Banks, Liquidity Management and Monetary Policy

Javier Bianchi

Saki Bigio

Wisconsin & NBER

Columbia GSB

Introduction

- Last 5 years, Central Banks facing unprecedented challenges
 - Equity losses
 - Collapse in interbank lending
 - Increased loan spreads, weak lending
- Monetary policy has been changing in response...
- Center of debate: banks' reaction to monetary stimuli
 - Why are banks holding on to so many liquid reserves and lending so little?

Our View ____

- Want: model of banks' liquidity management in monetary policy transmission
- Why: monetary policy implemented through the banking system
 - Understand banks' reactions to stimuli
 - Understand effects under special conditions
- No coincidence that debates occur post
 - Interbank-market freeze
 - Bank equity losses Bank Equity

Model Overview _____

- 1. Liquidity Management Trade-Off
 - (+) Profit on Loans
 - Spread between loans and deposits
 - (-) Illiquidity Risk
 - After deposits transferred, bank may be short of reserves
- 2. Monetary Policy
 - Illiquidity Risk: precautionary holdings of central bank reserves
 - Policy Instruments: operate through this tradeoff
- 3. Tractability

Application

- Why are banks stockpiling reserves instead of lending?
- Four Hypothesis
 - 1. Equity Losses
 - 2. Interbank Uncertainty
 - 3. Capital Requirements
 - 4. Weak Loan Demand
- Approach
 - Illustrate effects of shocks and contrast with data patterns (today)
 - Estimate shocks (in progress)
 - Evaluate relative importance of shocks and policy (in progress)

Literature Review

- Call for studying banks in transmission of MP in Macro:
 - Woodford (2010, JEP), Mishkin (2012, JEP), Greenwood & Stiglitz (2003),
- Olosest Papers
 - Brunnermeier & Sannikov (2012), Williamson (2012), Corbae-D'Erasmo (2012a,b).
- Other papers studying implementation of monetary policy
 - Afonso & Lagos (2012a,b),
 - Gertler & Karadi(2009), Gertler & Kiyotaki (2011,2012), Curdia & Woodford(2009), Stein(2012)
- Empirical Work
 - $\bullet~$ Kashyap & Stein (1998), Krishnamurthy & Vissing-Jorgenson (JPE 2012a, 2012b),
- Influential Work
 - Banking: Diamond & Dybvig (1983), Allen & Gale (1998), Holmstrom & Tirole (1997,1998)
 - Reserve Management: Frost (JPE,1971), Bolton et al. (2012), Saunders et al. (2011)
 - Payments: Freeman(AER,1996), Cavalcanti et al. (1998)
 - Monetary Economics: CIA, Money-Search, Kiyotaki and Moore (2012)
 - OMO: Wallace (1983), Sargent and Wallace (1983)

Model

Model - Environment _

- Time: t=1,2,3,...
 - Two stages: s=l,b
 - Lending stage (l) and balancing stage (b)
- Continuum of Heterogeneous Banks $z \in [0, 1]$
- Utility function: Concave utility U over dividends div_t

Bank's State Variable - Bank Balance Sheet __

- Liabilities:
 - D_t demand deposits (numeraire)
- Assets:
 - C_t reserves (only traded among banks or with FED)
 - B_t loans
- Equity
 - $\bullet \ N_t = B_t + C_t D_t$

Figure : Bank Balance Sheet

Figure : Bank Balance Sheet

Loans B_t _____

- Loans: perpetual securities (long maturity)
 - Decaying-coupon Consol

Loans B_t ____

- Loan contract specifies:
 - 1. price q_t^l
 - 2. loan size face value I_t
 - 3. $q_t^l I_t$ checks given to firms or households
 - 4. I_t payments owed
- Repayment:
 - $I_t(1-\delta)\delta^n$ in period $n \geq 0$ after loan
 - Introduces maturity (beyond 1 period, not essential)

Loans B_t _____

• Recursively, bank loans l.o.m.:

$$B_{t+1} = \delta B_t + \underline{I_t}$$

- Loan is illiquid:
 - Lending stage: Loans can be sold
 - \bullet Balancing stage: Loans ${\bf cannot}$ be sold

Loans B_t _____

- Where's q coming from?
- Downward (weakly) sloping curve

•
$$I_t^d = \Theta_t \left(q_t^l \right)^{\in}$$

▶ Rest of the Economy

Figure : Bank Balance Sheet

Deposits D_t - Lending Stage: $_$

- Deposits change because:
 - Lending qI_t
 - Paying Dividends DIV_t
 - Purchasing Reserves φ_t
- Decreases Deposits through
 - Inflow of loan coupons
- Leverage Constraint:
 - $D_t \leq \kappa N_t$ (only during lending stage)

Deposits D_t - Balancing Stage

- $\omega \in (-\infty, 1]$ random fraction of D_t leaves bank
 - Randomness in payments system
- Withdrawal, pay other bank with reserves
 - $\omega \sim F_t(\omega)$
 - $\mathbb{E}(\omega) = 0$ deposits don't leave banking system
- Reserve requirements $\rho_t \in [0, 1]$
- Reserve Deficit: $x = \rho_t D_t C_t$
- Penalty for insufficient reserves: $\chi_t(x_t)$:

$$\chi_t(x) = \begin{cases} \underline{\chi}_t x & \text{if } x \le 0\\ \overline{\chi}_t x & \text{if } x > 0 \end{cases}$$

Detour - Derivation of χ_t _

- FED chooses corridor system rates: $r_t^l > r_t^b$
- Mass (normalized) of reserve deficits and surpluses:

$$M^-$$
 and M^+

• Probability of match:

$$\gamma^- = \min\left(1, \frac{M^+}{M^-}\right) \text{ and } \gamma^+ = \min\left(1, \frac{M^-}{M^+}\right).$$

• Bargaining Problem of dollar in surplus and deficit:

$$\max_{r^{FedFunds}} \left(r_t^l - r^{FedFunds} \right)^{\xi} \left(r^{FedFunds} - r_t^b \right)^{1-\xi}$$

• Spline penalty function:

$$\underline{\underline{\chi}_t} = \gamma^+ (1 + r^{FedFunds}) + \left(1 - \gamma^+\right) \left(1 + r_t^b\right)$$

for dollar in surplus and for dollar in deficit

$$\overline{\chi}_{t} = \gamma^{-} (1 + r^{FedFunds}) + (1 - \gamma^{-}) (1 + r_{t}^{l}).$$

Reserves C_t _____

- Fixed Aggregate Supply determined by FED: $M0_t$
- Transferred across banks
 - Loan withdrawal
 - Interbank purchases φ_t
- Precautionary saving
 - \bullet Avoid penalty χ

Figure : Bank Balance Sheet - Liquid Assets

Figure : Bank Balance Sheet - Liquid Assets

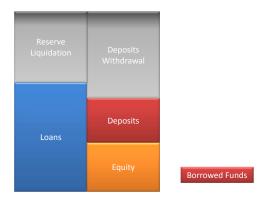


Figure : Bank Balance Sheet - Liquid Assets

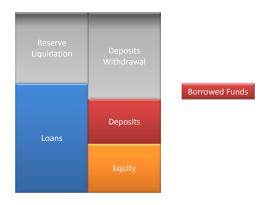


Figure : Bank Balance Sheet - Liquid Assets

Figure : Bank Balance Sheet - Liquid Assets

Figure : Bank Balance Sheet - Liquid Assets

Figure : Bank Balance Sheet - Liquid Assets

Figure : Bank Balance Sheet - Liquid Assets

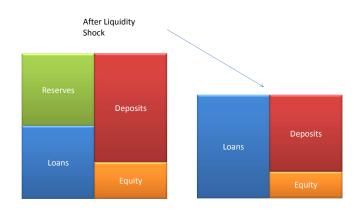


Figure : Bank Balance Sheet - Liquid Assets

The Aggregate State _

- Governments Policy Path $\left\{\rho_t, M0_t, D_t^{FED}, B_t^{FED}, \kappa_t, \underline{\chi}_t, \overline{\chi}_t\right\}_{t\geq 0}$
- Θ_t is the slope of demand curve.
- F_t process for withdrawal risk
- Potentially: Distribution of Bank state variables
 - Only one endogenous state variable E_t
- Aggregate State: X_t
 - Model recursive in X_t

Value Function - Lending Stage

$$\begin{split} V^l(C,B,D;X) &= \max_{I,\varphi,DIV} u(DIV) + \beta E_{\omega'}[V^b(\tilde{C},\tilde{B},\tilde{D},\omega';X)] \\ \tilde{D} &= D + qI + DIV + \varphi(1+r) - \frac{B(1-\delta)}{\delta} \\ \tilde{C} &= C + \varphi \\ \tilde{B} &= \delta B + I \\ \tilde{D} &\leq \kappa(\tilde{B}q + \tilde{C}(1+r) - \tilde{D}), \tilde{D} \geq 0. \end{split}$$

Value Function - Balancing Stage ___

$$V^{b}\left(C,D,B,\omega;X\right) = \beta \mathbb{E}[V^{l}\left(C',B',D';X'\right)]$$
 subject to
$$C' = C - \omega D$$

$$D' = D - \omega D + \chi \left(\rho D \left(1 - \omega\right) - C'\right)$$

$$B' = B$$

One Value Function

$$\begin{split} V^l(C,B,D;X) &= \max_{\left\{I,DIV,\tilde{C},\tilde{D}\right\} \in \mathbb{R}^4} U\left(DIV\right) \dots \\ &+ \beta \mathbb{E}\left[V^l(\tilde{C} - \omega'\tilde{D},\tilde{B},\tilde{D}(1-\omega') + \chi(\rho\tilde{D} - (\tilde{C} - \omega'\tilde{D}));X')|X\right] \\ \tilde{D} &= D + qI + DIV + \varphi(1+r) - B(1-\delta) \\ \tilde{B} &= \delta B + I \\ \tilde{C} &= \varphi + C \\ \tilde{D} &\leq \kappa(\tilde{B}q + \tilde{C}(1+r) - \tilde{D}), \tilde{D} \geq 0. \end{split}$$

Characterization

Characterization _

- 1. Single endogenous state
- 2. Portfolio Separation Theorem
 - Dividend-Savings independent of Portfolio Weights
- 3. Analysis of the Power of Monetary Policy

Solution

• Law of motion for deposits

$$\tilde{D} = D + q \underbrace{I}_{\tilde{B} - \delta B} + DIV + (1 + r) \underbrace{\varphi}_{\tilde{C} - C} - B(1 - \delta).$$

• and substitute for I and φ ...

$$\tilde{D} = D + q(\tilde{B} - \delta B) + DIV + (\tilde{C} - C)(1+r) - B(1-\delta)$$

• and rearrange terms to obtain...

$$DIV + (1+r)\tilde{C} + q\tilde{B} - \tilde{D} = \underbrace{C(1+r) + (q\delta + (1-\delta))\,B - D}_{E}.$$

• We can collapse all state-variables into one: E!

Proposition (Single-State)

We have

$$V^{l}(C, B, D; X) = V^{l}(E; X)$$

$$E \equiv C(1+r) + q\delta B + B(1-\delta) - D.$$

Proposition (Homogeneity and Separation)

With CRRA,

$$V^{l}(E;X) = v^{l}(X) E^{1-\gamma}$$

where:

$$v^{l}\left(X\right) = \max_{div \in \mathbb{R}_{+}} div^{1-\gamma} + \beta \mathbb{E}\left[v^{l}\left(X'\right)|X\right] \left(\Omega\left(X\right)\left(1 - div\right)\right)^{1-\gamma}$$

where $\Omega(X)$ is Return to Bank Portfolio.

Bank Portfolio Problem

- Four Returns:
 - Return on Loans:

$$R_t^B \equiv \frac{\delta q_{t+1} + (1 - \delta)}{q_t},$$

• Return on Reserves:

$$R_t^C \equiv \left(\frac{1 + r_{t+1}}{1 + r_t}\right)$$

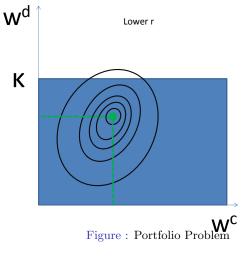
• Return on Deposits:

$$R_t^D(\boldsymbol{\omega'}) \equiv 1 + r_{t+1}\boldsymbol{\omega'}$$

• Liquidity Cost:

$$R^{\chi}\left(w_{d}, w_{c}, \omega'\right) \equiv \chi\left(\left(\rho + \frac{\omega'}{\omega'}\right) w_{d} - \frac{w_{c}}{(1+r)}\right)$$

Bank Portfolio Problem

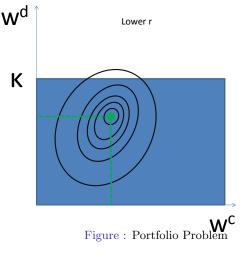

- Effects of MP captured by $\Omega(X)$
- $\Omega(X)$ certainty equivalent portfolio:

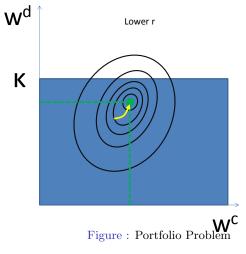
$$\max_{\{w_b, w_d, w_c\} \in \mathbb{R}_+^3} \left(\mathbb{E}_{\omega'} [\left(R^B w_b + R^C w_c - R^D w_d - R^{\chi}(w_d, w_c) \right)^{1-\gamma}] \right)^{\frac{1}{1-\gamma}}$$
 subject to,

$$1 = w_b + w_c - w_d$$

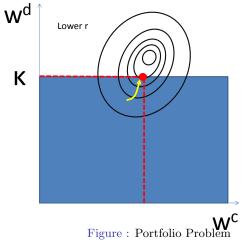
$$w_d \leq \kappa (w_b + w_c - w_d)$$

• Original Policies: $[\tilde{D}, \tilde{B}, \tilde{C}] = [w_d, w_b, w_c] \cdot E \cdot (1 - div)$


Liquidity Management _____


Liquidity Management and Monetary Policy ____

- Monetary Policy Instruments
 - Discount window: χ_t
 - Reserve requirements ρ_t
 - Long-Term Loans: $M0_t$
 - Open-market operations: (b_t, c_t)


Liquidity Management _____

Liquidity Management ____

Liquidity Management ___

Calibration _____

Table : Parameter Values

	Value	Reference
Capital requirement	$\kappa = 17$	6% Tier-2 Capital
Discount factor	$\beta = 0.99$	Return on Equity=8%
Risk aversion	$\gamma = 1$	Benchmark
Loan Maturity	$\delta = 0.5$	Residual duration $+$ buy-backs
Interest rate (annualized)	r=4%	LIBOR
Liquidity Requirement	$\rho = 0.10$	Res. Req.
Loan Demand Elasticity	$\epsilon = 8.0$	-
Penalty	$\chi^L=0.0\%$	FedRate
Penalty	$\chi^H=3.2\%$	Liquidity Ratio
Withdrawal-shock volatility F_t	Non-Param	Data

Calibration of Dispersion

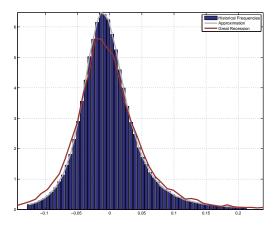


Figure : Cross-Sectional Distribution of Deviation from Cross-Sectional Average Growth Rates

Calibration of Dispersion

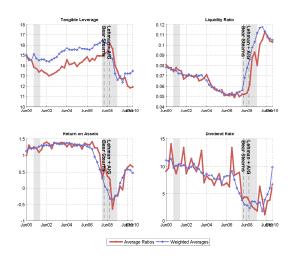
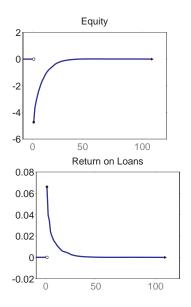
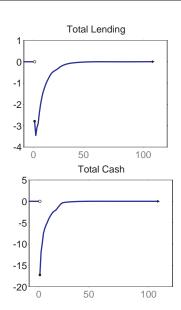


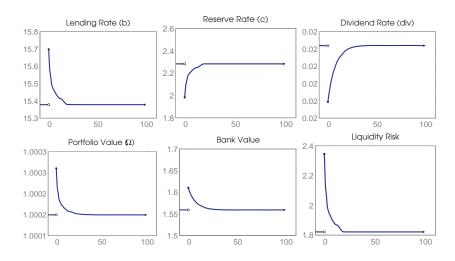
Figure : Key Historical Ratios

Quantitative Application _____

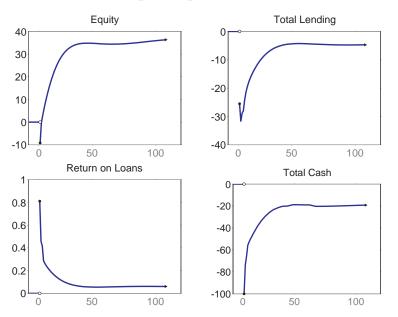

- Why are banks stockpiling cash rather than lending?
- Four Hypothesis
 - 1. Equity Losses
 - 2. Capital Requirements
 - 3. Uncertainty in Interbank markets
 - 4. Weak Loan Demand


Workings of the Model

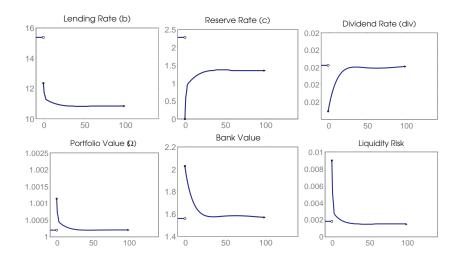
- Deterministic Transitional Dynamics
- Steady-state:
 - Fix $\left\{ \rho_t, M0_t, \kappa_t, \underline{\chi}_t, \overline{\chi}_t \right\}_{t \geq 0}$
 - Find (q,r) such that equity doesn't grow
 - Solve for E: financial sector size
- Transitional Dynamics: one shock at a time
 - Find (q_t, r_t) , consistent with equity growth and convergence


Equity Loss- $\downarrow E_0$ by 4 percent

Eq.loss

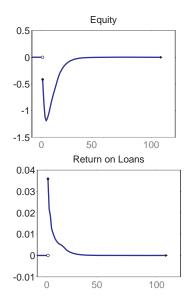


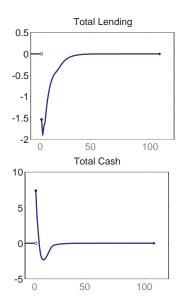
Eq.loss

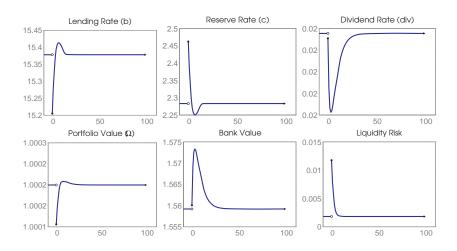


Permanent Rise in Capital Requirements - (AR-1 process, extra 2.5 % capital)

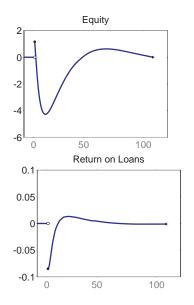
Perman. Rise in Cap. Requirements

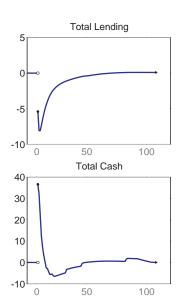


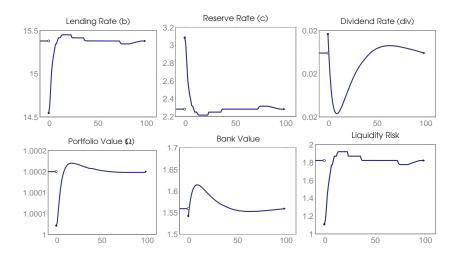

Permanent Rise in Cap. Requirements


Shock to probability of bank-run (AR-1 process, initial increase is 10 percent)

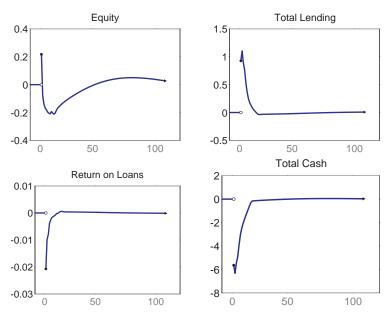
Bank-run Risk



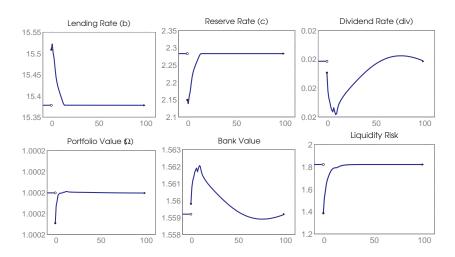

Bank-run Risk


Loan Demand Shock - $\downarrow \Theta_t$ (AR (1) process, 20 percent initial decrease)

Demand Shock

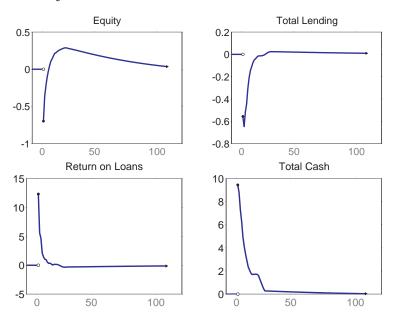


Demand Shock

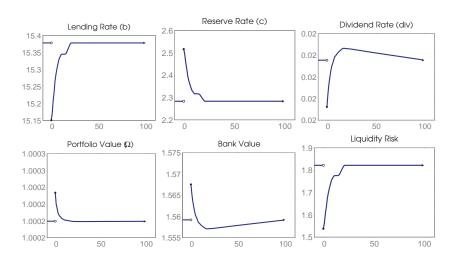


Transitory Reduction in χ (20 % initial reduction, AR-1 process)

Transitory Reduction in χ



Transitory Reduction in χ _



Transitory Reduction in r (50 % initial reduction, AR-1 process)

Transitory Reduction in r

Transitory Reduction in r _____

Summary ____

- Equity Losses and Capital Requirements
 - Similar Effects
 - Expect High Marginal Returns contraction of Loan Supply
 - Drop in Reserves
 - Dividends Accumulation
- Withdrawal Uncertainty
 - Explain initial spike in cash not persistence
- Seems that Best fit is via Loan Demand
 - Consistent with decline in lending, profits
 - High dividend rate
 - At ZLB can explain big part of FED's Balance Sheet
- Caveat: Feed-back effect (credit quality vs. actual demand)

End

Liquidity Management

Figure : Bank Balance Sheet

Loan Demand

- Risk-Neutral Workers
- Risk-Neutral Entrepreneurs
 - Cannot prepay debt
 - Borrow to purchase hours from workers
 - Hold debt and deposits to repay debt
- Spirit of Kiyotaki and Moore (2002), Lagos and Wright (2003)

Liquidity Management

Figure : Bank Balance Sheet

Figure : Bank Balance Sheet

Figure : Bank Balance Sheet

 ${\bf Figure: \ Bank \ Balance \ Sheet}$

Figure : Bank Balance Sheet

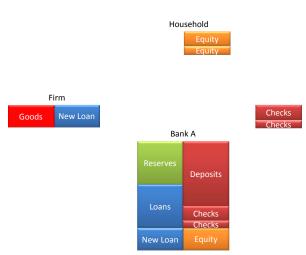


Figure : Bank Balance Sheet

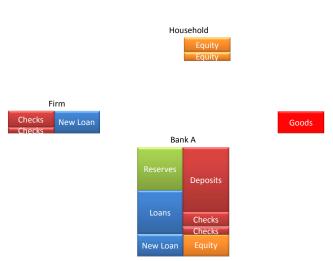


Figure : Bank Balance Sheet

Firm

Figure : Bank Balance Sheet

Firm

Figure : Bank Balance Sheet

Liquidity Management ____

Figure : Bank Balance Sheet

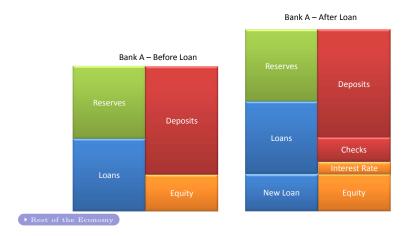


Figure : Bank Balance Sheet

Fact 1 - Disruption in Fed-Funds Market

Figure : Fed Funds Rate 2002-2012

Fact 1 - Disruption in Fed-Funds Market and ZLB____

▶ Back

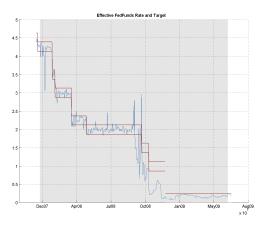


Figure : Fed Funds Rate 2008-2012

Fact 2 - Unconventional Policy

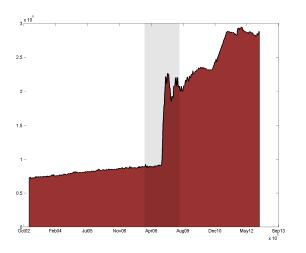


Figure : Fed Balance Sheet 2002-2012: Total Assets

Fact 2 - Unconventional Policy: Open Market Ops ___

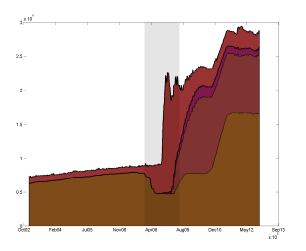


Figure : Fed Balance Sheet: Treasuries, Gov Secs, MBS

Fact 2 - Unconventional Policy: OMO + Lending ____

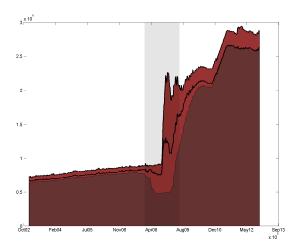


Figure : Fed Balance Sheet: OMO

Fact 2 - Unconventional Policy: OMO + Lending ____

Figure : Fed Balance Sheet: OMO

Fact 3 - Required Reserves

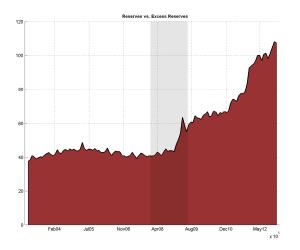


Figure: Required Reserves at Commercial Banks

Fact 3 - Required vs. Excess Reserves _

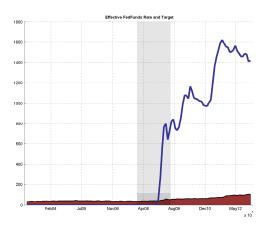


Figure: Required vs. Excess Reserves at Commercial Banks

Fact 4 - Bank Lending

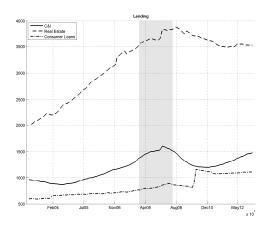


Figure : Lending of Commercial Banks

Fact 4.b - My McGrattan Prescott Slide

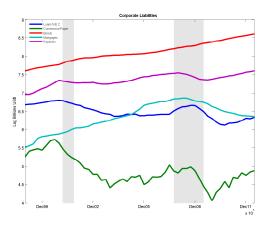


Figure : Liabilities of Corportations

Fact 4.b - Ellen Slide

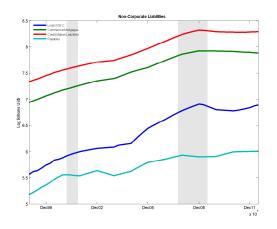


Figure : Liabilities of Non-Corporate Sector

Fact 5 - Banks Not Issuing Liabilities

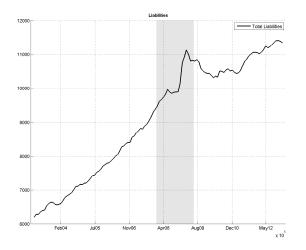


Figure : Total Liabilities of Commercial Banks

Fact 4 & 5 - Drop in Money Multiplier

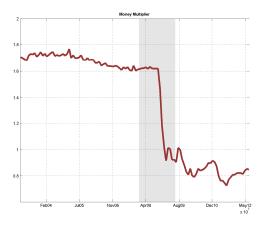


Figure: Total Liabilities of Commercial Banks

Fact 6 - Bank Equity Losses

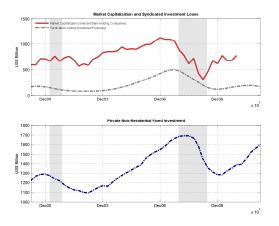


Figure: Bank Equity

