premia. In other words, the market price of risk is constant but the quantity of risk is time-varying which gives rise to time-varying equity premia. Notice, that in the one-channel Bansal and Yaron (2004) economy, they posit the PD ratio as exponentially affine in the growth rate which makes conditional volatility of PD ratio a constant, i.e. if \(G = \frac{P}{D} = \exp(a + bX_t) \), where \(a \) and \(b \) are constants, then \(\text{Vol} \left(\frac{dG}{G} \right) = b\sigma_x \). Thus, if market price of risk from \(X_t \) is also a constant, then equity premium will be a constant thus eliminating any time-series phenomenon in expected returns.

The cumulative return volatility (10) has two components - the first one is the transient risk of the volatility of dividend growth and the other is due to long-run risk. To reinforce the point on the non-linearity of the PD ratio, notice that the long-run risk component of volatility is time-varying precisely because \(G(X_t) \) is not exponentially affine in the growth rate \(X_t \), which ensures that \(\frac{G_t}{G} \) would be time-varying making return volatility stochastic.

The expected excess return (9) seeks compensation for only long-run risk since the correlation between all the Brownian motion terms are shut off. It is straight-forward to incorporate those kind of risks from correlation, but for brevity I focus only on the long-run risk component arising from non-linearity in the PD ratio. Notice that

\[
G_X = \frac{1 - \lambda}{\kappa} \int_t^\infty \exp(P_1(\tau)X_\tau + P_2(\tau))(1 - e^{-\kappa \tau})d\tau \tag{11}
\]
If $\lambda < 1$, as has been assumed in the model to make expected consumption growth “slower” than expected dividend growth, then $G_X > 0$ which guarantees that expected return is always positive. In the $\psi \neq 1$ case, $G_X > 0$ if $\psi > 1$ along with $\lambda < 1$. Moreover, expected return is positive and procyclical so long as the agent has preference for early resolution of uncertainty, i.e. $\gamma - \frac{1}{\psi} > 0$. Thus, the above results that are obtained in closed form for unit EIS carries over for $\psi \neq 1$, as long as γ and ψ are both greater than unity.

2.3 TIME-SERIES AND PREDICTABILITY

The non-linearity in the log price-dividend ratio presents valuable time-series dynamics of aggregate returns. Before discussing predictability, it is essential that I discuss the time-series nature of expected return. Since $G_X > 0$, expected return is always positive. Moreover, since

$$\left(\frac{G_X}{G} \right)_X = \frac{1}{G^2} \left[\int_t^\infty \exp(\cdot) d\tau \int_t^\infty \exp(\cdot) P_1^2(\tau) d\tau - \left(\int_t^\infty \exp(\cdot) P_1(\tau) d\tau \right)^2 \right] > 0$$

expected return is increasing in X_t. Therefore, both PD ratio and expected return rise with a positive growth rate shock. In response to a positive shock from underlying economic growth rate, expected dividend growth increases. In response, the agent buys more of the stock that pays future dividends which increases its prices relative to dividends. This increases the quantity of risk that the agent bears. Since the market price of risk remains unchanged, overall equity-premia rises. Therefore, in response to a good shock, dividend yield decreases and expected return increases. From an equilibrium predictability point of

\footnote{This expression is positive due to a direct application of Cauchy-Schwartz inequality to functions $P_1(\tau) \sqrt{\exp(\cdot)}$ and $\sqrt{\exp(\cdot)}$, both of which are integrable in the domain as long as the transversality condition is satisfied.}
view that is only feasible if the coefficient on dividend yield goes in the opposite direction from dividend yield from a shock in the growth rate. Let’s re-write the expression for expected return in the form of a predictability relationship as

$$\mu_t^R = \left[\frac{(\gamma - 1)\lambda}{\kappa + \beta} \sigma^2 X \right] D_t \frac{P_t}{P_t}$$

(12)

where $D_t = \frac{1}{\sigma(X_t)}$. We just established that the left hand side of this expression increases in X_t, and the dividend yield on the right decreases in X_t. However, the stochastic component of the coefficient on dividend yield, G_X, has the property that $(\frac{G_X}{G})_X > 0$. This ensures that as $G(X_t)$ increases (dividend yield decreases), G_X also increases which “pulls up” a diminishing dividend yield to produce higher expected return. This phenomenon is shown in Figure 2.

*****Figure 2 about here.*****

In essence, the return predicting coefficient shows the effect of risk-premia. When PD ratio is high due to high growth rates, the agent infers this “momentum” will continue because of positively autocorrelated growth rate shocks and buys more of the risky security. This increases the quantity of risk that he bears which increases the risk-premium. The opposite happens with decreasing growth rate shocks when the investor holds less of the risky asset thereby reducing the quantity of risk. The time-variation in the desire to bear risks is embodied in the time-variation in the predictability coefficient - a fact empirically uncovered in Dangl and Thomas (2011) and also shown in Lettau and van Nieuwerburgh (2008). This stochastic nature of the predictability coefficient is missing in the equilibrium literature. It helps us understand how an economy can have simultaneously both high prices and high expected returns. It helps make returns stationary - when dividend yield
changes, the return predicting coefficient moves in the opposite direction to keep returns stationary. The time-series property of the return predicting coefficient is magnified in the long-horizon as I show below.

The overall result suggests that as growth rate increases, expected dividend growth increases, the PD ratio increases (dividend yield decreases) and expected return increases. Thus, return shocks and dividend yield shocks are strongly negative correlated. Now I explore the effect of the time-variation in predictability coefficient for long-horizon returns.

2.3.1 Long-Horizon Predictability Coefficient

An investor with a long horizon holding period will invest P_t in the market at time t, and hold it until time T when the price will grow to P_T and he will also receive dividends from time t to T. Thus, his total return is given by

$$R_T = P_T + \int_t^T D_r dr$$

This is a particular convenient way to pose the long-horizon predictability relationship because it is easier to solve. Notice I make one simplification where dividends are simply accumulated and not ploughed back into the stock. Note that this is different from the instantaneous excess return dynamics developed in Proposition 3, where I use $dR_t = \frac{dP_t + D_t dt}{P_t} - r^f_t dt = -E_t \left(\frac{dP_t}{P_t}, \frac{dA}{A} \right) + \cdots dW$. The latter expression, integrated forward to produce R_T, is wholly unsuitable in analyzing long-horizon cumulative returns. This is because the instantaneous cumulative return dynamics is of a dt - period return from t to $t + dt$ with dividends D_t and risk-free rate r^f_t held constant at time t. The expected growth rate X_t also stays constant, and I can only account for price change due to X_t.

15
Integrating forward this quantity will not address the fact that there are dynamic relationships between prices, dividends and risk-free rate through the growth rate which will grow over time in longer horizon. To overcome this problem, I resort to looking at long horizon returns through the quantity in (13) where I accumulate dividends from \(t \) to \(T \) and also consider the intermediate shocks from dividend growth and risk-free rate to prices within holding period \(z = T - t \).

First, I determine the dynamics of prices \(P_t \). The full distribution of price growth from \(t \) to \(T \) can be written as

\[
P_T = P_t \exp \left(\int_t^T \left[\mu_P(X_s) - \frac{1}{2} \sigma_P(X_s) \sigma_P(X_s)' \right] ds + \int_t^T \sigma_P(X_s) \cdot dW \right)
\]

(14)

where \(dW = [dW_D \ dW_x] \). The expressions for \(\mu_P(X_t) \) and \(\sigma_P(X_t) \) are in the appendix. \(\mu_P(X_t) \) is the total change in price resulting from dividend growth, risk-free rate and compensation for bearing risk \(X_t \) along with other higher order terms whose effect over the long horizon could be substantial. \(\sigma_P(X_t) \) is a vector of volatility shocks arising from both transient dividend shock and growth rate shock from \(X_t \). They are determined by applying Ito’s Lemma to (8) and integrated forward. Similarly, dividend growth can be written as

\[
D_r = D_t \exp \left(\int_t^r \left(X_s - \frac{1}{2} \sigma^2_D \right) ds + \int_t^r \sigma_D dW_D \right)
\]

(15)

Substituting them both into (13), I can write total return from \(t \) to \(T \) as

\[
\tilde{R}_T = \left[G(X_t) \exp \left(\int_t^T \left[\mu_P(X_s) - \frac{1}{2} \sigma_P(X_s) \sigma_P(X_s)' \right] ds + \int_t^T \sigma_P(X_s) \cdot dW \right) + \int_t^T \sigma_P(X_s) \cdot dW \right] \frac{D_t}{P_t}
\]

This expresses cumulative return over horizon \(z = T - t \) as a function of current dividend and growth rate shocks, as well as the effect of the entire path of the growth rates over the
horizon. The first term inside the parenthesis is total price growth from t to T and the second term is the growth in dividends. This expression is stochastic and highly non-linear in the growth rate, and shows how endogenous shocks accumulate over time to produce long-horizon returns. It is straight-forward to see that the non-linearity of endogenous shocks rule out any possibility that the statistical properties of OLS will do justice in estimating the above expression.

Fortunately, the conditional expectation of the above expression in (16), has a more tractable form without the Brownian shocks. First, observe that the conditional expectation of future dividends has a closed-form solution.

Lemma 1 Conditional expectation of future dividend satisfies

$$E_t [D_r] = D_t \exp(A(s)X_t + B(s))$$

where $s = r - t$ and $A(s)$ and $B(s)$ are in the appendix.

Now it is straightforward to establish conditional expectation of cumulative expected return \tilde{R}_T using the accounting identity (13).

Proposition 4 The price process in (14) implies $E_t [P_T] = P_t H(X_t, z)$ where $H(X_t, z) = E_t \left[\exp \left[\int_t^T \mu_P(X_s) ds \right] \right]$ with $z = T - t$. Then, using Lemma (1)

$$E_t [\tilde{R}_T] = \frac{E_t [P_T] + \int_t^T E_t [D_r] ds}{P_t}$$

$$= \left[G(X_t)H(X_t, z) + \int_t^T \exp(A(r - t)X_t + B(r - t)) \right] \frac{D_t}{P_t}$$

$$= \alpha(X_t, z) \frac{D_t}{P_t} \quad (16)$$

To convert the conditional expectation relationship into a percentage return form, I simply
subtract one and focus on the quantity.

\[E_t[\tilde{R}_T] - 1 = \left[G(X_t)(H(X_t, z) - 1) + \int_t^T [\exp(A(r - t)X_t + B(r - t))]dr \right] \frac{D_t}{P_t} \quad (17) \]

The expression \(H(X_t, z) \) is conditionally known at time \(t \) and represents expected price changes over horizon \(z \) due to the stochastic growth rate. It satisfies a second order partial differential equation that depends on \(X_t \) and \(z \). It has an unique solution given a set of boundary conditions. One of them is natural \(H(X_t, 0) = 1 \) such that \(\lim_{T \to t} E_t[P_T] = P_t \). However, due to all the non-linearities in \(X_t \), its general form cannot be solved analytically, and no sensible boundary conditions are available in the \(X_t \)-plane to solve it numerically. Details are in the appendix. Thus, I resort to solving \(H(X_t, z) \) by simulating several thousand paths of \(X_{t \to T} \) to compute \(E_t\left[\exp \left(\int_t^T \mu_P(X_s)ds \right) \right] \) for every initial point \(X_t \).

The \(z \)-horizon return predictability coefficient \(\alpha(X_t, z) \) is composed of two parts. There is an expected dividend growth component and then an expected price growth component as a dynamic response to dividend growth rates and dividend shocks. In traditional predictability regressions of Shiller (1981) and Fama-French (1988), the above conditional expectation relationship is tested by running univariate regression of cumulative returns of varying horizon on current dividend yields. The coefficients from these regressions are taken as constants and tests on the coefficients are performed using standard asymptotics. The structural relationship here suggests that the slope coefficient on these long-horizon regressions are themselves stochastic with crucial time-series properties, and as such, treating them as constants would lead to immense biases. The slope itself is a non-linear function of the underlying state variable that also affects the regressor and as such should contribute to the overall variance of the slope coefficient that treating it as a constant would miss. In
fact, looking at the immense non-linearity of (16) in the Brownian shocks, it looks like the coefficient estimated via OLS will also be highly inconsistent. In fact, it confirms Valkanov’s (2003) argument that the coefficient is a function of underlying shocks with fundamentally different properties than standard asymptotics which he analyzes by using the Functional Central Limit Theorem.

Another important aspect of these regressions is the explanatory power of the regression typically measured in terms of higher R^2-s as horizon increases. Fama and French (1998), for example, find R^2-s that range from 19% to as high as 64% over 1-5 year horizons. The equilibrium models of Bansal and Yaron (2004) and Campbell and Cochrane (1999) both show that return R^2-s are also increasing over the horizon. However, Goetzmann and Jorion (1993) and recent work of Boudukh, et. al. (2008) have cast doubts on these findings. In the latter work, for example, the authors find that the R^2-s are not increasing but scale with time and are, in fact, decreasing slightly as return horizon increases. Goetzmann and Jorion (1993) show that one can still get high R^2-s and significant coefficients where there is no linear relationship between future returns and the dividend yield. The conditional mean relationship given in (16), provides a theoretical foundation to compute pseudo-R^2-s in longer horizon. To gauge the magnitude of pseudo-R^2 from my structural model, I ask the question - *How much of the unconditional variance of R_T can be explained by the unconditional variance of the conditional mean relationship in (16)?* Thus, to infer the model implied R^2-s for longer horizon, I simply compute pseudo-$R^2 = \frac{\text{Var}\left(\alpha(X_t, z)\right)}{\text{Var}(R_T)}$ where Var denotes unconditional variance. Notice that the coefficient of the conditional mean $\alpha(X_t, z)$ is itself a function of X_t which also impacts the dividend yield $\frac{1}{\sigma(X_t)}$. Empirical works that treat the return predictability coefficient as a constant misses this extra uncertainty that increases with time.
It is also obvious from the expression of \(\alpha(X_t, z = T - t) \) that two return predicting coefficients of different horizons \(T_1 \) and \(T_2 \) should also be correlated - not only through the current expected growth rate \(X_t \), but also because they will share the same expected price and dividend growth changes up to \(\min(T_1, T_2) \). Naturally this persistence will be stronger if \(T_1 \) and \(T_2 \) are closer to each other than if they are further apart. Empirically, BRW (2008) has found that this correlation between the return predicting coefficients is quite significant. They are stronger when the horizons are closer as is the case in my model.

This establishes the full theory behind long horizon predictability that is completely endogenized within a one-channel Bansal and Yaron (2004) economy under Duffie-Epstein preferences. The setting here is tractable enough to produce a semi closed-form estimate of the conditional mean of long-horizon regression with explicit expression for the long-horizon predictability coefficient. The result shows time-series dependence between the return predicting coefficient and dividend yield rendering inference drawn from pure OLS based exercises biased and inconsistent.

3. **Empirical Methodology**

3.1 **A BAYESIAN STRATEGY**

In order to get the parameter estimates that govern the above state-space, I follow a Bayesian methodology. Let the full parameter set that guides the system be \(\theta = \{\mu_D, \mu_C, \sigma_D, \sigma_x, \kappa, \lambda\} \). The goal is to get joint estimates of \(p(\theta, X) \) conditional on the data on consumption and dividend growth. Here, \(X \) denotes the full time-series of growth rates \(\{X_1, \cdots, X_T\} \). We will follow a Markov Chain Monte Carlo (MCMC) algorithm that
will draw them conditionally on each other

\[p(\theta | X) \quad p(X | \theta) \]

In order to generate the parameters and the time-series of the growth rates, first I discretize dividend and consumption growth rates and write them in the familiar discrete-time state-space notation. Let \(g_{t+1}^d \) be dividend and \(g_{t+1}^c \) be consumption growth. Then the continuous-time state-space can be written by taking \(dt = 1 \) as

\[
\begin{bmatrix}
 g_{t+1}^d \\
 g_{t+1}^c \\
 X_{t+1}
\end{bmatrix} =
\begin{bmatrix}
 (\mu_D + X_t) \\
 (\mu_C + \lambda X_t) \\
 (1 - \kappa)X_t + \sigma_x Z_2
\end{bmatrix} +
\begin{bmatrix}
 \sigma_D & 0 \\
 0 & \sigma_C
\end{bmatrix} Z_1
\]

(18)

\[X_{t+1} = (1 - \kappa)X_t + \sigma_x Z_2 \]

(19)

where \(Z_1 \sim N(0, I_2) \) and \(Z_2 \sim N(0, 1) \) are uncorrelated standard normals.

First, I draw the time-series of the growth rates \(X \) conditional on the rest of the parameter space, \(\theta \), and the full time-series of dividend and consumption growth. In order to draw the time-series of growth-rates, I follow a Bayesian version of kalman filter called Forward Filtering Backward Sampling (FFBS) as introduced by Carter and Cohn (1996). In this step, recall I am assuming that I know the rest of the parameters \(\theta \), and I draw the full time-series of \(X \) given the full time-series of dividend and consumption growth.

Then, my goal is to draw the parameter set \(\theta \) conditional on the full time-series of the growth rates, which I have obtained in the above step using FFBS. Here I generate the parameters using a MCMC algorithm called Gibbs sampler by which I draw one parameter at a time conditional on the rest of them - \(\theta_i | \theta_{-i}, X, g^d, g^c \), where \(\theta_{-i} \) is the rest of the parameters modulo the \(i \)-th one. In this simple state-space setting, all the posterior distributions
of the parameters are available in elementary conjugate form. The exact parameters of these posterior distributions is discussed in detail in Allenby, McCulloch and Rossi (2005).

3.1.1 Priors

The strength of the Bayesian mechanism is the ability to specify prior information on the growth rate X since it is not directly observable. Prior belief on the parameters of $X - \kappa$ and σ_x, based on the theory developed thus far allows incorporation of valuable economic intuition into the estimation process precisely because X_t is not directly observable. In order to generate high market prices of risk, I need the growth rate to be persistant. I impose a prior on $1 - \kappa \sim N(0.95, 0.1^2)$. Furthermore, my choice of hyperparameters for prior on σ_x centers the prior mean of σ_x to be 0.015 - half the unconditional variance of aggregate consumption growth, with fairly high uncertainty which will show up in the posterior distribution of σ_x. Finally, since the theory heavily relies on $\lambda < 1$, I propose the prior $\lambda \sim N(0.40, 1^2)$. Note, these are all proper but extremely diffuse priors. The 95% confidence band of the prior distributions for these parameters is fairly wide and covers a broad range of possible values. I leave it up to the data to play a crucial role in identifying the posterior distribution of these parameters.

3.2 DATA

I use US data from 1929-2010 sampled annually. Aggregate dividend data is from CRSP value-weighted portfolio. Cochrane (2008) points out that CRSP dividends capture all payments to investors - including cash mergers, liquidations and repurchases. The risk-free rate is obtained from the return on 90-day Treasury Bills. Aggregate consumption is non-durables and services divided through by population growth to make it per capita.
consumption. All nominal quantities are converted to real by deflating them by CPI.

4. Empirical Findings

The Gibbs sampler produces simulations of parameter values from their posterior distributions. The estimates from the state-space estimation (18)-(19) is reported in panel A of Table I in five different quintiles from 2.5-97.5-th quintile.

******Table I about here.******

It is clear from the MCMC simulated draws that the data has played a crucial role in pinning down the posterior distribution of \(\kappa, \sigma_x \) and \(\lambda \). The posterior distribution of both of these parameters have tightened around the posterior mean showing that the data provides valuable inference in mitigating the prior uncertainty about these parameters. The parameter for which the data plays the most crucial role is \(\sigma_x \) whose posterior mean is 0.027. Also, the time-series of growth rates that are filtered from aggregate consumption and dividend growth match the time-series behavior of the underlying series quite well as is shown in Figure 2.

Another important test whether the model parameters are meaningful is their ability to produce key moments of the macro data. The model implies that the unconditional mean, standard deviation and first order autocovariance of consumption growth are \(\mu_C, \sqrt{\lambda^2 \frac{\sigma_x^2}{1-(1-\kappa)^2} + \sigma_C^2} \) and \(\lambda^2 (1 - \kappa) \frac{\sigma_x^2}{1-(1-\kappa)^2} \). Similarly, I can compute the unconditional moments of dividend growth. Panel B of Table I reports the posterior distribution of these moments computed from the posterior distribution of the parameters simulated via MCMC. The posterior distribution of the model implied moments match up very well with the data. The only statistic it falls short on is the correlation of dividend and consumption growth.
Whereas in the data the correlation is 0.58, the model implied correlation is only between 0.30-0.47. That is primarily due to the fact that this a one factor model. With additional latent shocks, like stochastic volatility, this shortcoming can be easily addressed.

The overall message is that the parameters drawn from the MCMC can reproduce salient features of the macroeconomic data - the filtered draws of the states X_t can track the observed time-series of consumption and dividend growth and the parameter draws can match the key moments implied by the model.

4.1 MARKET PRICES OF RISK

To focus on asset pricing, I pick the following preference parameters - time discount parameter $\beta = .001$ and risk-aversion $\gamma = 7.5$. The posterior estimates of the market prices of risk are in Table II. There are two sources of risk in my economy - transient consumption volatility risk given by $\gamma \sigma_C$ and long-run risk from persistent growth rates given by $\frac{(1-\lambda)\lambda \sigma}{\pi + \beta}$. The posterior distribution of the price of long-run risk dominates the price of transient volatility risk by a huge margin. Whereas the posterior mean of the price of transient risk is 0.15, the posterior mean of the price of long-run risk is 0.58. Clearly, the time-series of dividend and consumption risk implies that the magnitude of long-run risk is extremely economically significant. Hence, an agent in this economy with Duffie-Epstein preferences is far more averse to marginal utility shocks resulting from long-run risk than from traditional transient consumption volatility shocks.

4.2 ASSET PRICING QUANTITIES

This subsection shows the quantitative magnitude of key asset pricing quantities implied by my model. Taking the posterior distribution of the parameters, I simulate the posterior
distribution of six key asset pricing quantities - expected excess return (9), volatility of cumulative return (10), dividend-price ratio (8), volatility of changes in dividend-price ratio, risk-free rate (7), the volatility of risk-free rate and the Sharpe Ratio. Since all of these quantities depend on the growth rate X_t, I integrate it out by using the stationary distribution of $X_t \sim N \left(0, \frac{\sigma_x}{\sqrt{2\pi}}\right)$ to produce unconditional estimates. Table III reports the 2.5-97.5-th quintiles of these quantities.

*****Table III about here.*****

The model can match the equity premia (posterior distribution is 4.78-7.91%), dividend yield (posterior distribution is 3.16-4.56%) and the low discount rate, β, helps to match the risk-free rate (posterior distribution is 0.83-2.67%). The Appendix shows that for $\psi > 1$, I can generate a far lower risk-free rate with higher discount rates. At the same time, my model can also generate high volatilities of equity returns (posterior distribution is 16.22-19.37%) and risk-free rate (posterior distribution is 1.68-2.51%). To gauge the effect of long-run risk on equity volatility, notice that the volatility of changes in the dividend yield is between 9.14-12.37% which is solely determined by exposure to long-run risk.

The parameters of the state-space that match the time-series properties of consumption and dividend growth can generate plausible asset pricing quantities. Clearly, additional factors, like stochastic volatility, can be used to enhance the quantitative effects. For example, one limitation of the one-factor model is that it cannot generate large variation in expected return. The two-factor model of Bansal and Yaron (2004) which incorporates stochastic volatility can be used to generate such large variations. However, even when my model produces small variation in expected return, it can produce substantial time-variation in the predictability coefficient, which is discussed next.
4.3 LONG HORIZON PREDICTABILITY

The long-horizon coefficient has rich time-series properties coming from both dividend and price growths. These quantities are conditionally known and I can compute them without running any regressions. I also compute how informative this unconditional relationship is through a pseudo-R^2 ratio that measures the size of the unconditional variance of the conditional mean given by the predictability relationship relative to the unconditional variance of long-horizon return in my model. Quantitatively speaking, although the model can only generate small variation in expected return, it can nonetheless generate quite a bit of variability in the predictability coefficient.

The z-horizon conditional predictability coefficient is previously shown to be

$$
\left[G(X_t)(H(X_t, z) - 1) + \int_t^T [\exp(A(s)X_t + B(s))]ds \right]
$$

that depends on the current growth rate X_t and the horizon $z = T - t$. The first component of the coefficient is expected price growth from $t \rightarrow T$, and the second reflects expected dividend growth. Taking the 2.5, 50 and 97.5-th quintiles of parameters and states drawn from the Gibbs sampler, I compute dividend growth and price growth at each point in time for time horizons 1, 3 and 5 years. The time-series of expected dividend growth is shown in Figures 5-7 and that of expected price growth in Figures 8-10.

First, let me focus on dividend growth. Assuming $1 of dividends at time t, the graph shows expected dividend growth over horizons 1 (Figure 3), 3 (Figure 4) and 5 (Figure 5) years.

*****Figure 3 about here.*****

*****Figure 4 about here.*****

26
The time-variation in expected dividend growth is substantial. In some periods, responding to poor negative shocks in the growth rate of dividends, the expected dividend growth falls below $1. While the time-series is more stable in the post-war years, the early part of the sample around the Great Depression shows pronounced movements in expected dividend growth. Following the stock market crash in 1929, expected dividend growth fell precipitously. Then an increase in dividends, which came alongside a rebound in the stock market in the mid 1930’s, shows large upswings in expected dividend growth which fell again when the stock market crashed in 1937. Subsequent boom during World War II lifted expected dividend growth, and the post-war time-series shows a lot less variability until the stock market crash of 2009. The time-series pattern is the same across all horizons although the magnitude of expected dividend growth changes substantially. The time-series average of expected dividend growth for each horizon is \{1.01,1.04,1.08\}, although there is a quite a bit of uncertainty behind those growth figures. The 2.5 and 97.5 quintiles for each of those quantities is \{0.96,0.89,0.84\} and \{1.07,1.23,1.41\}. Clearly, expected dividend growth rises over the horizon. But, the uncertainty also increases. For a 5-year horizon, on average, starting with $1 in dividends expected dividend growth is anywhere from $0.84 to $1.41! The corresponding time-series variation is a lot more pronounced in price growth which is discussed next.

To give an intuition of what this term looks like, Figure 6 plots the \(H(X_t, z) - 1 \) function for different values of \(X_t \).

Expected price growth over any horizon is clearly monotonic in \(X_t \), but it can be both positive and negative. Since growth rates are autocorrelated, if a negative shock is realized
expected dividend growth rate will be negative for quite some time. Consequently, price of
the asset which pays those dividends will also fall. Figures 7-9 show expected increases in
PD ratio for horizons 1, 3 and 5 years, respectively.

*****Figure 7 about here.*****

*****Figure 8 about here.*****

*****Figure 9 about here.*****

The time-series variation in expected price growth is a lot more pronounced than expected
dividend growth primarily due to the leverage effect created by $\lambda < 1$. Whereas the
post-war expected price growth is relatively stable, the largest increase takes place after
the stock market rebounded in the mid-1930’s. Following the market rebound, the mar-
et expectation of prices soared which dropped again when the stock market crashed in
1937. The World War II years saw more fluctuation in expectation of prices which sta-
bilized at the end of the war. In the post-war years, the variability persists but not as
pronounced as the pre-war years. As is true for expected dividend growth, expected price
growth increases in horizon with substantial uncertainty. The time-series averages of price
growth for horizons 1,3 and 5 years are $\{1.83, 3.60, 5.57\}$. However, the 2.5 and 97.5 quin-
tiles are $\{0.45,-0.37,-0.90\}$ and $\{4.35,11.77,20.20\}$. Clearly, the leverage effect exacerbates
the effect of dividend growth rate shocks in prices. Interestingly, the price growth scales
with the horizon. Dividing the median estimates by the respective horizons, median price
growths become $\{1.83,1.20,1.11\}$. Since price growth clearly occupies the lion’s share of the
long-horizon predictability coefficient, the latter also scales with time - a fact uncovered
empirically by Boudukh, et. al. (2008).
Having shown time-series variation in the predictability coefficient, it is interesting to investigate what kind of unconditional claims we can make from this theory. Long-horizon predictability is handled in the equilibrium asset pricing literature by simulating long-horizons returns from the equilibrium model and running reduced form regressions. For references, see Bansal and Yaron (2004) Table VI and Campbell and Cochrane (1999) Table 5. Monotonically decreasing coefficients (on PD ratio) and increasing R^2’s across horizons are taken as theoretical justification of the classic pattern in the reduced form works of Campbell and Shiller (1988) and Fama and French (1988). I perform the same regressions in Table IV.

******Table IV about here.******

They also show monotonically increasing coefficients (on DP ratio) and R^2’s across the horizons. However, in my case these regressions are misspecified because of the dependence between the coefficient of long-horizon predictability and the dividend yield. Instead of relying on the R^2’s as evidence of long-horizon predictability, I compute pseudo-R^2’s described in Section 1.3.1. These pseudo-R^2’s measure how much of the variance of long-horizon return in my model can be explained by the long-horizon predictability relationship and are shown in Table V.

******Table V about here.******

Here as well, the pseudo-R^2’s increase over the horizon, but with a big caveat. Across the horizons, the variance of the long-horizon predictability relationship increases much faster relative to the unconditional variance of long-horizon returns. In other words, pseudo-R^2’s increase simply because the variance of the predictability relationship increases faster than the variance of total return for each horizon. This is hardly an evidence for long-horizon
predictability. In fact, it shows that over long-horizon the predictability relationship has a lot of uncertainty, which should give us pause in rendering any qualitative judgement on long-horizon predictability. The model brings out a very salient feature of the data. With less than hundred years of annual returns data, there is quite a bit of uncertainty in long-horizon expected returns. Using parameter values that can explain key macroeconomic dynamics, the model produces long-horizon predictability relationships which also embody a large amount of uncertainty. This result is shown in a parsimonious one-factor model, and adding other shocks like stochastic volatility, can only make the predictability relationship more volatile. Much of this uncertainty is due to enforcing the structural link between the endogenously determined regressor (DP ratio) and the predictability coefficient relative to other models where the coefficient is held constant.

5. Dividend Strips

The above long-run risk framework can also be used to study dividend strips, i.e. an asset which pays a dividend stream between times \(t \) and \(T \). Dividend strips can be replicated synthetically using options data, or traded directly in the dividend futures market. In 1990, the Chicago Board Options Exchange (CBOE) introduced Long-Term Equity Anticipation Securities (LEAPS), which are long-term call and put options of maturity up to three years. These option prices can be used in conjunction with put-call parity to construct dividend strips artificially. Secondly, starting around 2000 there is an over-the-counter market to trade dividend derivatives directly. Binsbergen et al. (2013) study the pricing behavior in this dividend futures market.

There is a growing literature that looks at the dynamics of these synthetic dividend
strips. Binsbergen et al. (2012) use LEAPS to compute the implied prices of synthetic dividend strips from put-call parity. They conclude that the equity premia in short-term dividend strips to be higher than longer-term strips. Belo, et al. (2013) seek an explanation based on stochastic capital structure policies which can shift risk from long-horizon to short-horizon dividends. Boguth, et al. (2012) construct dividend strips from highly levered long and short positions in futures contracts, and show that small pricing frictions in the futures market can produce, among many things, a downward sloping term structure of equity premium. Binsbergen, et al. (2013) look at dividend trades directly from dividend futures market and confirm the same downward sloping term-structure for risk premium.

In this section, I consider the implications of the one-factor long-run risk model developed in this paper on the term-structure of equity premia. Since the price of these short-term assets are simply discounted prices of dividends between times t and T, I can compute them as finite time equity

\[P_t^T = \frac{1}{\Lambda_t} \int_t^T E_t [\Lambda_s D_s] \, ds \]

(20)

\[= D_t \int_t^T S(X_t, \tau) \, ds \]

(21)

\[S(X_t, \tau) = e^{P_1(\tau)X_t + P_2(\tau)} \]

(22)

where $\tau = s - t$. Notice, this is simply a finite horizon version of equity valuation in (8) where the upper limit was infinity. $P_1(\tau)$ and $P_2(\tau)$ have the same functional form as before and can be found in the Appendix. Denoting $G^T(X_t) = \int_t^T S(X_t, \tau) \, ds$, the volatility, risk
premium and \(\beta \) of the \(T \)-period short-term equity can be written as

\[
\sigma_t^T(X_t) = \sqrt{\sigma_D^2 + \left(\frac{G_X^T}{G^T} \right)^2 \sigma_x^2} \tag{23}
\]
\[
\mu_t^T(X_t) = -\text{Cov} \left(\frac{d \Lambda}{\Lambda}, \frac{dP_t^T}{P_t^T} \right)
= \frac{G_T^T \lambda (\gamma - 1)}{G^T} \sigma_x^2 \tag{24}
\]
\[
\beta_t^T = \frac{G_T^T/G^T X}{G^T X} \tag{25}
\]

Taking the median parameter values from Panel A of Table I, I compute the risk-premia, volatility and sharpe-ratio of dividend strips and plot them in Figure 10.

All three quantities are monotonically increasing in maturity, and they are lower than those of the aggregate market.\(^2\) In addition, all three quantities are increasing in the growth rate \(X_t \). Unfortunately, upward sloping risk premium is contrary to the evidence found in Binsbergen, et. al. (2012). The reason the risk-premium of dividend strips is upward sloping is because an agent who has preference for early resolution of uncertainty requires a higher discount rate to be exposed to uncertain dividends out in the future. The farther out the dividend payment, the higher the risk-premium. To see this directly, consider an asset at time \(t \) that makes only one dividend payment at time \(T \) of amount \(D_T \). The price of this asset \(p(X_t, \tau = T - t) = E_t \left[\frac{\Delta_t}{\Lambda_t} D_T \right] = D_t S(X_t, \tau) \), as has been shown in the proof of (3). The risk-premium of this \(\tau \) horizon asset is

\[
-Cov \left(\frac{d \Lambda}{\Lambda}, \frac{dp}{p} \right) = \frac{(\gamma - 1) \lambda (1 - \lambda) \sigma_x^2}{\kappa(\kappa + \beta)} (1 - e^{-\kappa \tau})
\]

which is increasing in \(\tau \).

\(^2\)This is easy to see because the market is characterized by \(T \to \infty \) and all of these quantities are monotonically increasing in maturity.
The β of a τ period dividend strip is given by (25) and plotted in Figure 11. Binsbergen, et al. (2012) report β of around 0.5 for dividend strips of one month maturity. The model produces a β of 0.5 for dividend strips with maturity of 10 years, and short horizon assets have β’s far less than 0.1.

Figure 11 about here.

The reason for the upward sloping β is the following. As $T \to 0$, clearly $\beta \to 0$. However, as maturity increases, dividend strips start behaving like traditional market equity for which the β of these assets converges to the market β of one. This increase is monotonic since the numerator of (25) increases monotonically with T as was shown in the plot for risk-premia in Figure 11.

This model joins a list of many leading structural asset pricing models, like Campbell and Cochrane (1999), Bansal and Yaron (2004), and Gabaix (2012) which fail to produce a downward sloping term structure of risk premia and volatilities. A reduced form model of equity returns that can produce a downward sloping term-structure of risk premium was proposed by Lettau and Wachter (2007). Using the correlation structure between expected and unexpected cash-flow shocks and shocks to the price of risk and stochastic discount factor, they can generate an economically meaningful downward sloping risk premium on dividend strips. It is important to realize that the shock structure in the structural models is far simpler relative to Lettau and Wachter (2007). An important next step is to consider alternative dynamics of the underlying shock processes and preferences or technology that will produce the pricing kernel dynamics in Lettau and Wachter (2007).

Using the filtered time-series of growth rates, I also produce the time-series of sharpe-ratios (Figure 12) and β’s (Figure 13) of the dividend strips with maturities of 1 and 5 years.
The sharpes-ratio of the 1-year (5-year) dividend strip is roughly 4.5% (18%), and it has been fairly constant since the Great Depression. In contrast, the sharpe-ratio of the 1-month asset is roughly 10% as reported in Binsbergen, et al. (2012).

The time-series of β’s for the 1 and 5 year assets also show stability since the Great Depression, however they are far below the β of 0.5 as reported in Binsbergen, et al. (2012).

6. Conclusion

This paper shows that if aggregate consumption and dividends share a single slow-moving shock in the dynamics of their growth rate, then that has important ramifications for the PD ratio under recursive preferences. Simple Mertonian mechanics imply elegant nonlinearities in the PD ratio which create stochastic volatility in returns and imply time-varying equity premium. This is a key contribution of this paper since the extant long-run risk literature relies on stochastic volatility to generate time-variation in equity premium. The non-linearity in PD ratio produces two interesting results. First, it creates time-variation in the coefficient of predictability - an unexplored fact in the equilibrium asset pricing literature although empirical works with time-varying coefficients are promising. Secondly, the model also implies that the term structure of equity premia is upward sloping in contradiction to what researchers have uncovered in the data. Overall, the result in long-horizon predictability elicits an important feature of the data. With less than a hundred years of return data, there is quite a bit of noise in computing long-horizon expected returns. The parameters of the model that can match key properties of consumption and dividend
dynamics as well as basic asset pricing quantities imply large time-variation in the coefficient of predictability across all return horizons. This creates a significant uncertainty in long-horizon expected returns rendering inference about long-horizon predictability unreliable. With regards to the term structure of equity premia, an interesting extension would be to properly place the Lettau and Wachter (2007) dynamics within a long-run risk framework and see which structural shocks are responsible for the downward sloping equity premia.

7. Appendix

Proof of Proposition 1: The Bellman equation in (4) can be written as

\[
J_C C'[\mu_C + \lambda X_t] - J_X \kappa X_t + \frac{1}{2} J_{CC} C^2 \sigma_C^2 + \frac{1}{2} J_{XX} \sigma_X^2 + f(C, J) = 0
\]

The continuation utility \(J \) has a solution of the form

\[
(1 - \gamma) J = \exp(u_0 \ln C_t + u_1 X_t + u_2)
\]

Substituting it in and collecting terms, reduces the above equation to a system of ODE’s that can be solved recursively

\[
\begin{align*}
 u_0 &= (1 - \gamma) \\
 u_1 &= \frac{(1 - \gamma) \lambda}{\kappa + \beta} \\
 u_2 &= \frac{(1 - \gamma)}{\beta} \left[\mu_C - \frac{1}{2} \gamma \sigma_C^2 + \frac{\lambda^2 (1 - \gamma) \sigma_X^2}{2(\kappa + \beta)^2} \right]
\end{align*}
\]
Thus, the continuation utility function reduces to \(J(C_t, X_t) = \frac{C^{1-\gamma}}{1-\gamma} \exp(u_1 X_t + u_2) \).

Proof of Proposition 2 The pricing kernel for stochastic differential utility can be written as

\[
\frac{d\Lambda}{\Lambda} = \frac{df_C}{f_C} + f_J dt
\]

Using the above utility function, let \(g = f_C = \frac{\beta(1-\gamma)}{1-\gamma} = \beta C^{-\gamma} \exp(u_1 X_t + u_2) \) and \(f_J = -\beta(1 + u_1 X + u_2) \). Use Ito’s Lemma on \(g \) and (2) and (3) one can rewrite the pricing kernel as

\[
\frac{d\Lambda}{\Lambda} = -r_t^f dt - \gamma \sigma_C dW_C - \frac{\lambda(\gamma - 1)}{\kappa + \beta} \sigma_x dW_X
\]

\[r_t^f = \lambda X_t + \mu_C - \gamma \sigma_C^2 + \beta \]

Proof of Proposition 3 The stock price is

\[
P_t = \frac{1}{\Lambda_t} E_t \int_t^\infty \Lambda_s D_s ds
\]

\[= \frac{1}{\Lambda_t} \int_t^\infty E_t \Lambda_s D_s ds
\]

Define \(h_t = \Lambda_t D_t \). Thus

\[
\frac{dh}{h} = [(1 - \lambda) X_t + \mu_D - \mu_C + \gamma \sigma_C^2 - \beta] dt - \gamma \sigma_C dW_C - \frac{\lambda(\gamma - 1)\sigma_x}{\kappa + \beta} dW_x + \sigma_D dW_D
\]
Applying Feynman-Kac, \(E_t [\Lambda_x D_s] = f(\Lambda_t D_t, X_t, s - t) = f(h_t, X_t, \tau = s - t) \). Applying Ito’s Lemma to \(f \) and the martingale restriction, I get the following PDE

\[
f_{h}h[(1-\lambda)X_t + \mu_D - \mu_C + \gamma \sigma_C^2 - \beta] - f_{XX}X_t + \frac{1}{2} (f_{hh}dh^2 + f_{XX} \sigma_x^2) - f_x = 0
\]

Guess a solution of the form \(f = h_t \exp(P_1(\tau)X_t + P_2(\tau)) \). Plug the solution in the above PDE and after collecting the terms in the constant and \(X_t \), I get a system of ODE’s of the form

\[
\begin{align*}
P'_1(\tau) &= (1-\lambda) - \kappa P_1(\tau) \\
P'_2(\tau) &= \mu_D - \mu_C + \gamma \sigma_C^2 - \beta - P_1(\tau) \sigma_x^2 \left[\frac{\lambda(\gamma - 1)}{\kappa + \beta} - \frac{1}{2} P_1(\tau) \right]
\end{align*}
\]

with initial conditions \(P_1(0) = P_2(0) = 0 \). The solution of these ODEs are

\[
\begin{align*}
P_1(\tau) &= \frac{1 - \lambda}{\kappa} (1 - e^{-\kappa\tau}) \\
P_2(\tau) &= a\tau + b(e^{-\kappa\tau} - 1) + c(1 - e^{-2\kappa\tau}) \\
a &= \mu_D - \mu_C + \gamma \sigma_C^2 - \beta + \frac{\sigma_C^2(1 - \lambda)}{2\kappa} \left[\frac{1 - \lambda}{\kappa} - 2 \frac{\lambda(\gamma - 1)}{\kappa + \beta} \right] \\
b &= \frac{1 - \lambda}{\kappa} \left[\frac{\sigma_C^2}{\kappa} \left[\frac{1 - \lambda}{\kappa} - \frac{\lambda(\gamma - 1)}{\kappa + \beta} \right] \right] \\
c &= \frac{\sigma_C^2(1 - \lambda)^2}{4\kappa^3}
\end{align*}
\]

Thus, \(E_t [\Lambda_x D_s] = \Lambda_t D_t \exp(P_1(\tau)X_t + P_2(\tau)) \) which implies

\[
P_t = D_t G(X_t)
\]
where \(G(X_t) = \int_t^\infty \exp(P_1(t)X_t + P_2(t))ds \). The transversality condition holds for \(a < 0 \).

Cumulative excess return \(dR_t = \frac{D_r dt + dP_r dt}{P_t} \) over a small interval \(dt \) is

\[
dR_t = \mu^R_t dt + \sigma_D dW_D + \frac{G_X}{G} \sigma_x dW_x
\]

where \(\mu^R_t = -Cov\left(\frac{dX_t}{X_t}, dP_t \right) = \frac{G_X}{G} \sigma_x \frac{\lambda(\gamma - 1)}{\kappa + \gamma} \sigma_x^2 \).

Proof of Lemma 1: Given dividend and growth rate dynamics in (1) and (3), we can express the PDE satisfying \(E_t[D_r] \) using Feynman-Kac. Let \(E_t[D_r] = f(D_t, X_t, s) \), where \(s = r - t \). Then \(f \) satisfies

\[
f_D D_t[\mu_D + X_t] - \kappa X_t f_X + \frac{\sigma^2_D}{2} f_{DD} + \frac{\sigma^2_x}{2} f_{XX} = f_s
\]

Propose \(f = D_t g(X_t, s) \) which reduces the above PDE to

\[
\mu_D + X_t - \frac{g_X}{g} \kappa X_t + \frac{\sigma^2_X}{2} \frac{g_{XX}}{g} = \frac{g_s}{g}
\]

It is straightforward to check that the solution to the above PDE is \(g(X_t, s) = \exp[A(s)X_t + B(s)] \) where

\[
A(s; \kappa) = \frac{1 - e^{-\kappa s}}{\kappa}
\]

\[
B(s) = \mu_D s + \sigma^2_x \frac{s - 2A(s; \kappa) + A(s; 2\kappa)}{2\kappa^2}
\]

38
Proof of Proposition 4: The expression for \(z = T - t \)-horizon total return is

\[
\bar{R}_T = \frac{P_T + \int_t^T D_r dr}{P_t}
\]

To compute the expression for long run predictability, first let us write down the SDE that \(G \) satisfies:

\[
dG = G dt + G dW_x
\]

where

\[
\begin{align*}
\mu_G &= \frac{\sigma^2}{2} \int_t^\infty \exp(\cdot) P^2_1(\tau) ds - \kappa X_t \int_t^\infty \exp(\cdot) P_1(\tau) ds \\
& \quad - \int_t^\infty \exp(\cdot) (P_1'(\tau) X_t + P_2'(\tau)) ds - 1 \\
\sigma_G &= \sigma_x \int_t^\infty \exp(\cdot) P_1(\tau) d\tau
\end{align*}
\]

Furthermore, since \(P_t = D_t G(X_t) \), then

\[
\frac{dP}{P} = \left[\mu_D + X_t + \frac{\mu_G}{G} \right] dt + \sigma_D dW_D + \frac{\sigma_G}{G} dW_x
\]

\[
= \mu_P(X_t) dt + \sigma_P(X_t) \cdot dW
\]

(26)

where \(\mu_P(X_t) = \left[\mu_D + X_t + \frac{\mu_G}{G} \right] \) and \(\sigma_P(X_t) = \left[\sigma_D \quad \frac{\sigma_G}{G} \right] \) and \(dW = [dW_D \quad dW_x] \). In integral form, that can be expressed as

\[
P_T = P_t \exp \left[\int_t^T \left[\mu_P(X_s) - \frac{1}{2} \sigma_P(X_s) \sigma_P(X_s)' \right] ds + \int_t^T \sigma_P(X_s) \cdot dW_s \right]
\]

(27)

The dividend process in (1) can be written as \(D_r = D_t \exp \left[\int_t^r [X_s - \frac{1}{2} \sigma_D^2] ds + \int_t^r \sigma_D dW_D \right] \).
Thus, z-horizon return can be written as

$$R_T = \left[G(X_t) \exp \left[\int_t^T \left[\mu_P(X_s) - \frac{1}{2} \sigma_P(X_s) \sigma_P(X_s) \right] ds + \int_t^T \sigma_P(X_s) \cdot dW_s \right] + \int_t^T \exp \left[\int_s^T \left[X_s - \sigma_D^2 \right] ds + \int_s^T \sigma_D dW_D \right] ds \right] \frac{dP}{P}$$ \hspace{1cm} (28)

Fortunately, the conditional expectation of \bar{R}_T has an easier form. First, I need to compute $E_t[P_T] = f(P_t, X_t, z = T - t)$. Applying Feynman-Kac to f and enforcing the martingale restriction produces the PDE,

$$f_{PP} \left[\mu_D + X_t + \frac{\mu_G}{G} \right] - f_x \kappa X_t + \frac{\sigma^2}{2} f_{XX} + \frac{P^2}{2} f_{PP} \left(\frac{\sigma_D^2}{G^2} \right) - f_z + P f_{PX} \frac{\sigma_G \sigma_x}{G} = 0$$

Notice that the above PDE is homogeneous of degree 1 in P_t. Thus, I can propose a solution of the form $f = P_t H(X, z)$ which reduces it to

$$\left[\mu_D + X_t + \frac{\mu_G}{G} \right] - \frac{H_X}{H} \kappa X_t + \frac{\sigma^2}{2} \frac{H_{XX}}{H} + \frac{H_X}{H} \frac{\sigma_G \sigma_x}{G} = \frac{H_z}{H}$$

with boundary condition $H(X_t, 0) = 1$. Thus $E_t[P_T] = P_t H(X_t, z)$. Using (27) and the law of iterated expectations, I can write $E_t[P_T] = P_t E_t \left[\exp \left(\int_t^T \mu_P(X_s) ds \right) \right]$ which implies $H(X_t, z) = E_t \left[\exp \left(\int_t^T \mu_P(X_s) ds \right) \right]$ which satisfies the boundary condition that $H(X_t, 0) = 1$. Now, using the result of Lemma 1, conditional expectation of cumulative
return over any horizon from T to t can be written as

$$E_t[R_T] = \frac{E_t[P_T + \int_t^T D_r dr]}{P_t}$$

$$= \frac{E_t[P_T] + \int_t^T E_t[D_r] dr}{P_t}$$

$$= \left[G(X_t)H(X_t, z) + \int_t^T [\exp(A(r-t)X_t + B(r-t))] dr \right] \frac{D_t}{P_t}$$

$$= \alpha(X_t; T, t) \frac{D_t}{P_t}$$

$H(X_t; T, t) = E_t \left[\exp \left(\int_t^T \mu P(X_s) ds \right) \right]$. Thus, the conditional mean of cumulative return depends on the whole path of the growth rates X_s from t to T which can be generated given an initial X_t.

Price-Dividend Ratio for $\psi \neq 1$: The above analysis holds for $\psi = 1$. Here I show that for $\psi \neq 1$, the price-dividend ratio is isomorphic to the $\psi = 1$ case. Hence, the predictability results that I derived earlier would hold for $\psi \neq 1$ as well. More specifically, I show in this section that the positive relationship between growth rates and the price-dividend ratio - the centerpiece of our above analysis, holds here for $\psi > 1$.

The normalized aggregator for the general ψ case is given by

$$f(C, J) = \beta(1 - \gamma)J \left[C^{\frac{1}{\psi} - \frac{1}{\psi}} ((1 - \gamma)J)^{\frac{1}{1 - \gamma} - 1} \right]$$

The Bellman equation still takes the form

$$J_C C[\mu_C + \lambda X_t] - J_X \kappa X_t + \frac{1}{2} J_{CC} C^2 \sigma_C^2 + \frac{1}{2} J_{XX} \sigma_X^2 + f(C, J) = 0$$

41
where \(f(C, J) \) now takes the general form. Guess a solution of the form \(J = \frac{C^{1-\gamma}}{1-\gamma} g(X_t) \) and plug it into the Bellman equation. It reduces to

\[
\frac{\beta}{1 - \frac{1}{\psi}} \left[g^{\frac{1}{1-\gamma}} - 1 \right] + \mu_C + \lambda X_t - \frac{\gamma - \frac{1}{\psi} g_X}{1 - \gamma} X_t + \frac{\sigma_X^2}{2(1 - \gamma)} \frac{g_{XX}}{g} = 0 \quad (29)
\]

The pricing kernel takes the form

\[
\frac{d\Lambda}{\Lambda} = -r_t^f dt - \gamma \sigma_C dW_C - \frac{\gamma - \frac{1}{\psi} g_X}{1 - \gamma} \sigma_X dW_X \\

r_t^f = \beta + \frac{\mu_C}{\psi} - \frac{\gamma - \frac{1}{\psi}}{2} \frac{\sigma_C^2}{g} - \frac{\sigma_X^2}{2(1 - \gamma)} \left(\frac{g_X}{g} \right)^2 + \frac{\lambda}{\psi} X_t
\]

In order to price assets, I need a solution of the function \(g(\cdot) \) which should satisfy the functional relationship given by (29).

First, I will solve for the price of discounted future consumption, and then look for a solution of \(g(\cdot) \) around the unconditional mean of the consumption-wealth ratio. The discounted price of future consumption is given by

\[
W_t = \frac{1}{\Lambda_t} \int_t^\infty \Lambda_s C_s ds
\]

Applying Fubini’s Theorem and taking standard limits (refer to Cochrane(2005) Pages 27-29), the consumption wealth ratio is given by the relationship

\[
\frac{C_t}{W_t} dt = r_t^f dt - E_t \left[\frac{dW}{W} \right] - E_t \left[\frac{d\Lambda}{\Lambda} \frac{dW}{W} \right] \quad (30)
\]
Guess $W_t = C_t \frac{g(X_t)}{\beta}^{\frac{1 - \psi}{\psi}}$. Applying Ito’s Lemma

$$\frac{dW}{W} = \left[\mu_C + \lambda X_t - \frac{1 - \frac{\psi}{\beta}}{1 - \gamma} g X_t + \frac{1 - \frac{\psi}{\beta}}{1 - \gamma} \frac{g_{XX}}{g} X_t + \frac{1 - \frac{\psi}{\beta}}{2(1 - \gamma)} \left(g X_t \right)^2 \right] dt + \sigma_C dW_C + \frac{1 - \frac{\psi}{\beta}}{1 - \gamma} g X_t dW_X$$

Plugging in wealth dynamics, risk-free rate and the pricing kernel into (30), I get

$$\frac{C_t}{W_t} = \beta + \left(\frac{1}{\psi} - 1 \right) \left(\mu_C + \lambda X_t - \frac{\gamma \sigma_C^2}{2} - \frac{g X_t \kappa}{g} X_t + \frac{\sigma_X^2}{2} \frac{g_{XX}}{g} \right)$$

$$= \beta + \left(\frac{1}{\psi} - 1 \right) \left(1 - \frac{1}{g^{\frac{1}{1 - \gamma}}} \right) \frac{\beta}{1 - \frac{1}{\psi}}$$

$$= \beta g^{\frac{1}{1 - \gamma}}$$

The second line follows from the first line due to the Bellman equation restriction in (29). This confirms that my choice of consumption-wealth ratio is right. In fact, as $\psi \to 1$, the consumption-wealth ratio approaches β which is a familiar result for unit elasticity of intertemporal substitution.

Now, let $\mu = E \left[\ln \frac{C}{W} \right]$. A first-order approximation of the consumption to wealth ratio around μ produces

$$\beta g^{\frac{1}{1 - \gamma}} = \frac{C_t}{W_t} \approx e^\mu (1 - \mu) + e^\mu \left(\ln \beta + \frac{\psi}{\psi} - 1 \right) \ln g$$

Substituting the approximation above into (29), the original Bellman equation reduces to

$$\frac{1}{1 - \frac{\psi}{\beta}} \left[e^\mu (1 - \mu) + e^\mu \left(\ln \beta + \frac{\psi}{\psi} - 1 \right) \ln g \right] - \beta + \mu_C + \lambda X_t - \frac{\gamma \sigma_C^2}{2} - \frac{g X_t \kappa}{g} X_t + \frac{\sigma_X^2}{2(1 - \gamma)} \frac{g_{XX}}{g} = 0$$

This has the familiar exponentially affine solution $g(X_t) = e^{u_1 X_t + u_2}$, where u_1 and u_2 are
given by

\[u_1 = \frac{\lambda(1 - \gamma)}{\kappa + e^\mu} \]
\[u_2 = \frac{1 - \gamma}{1 - \frac{1}{\psi}} [1 - \mu + \ln \beta - e^{-\mu} \beta] + \frac{1 - \gamma}{e^\mu} \left[\mu_C - \frac{\gamma \sigma_C^2}{2} + \frac{\sigma^2 \lambda^2 (1 - \gamma)}{2(\kappa + e^\mu)^2} \right] \]

Now, the pricing kernel and risk-free takes the form of

\[\frac{d\Lambda}{\Lambda} = -r^f \ dt - \gamma \sigma_C dW_C - \frac{\left(\gamma - \frac{1}{\psi} \right) \lambda \sigma_X dW_X \]
\[r^f = \beta + \frac{\mu_C}{\psi} - \frac{\gamma (1 + \frac{1}{\psi}) \sigma_C^2}{2} - \frac{\left(\gamma - \frac{1}{\psi} \right) \left(1 - \frac{1}{\psi} \right) \sigma^2 \lambda^2}{2 (\kappa + e^\mu)^2} + \frac{\lambda}{\psi} X_t \]
\[= A + BX_t \]

Notice that as \(\psi \to 1 \), the consumption to wealth ratio converges to \(\beta \), i.e. \(\mu \to \ln \beta \) as \(\psi \to 1 \). Plugging in that limit makes the function \(g \), risk-free rate and risk-prices converge to their \(\psi = 1 \) limit derived in the previous section. Thus, this method can also be considered to be an approximate solution around \(\psi = 1 \).

At this point, I apply the same methodology as in the previous section to derive the price-dividend ratio which takes the form

\[G(X_t) = \int_t^\infty \exp(P_1(\tau)X_t + P_2(\tau)ds, \]

44
where $\tau = s - t$. $P_1(\tau)$ and $P_2(\tau)$ are given in closed form as

\[
P_1(\tau) = \frac{1 - \frac{\lambda}{\psi}}{\kappa} (1 - e^{-\kappa \tau})
\]
\[
P_2(\tau) = a \tau + b \left(e^{-\kappa \tau} - 1 \right) + c \left(1 - e^{-2\kappa \tau} \right)
\]

\[
a = \mu_D - A + \frac{\sigma_X^2}{2\kappa} \left(1 - \frac{\lambda}{\psi} \right) \left[\frac{1 - \frac{\lambda}{\psi}}{\kappa} - 2 \frac{\left(\gamma - \frac{1}{\psi} \right) \lambda}{\kappa + e^\mu} \right]
\]
\[
b = \frac{\sigma_X^2}{\kappa^2} \left(1 - \frac{\lambda}{\psi} \right) \left[\frac{1 - \frac{\lambda}{\psi}}{\kappa} - \frac{\left(\gamma - \frac{1}{\psi} \right) \lambda}{\kappa + e^\mu} \right]
\]
\[
c = \frac{1}{\kappa} \left(\frac{\sigma_X \left(1 - \frac{\lambda}{\psi} \right)}{2\kappa} \right)^2
\]

As $\psi \to 1$, P_1 and P_2 converge to the solutions derived in the earlier section. The risk-premia in this case is given by $\mu_t^R = \frac{\sigma_X}{G} \frac{\lambda \left(\gamma - \frac{1}{\psi} \right)}{\kappa + e^\mu} \sigma_X^2$.

First of all, notice that for expected excess return to be positive, we need early resolution of uncertainty, i.e $\gamma > \frac{1}{\psi}$. The central predictability result derived in the earlier section depended on $\frac{G_X}{G} > 0$. For $\psi \neq 1$, this quantity will be positive as long as $1 - \frac{\lambda}{\psi} > 0$. We have estimated λ to be far less than one, and thus if $\psi > 1$, that ensures $\frac{G_X}{G} > 0$ for $\psi \neq 1$. Risk-premia was pro-cyclical in the previous section as long as $\gamma > 1$. In this case, risk-premia is pro-cyclical as long as $\gamma > \frac{1}{\psi}$ which holds if γ and ψ are both greater than one.

Thus, the predictability relationship derived in closed form for $\psi = 1$ in the previous section will also hold in the $\psi > 1$ setting.
References

47

Figure 1: Time-Series Plot of Aggregate Dividend Growth against Aggregate Consumption Growth.
Figure 2: The top panel plots expected excess return (9) across different growth rates, X_t. The middle panel plots G_X and the bottom panel plots the dividend price ratio $\frac{1}{G}$. The parameters used are the median parameters which are summarized in Panel A of Table I.
Figure 3: Time-series of expected future dividends over a horizon of 1 year. Taking 2.5, 50 and 97.5th quintile of parameters and states X_t obtained from the MCMC, I plot expected future dividends in one year using Lemma 1.3.1.
Figure 4: Time-series of expected future dividends over a horizon of 3 years. Taking 2.5, 50 and 97.5th quintile of parameters and states X_t obtained from the MCMC, I plot expected future dividends in three years using Lemma 1.3.1.
Figure 5: Time-series of expected future dividends over a horizon of 5 years. Taking 2.5, 50 and 97.5th quintile of parameters and states X_t obtained from the MCMC, I plot expected future dividends in five years using Lemma 1.3.1.
Figure 6: The function $H(X_t, z) - 1$ for $z = 1, 3$ for different X's taken from the unconditional distribution of $X \sim N \left(0, \frac{\sigma^2}{2\pi} \right)$ using the median parameter values in Table IA.
Figure 7: Time-series of price-growth over a horizon of 1 year. Taking 2.5, 50 and 97.5th quintile of parameters and states X_t obtained from the MCMC, I plot expected price growth in one year using $H(X_t, 1) = E_t \left[\exp \left(\int_t^1 \mu_P(X_s) ds \right) \right]$. The expression for $\mu_P(X_s)$ is given in the appendix.
Figure 8: Time-series of price-growth over a horizon of 3 years. Taking 2.5, 50 and 97.5th quintile of parameters and states X_t obtained from the MCMC, I plot expected price growth in three years using $H(X_t, 3) = E_t \left[\exp \left(\int_t^3 \mu_P(X_s) ds \right) \right]$. The expression for $\mu_P(X_s)$ is given in the appendix.
Figure 9: Time-series of price-growth over a horizon of 5 years. Taking 2.5, 50 and 97.5th quintile of parameters and states X_t obtained from the MCMC, I plot expected price growth in five years using $H(X_t, 5) = E_t \left[\exp \left(\int_t^5 \mu_P(X_s) ds \right) \right]$. The expression for $\mu_P(X_s)$ is given in the appendix.
Figure 10: Term structures of risk-premia, volatility and Sharpe ratio for the dividend strips implied by the model. Low (High) values of X_t are given by the -2 (+2) standard deviation of the unconditional distribution of the growth rates $X \sim N \left(0, \frac{\sigma^2}{2\Delta} \right)$. The parameters used are the median values of the posterior distributions of the parameters.
Figure 11: Term structure of β for the dividend strips implied by the model. Low (High) values of X_t are given by the -2 (+2) standard deviation of the unconditional distribution of the growth rates $X \sim N \left(0, \frac{\sigma^2}{2\pi}\right)$. The parameters used are the median values of the posterior distributions of the parameters.
Figure 12: Time-series of Sharpe ratios for the 1-year and 5-year dividend strips. The parameter values used are the median values of the posterior distributions of the parameters and latent states X_t.
Figure 13: Time-series of β for the 1-year and 5-year dividend strips. The parameter values used are the median values of the posterior distributions of the parameters and latent states X_t.
Table IA: Panel A represents the parameter estimates from estimating the state-space given in (18)-(19) via a Gibbs sampler. The posterior distribution is presented in the form of 2.5-th to the 97.5-th quantiles of the simulated posterior draws from the Gibbs sampler. Panel B reports the posterior distribution of key moments of real consumption and dividend growth implied by the model (18)-(19). The posterior distribution is presented in the form of 2.5-th to the 97.5-th quantiles of the moments computed from the parameter estimates in Panel A. The data used for this sample is annual aggregate dividend from CRSP value-weighted index and BLS consumption(non-durables and services) growth in the US from 1929-2010. All nominal quantities are converted to real using CPI.

<table>
<thead>
<tr>
<th>Panel A</th>
<th>0.025</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.975</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_D</td>
<td>0.0864</td>
<td>0.0952</td>
<td>0.1004</td>
<td>0.1060</td>
<td>0.1182</td>
</tr>
<tr>
<td>σ_C</td>
<td>0.0174</td>
<td>0.0191</td>
<td>0.0201</td>
<td>0.0212</td>
<td>0.0235</td>
</tr>
<tr>
<td>σ_x</td>
<td>0.0234</td>
<td>0.0258</td>
<td>0.0271</td>
<td>0.0286</td>
<td>0.0319</td>
</tr>
<tr>
<td>κ</td>
<td>0.0989</td>
<td>0.1026</td>
<td>0.1044</td>
<td>0.1063</td>
<td>0.1101</td>
</tr>
<tr>
<td>λ</td>
<td>0.3033</td>
<td>0.3304</td>
<td>0.3440</td>
<td>0.3572</td>
<td>0.3833</td>
</tr>
<tr>
<td>μ_C</td>
<td>0.0108</td>
<td>0.0164</td>
<td>0.0195</td>
<td>0.0228</td>
<td>0.0293</td>
</tr>
<tr>
<td>μ_D</td>
<td>-0.0004</td>
<td>0.0139</td>
<td>0.0212</td>
<td>0.0284</td>
<td>0.0427</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Data</th>
<th>0.025</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.975</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of dividend growth</td>
<td>0.0231</td>
<td>-0.0004</td>
<td>0.0139</td>
<td>0.0212</td>
<td>0.0284</td>
<td>0.0427</td>
</tr>
<tr>
<td>Mean of consumption growth</td>
<td>0.0190</td>
<td>0.0108</td>
<td>0.0164</td>
<td>0.0195</td>
<td>0.0228</td>
<td>0.0293</td>
</tr>
<tr>
<td>Vol. of dividend growth</td>
<td>0.1455</td>
<td>0.1051</td>
<td>0.1133</td>
<td>0.1179</td>
<td>0.1229</td>
<td>0.1338</td>
</tr>
<tr>
<td>Vol of consumption growth</td>
<td>0.0295</td>
<td>0.0259</td>
<td>0.0280</td>
<td>0.0292</td>
<td>0.0305</td>
<td>0.0331</td>
</tr>
<tr>
<td>AC(1) of dividend growth</td>
<td>0.2127</td>
<td>0.1719</td>
<td>0.2152</td>
<td>0.2402</td>
<td>0.2684</td>
<td>0.3263</td>
</tr>
<tr>
<td>AC(1) of consumption growth</td>
<td>0.4519</td>
<td>0.3580</td>
<td>0.4307</td>
<td>0.4690</td>
<td>0.5069</td>
<td>0.5764</td>
</tr>
<tr>
<td>Corr of dividend and consumption growth</td>
<td>0.5819</td>
<td>0.2989</td>
<td>0.3437</td>
<td>0.3729</td>
<td>0.4053</td>
<td>0.4690</td>
</tr>
</tbody>
</table>

62
Table II: This Table documents the posterior distribution of market prices of risk given in (6). Given the full parameter distribution summarized in Table I, I compute the posterior distribution of transient volatility risk \(-\gamma \sigma_C\) and long-run risk (LR risk) \(-\frac{(\gamma-1)\lambda \sigma_\epsilon}{\kappa + \beta}\). The 2.5 to 97.5-th quantile of the posterior distribution of the two risks is presented below. Furthermore, I use \(\beta = 0.001\) and \(\gamma = 7.5\).

<table>
<thead>
<tr>
<th></th>
<th>0.025</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.975</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient risk</td>
<td>0.1305</td>
<td>0.1432</td>
<td>0.1508</td>
<td>0.1590</td>
<td>0.1763</td>
</tr>
<tr>
<td>LR risk</td>
<td>0.4718</td>
<td>0.5390</td>
<td>0.5774</td>
<td>0.6186</td>
<td>0.7110</td>
</tr>
</tbody>
</table>
Table III: Below I present quantiles from the posterior distribution of endogenous quantities with $\beta = 0.001$ and $\gamma = 7.5$. Then using the full parameter distributions obtained through the Gibbs sampler, I compute the posterior distribution of instantaneous expected excess return, instantaneous volatility of cumulative return, the Sharpe-ratio, the dividend-price ratio, the risk-free rate and the volatility of the risk-free rate. For all of the following quantities, I integrate out the initial state X_t by using its stationary distribution $X_t \sim N \left(0, \frac{\sigma^2}{\gamma^2} \right)$. The corresponding sample statistics are obtained from CRSP Value-Weighted Market Index and the 90-day T-Bill Rate also obtained from CRSP. All nominal quantities are deflated by the CPI. Empirical estimates are obtained with GMM, and standard errors are Newey-West corrected with five lags. The data interval is annual from 1929-2010.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>0.025</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.975</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^R</td>
<td>0.0702(0.0177)</td>
<td>0.0478</td>
<td>0.0564</td>
<td>0.0614</td>
<td>0.0670</td>
<td>0.0791</td>
</tr>
<tr>
<td>σ^R</td>
<td>0.2011(0.0183)</td>
<td>0.1321</td>
<td>0.1417</td>
<td>0.1469</td>
<td>0.1524</td>
<td>0.1638</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>0.3512(0.0211)</td>
<td>0.3335</td>
<td>0.3872</td>
<td>0.4171</td>
<td>0.4513</td>
<td>0.5247</td>
</tr>
<tr>
<td>$\frac{D}{\sigma}$</td>
<td>0.0392(0.0035)</td>
<td>0.0316</td>
<td>0.0456</td>
<td>0.0534</td>
<td>0.0606</td>
<td>0.0760</td>
</tr>
<tr>
<td>$\text{Vol} \left(\frac{dG}{dt} \right)$</td>
<td>0.1536(0.0211)</td>
<td>0.0914</td>
<td>0.1009</td>
<td>0.1064</td>
<td>0.1120</td>
<td>0.1237</td>
</tr>
<tr>
<td>r^f</td>
<td>0.0104(0.0078)</td>
<td>0.0083</td>
<td>0.0143</td>
<td>0.0175</td>
<td>0.0207</td>
<td>0.0267</td>
</tr>
<tr>
<td>$\sigma(r^f)$</td>
<td>0.0403(0.0059)</td>
<td>0.0168</td>
<td>0.0192</td>
<td>0.0205</td>
<td>0.0219</td>
<td>0.0251</td>
</tr>
</tbody>
</table>
Table IV: This table shows results of predictability regression $R_{t+z} = a + b\frac{D_t}{P_t} + \epsilon$ where $\epsilon \sim N(0,1)$ and $z = 1, 3, 5$ years. The data for this regression is generated the following way. First, I discretize the state equation (3) and simulate the growth rates X_t in monthly frequency for 720 months (roughly the size of post-war sample). Then, I compute monthly dividend growth by discretizing equation (1) and price-dividend ratio from equation (8). Using the relationship $R_{t+1} = \frac{D_{t+1}}{D_t} \frac{P_t}{P_{t+1}}$, I create monthly returns. From monthly returns, I compound to create 1-5 year returns and run the above predictability regressions. This is repeated 10,000 times. The parameters for the simulation are the median parameters taken from the estimation in Table I. Below, I present the median and 2.5-97.5 quantiles of the point estimate of the coefficient on dividend yield b, T-statistics of b and and R^2 from 10,000 predictability regressions from 60-year simulated data.

<table>
<thead>
<tr>
<th>z (years)</th>
<th>median 0.025 quantile</th>
<th>0.975 quantile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b 0.6279</td>
<td>0.3192</td>
</tr>
<tr>
<td></td>
<td>T-stat 3.6120</td>
<td>1.4713</td>
</tr>
<tr>
<td></td>
<td>R^2 0.1863</td>
<td>0.0366</td>
</tr>
<tr>
<td>3</td>
<td>b 6.6225</td>
<td>2.7519</td>
</tr>
<tr>
<td></td>
<td>T-stat 5.2306</td>
<td>1.7531</td>
</tr>
<tr>
<td></td>
<td>R^2 0.3322</td>
<td>0.0529</td>
</tr>
<tr>
<td>5</td>
<td>b 38.7433</td>
<td>11.1834</td>
</tr>
<tr>
<td></td>
<td>T-stat 5.3320</td>
<td>1.3194</td>
</tr>
<tr>
<td></td>
<td>R^2 0.3491</td>
<td>0.0322</td>
</tr>
</tbody>
</table>
Table V: This table shows the pseudo-R^2's of the predictability relationship using (16) and (16). I restrict myself to the 0.25, 0.5 and 0.75-th quantiles of parameters given in Table I. Furthermore, I use $\beta = 0.001$ and $\gamma = 7.5$ and simulate using monthly increment by setting $dt = 1/12$.

The unconditional variance of \bar{R}_T in (16) is computed by using the total variance formula - $\text{Var}(\bar{R}_T) = \text{Var}_X(E(\bar{R}_T|X_t)) + E_X(\text{Var}(\bar{R}_T|X_t))$. Starting at many different X_t's drawn from its unconditional distribution, I simulate out \bar{R}_T and form the inner conditional expectation and variance for each starting point. Then I perform the outer expectation and variance to compute the unconditional mean. In all, 250,000 paths are used to compute each $\text{Var}(\bar{R}_T)$. I repeat the same exercise to compute the variance of the conditional mean - $[E_t[\bar{R}_T]]$ in (16). To form pseudo-R^2, I simply divide the variance of $E_t[\bar{R}_T]$ by the variance of \bar{R}_T.

<table>
<thead>
<tr>
<th>z(years)</th>
<th>Quantiles</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{Var}(R_T)$</td>
<td>0.0192</td>
<td>0.0208</td>
<td>0.0224</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}[E_t[R_T]]$</td>
<td>0.0018</td>
<td>0.0021</td>
<td>0.0026</td>
</tr>
<tr>
<td></td>
<td>$\text{pseudo} - R^2$</td>
<td>0.0926</td>
<td>0.1022</td>
<td>0.1139</td>
</tr>
<tr>
<td>3</td>
<td>$\text{Var}(R_T)$</td>
<td>0.0671</td>
<td>0.0859</td>
<td>0.0894</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}[E_t[R_T]]$</td>
<td>0.0212</td>
<td>0.0285</td>
<td>0.0378</td>
</tr>
<tr>
<td></td>
<td>$\text{pseudo} - R^2$</td>
<td>0.3164</td>
<td>0.3317</td>
<td>0.4234</td>
</tr>
<tr>
<td>5</td>
<td>$\text{Var}(R_T)$</td>
<td>0.1568</td>
<td>0.1867</td>
<td>0.2283</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}[E_t[R_T]]$</td>
<td>0.0731</td>
<td>0.1171</td>
<td>0.2062</td>
</tr>
<tr>
<td></td>
<td>$\text{pseudo} - R^2$</td>
<td>0.4663</td>
<td>0.6272</td>
<td>0.9031</td>
</tr>
</tbody>
</table>