Discussion of "Sticky Leverage" by Joao Gomes, Urban Jermann and Lukas Schmid

Jianjun Miao¹

 $^{1}\mathsf{Boston}$ University

September 2013

Summary

 Provide a tractable DSGE model with dynamic capital structure choice and finite maturity nominal debt

Main Results

- When inflation is exogenous:
 - Unanticipated changes in inflation have real effects, even without sticky prices or wages
 - When debt is long-lived, there is debt overhang ⇒ reduce investment
 - Leverage is a slow-moving state variable ⇒ persistence and propagation
- A standard Taylor rule helps stabilize the economy
 - In response to a negative productivity or wealth shock, CB raises inflation ⇒ mitigate debt overhang

Related Literature I

- Large literature on one period nominal debt
 - Deflation raises the real burden of debt and worsens economic activity (Fisher (1933))
 - Debt overhang reduces investment (Myers (1977))
- Miao and Wang (2010): RBC model (propogation)
- Bhamra, Fisher and Kuehn (2011)
 - Infinite maturity nominal debt
 - No investment
 - Interest rate peg vs inflation targeting
- The main difference is that GJS incorporate finite maturity and investment

Related Literature II

- Continuous time: Leland and Toft (1996, JF), Leland (1998, JF), Hackbarth, Miao, and Morellec (2006, JFE)
- Discrete time: Philippon (2009, QJE)
- Probabilitistic structure
 - Chatterjee and Eyigungor (2012, AER): sovereign debt
 - Miao and Wang (2010): real DSGE model

Finite Maturity Debt Contracts: Leland (1998)

- Initially, the firm issues debt with principal P and a constant coupon C forever.
- At each t, a fraction e^{-mt} of this debt remains outstanding, with principal $e^{-mt}P$ and coupon $e^{-mt}C$
- Continuously retire outstanding debt principal at the rate me^{-mt}
- The average maturity is $\int_0^\infty tm e^{-mt} dt = 1/m$
- Retired debt is replaced by the issuance of new debt with identical coupon, principal, and seniority.
- Any finite-maturity debt policy is completely characterized by (C, P, m)

Valuation: Leland (1998), HMM (2006)

- Cash flow (x_t) follow a GBM.
- Let $D^{0}\left(x,t\right)$ denote the time t value of debt issued at time zero

$$rD^{0}(x,t) = e^{-mt}(mP+C) + D_{t}^{0}(x,t) + \mu x D_{x}^{0}(x,t) + \frac{\sigma^{2}x^{2}}{2}D_{xx}^{0}(x,t)$$

• Let $D(x) = e^{mt}D^0(x, t)$ denote the total value of outstanding debt at any time t

$$(r+m) D(x) = C + mP + \mu x D_x(x) + \frac{\sigma^2 x^2}{2} D_{xx}(x)$$

• We can see that D(x; P) does not depend on time

Finite Maturity Debt Contracts: Discrete Time

- A finite maturity debt contract (c, b_t, λ) where b_t is total principal at date t
- One unit debt pays coupon c
- A fraction λ is retired and then issue new debt $b_{t+1} (1 \lambda) b_t$

• Cash flow for any debt b_t is given by

Valuation: Discrete Time

- Unit debt price p_t
- Recursive valuation

$$p_t b_{t+1} = EM_{t,t+1} \left[(c + \lambda) b_{t+1} + (1 - \lambda) p_{t+1} b_{t+1} \right] + EM_{t,t+1} \left(\text{recovery value} \right)$$

Specific comments

Taylor rule

$$\ln\left(r_{t}/\bar{r}\right) = \rho_{r} \ln\left(r_{t-1}/\bar{r}\right) + \left(1 - \rho_{r}\right) \left[\rho_{\mu} \ln\left(\mu_{t}/\bar{\mu}\right) + \rho_{y} \ln\left(Y_{t}/\bar{Y}\right)\right] + \rho_{y} \ln\left(Y_{t}/\bar{Y}\right)$$

- Compare to DNK models: $\zeta_t \uparrow \Longrightarrow r \uparrow$, $Y \downarrow$, (inflation) $\mu \downarrow$, $rr \uparrow$
- A monetary policy shock $\zeta_t \uparrow \Longrightarrow \mu \downarrow$ (?), Default \uparrow , Debt \uparrow , $I \downarrow$, $Y \downarrow$, $C \uparrow$, $N \downarrow$, $r_f \downarrow$
- A negative TFP shock $\Longrightarrow Y \downarrow$, $\mu \uparrow$ (?), Default \downarrow , $I \uparrow$, $C \downarrow$ (?), $N \downarrow$, $r_f \uparrow$
- A negative wealth shock $(\delta\downarrow) \Longrightarrow Y\uparrow$, $C\downarrow$, $I\uparrow$, $N\uparrow$, $\mu\uparrow$, $r\uparrow$
- What is the intuition? Log-linear analysis
- Finacial shocks?

Specific comments

- Numerical method?
- Calibrate c?
- Which parameters are chosen to match what targets?
- What empirical facts to explain?

Conclusion

- Provide a tractable DSGE model with finite maturity nominal debts
- Related Literature should be more fairly discussed
- More intuition is needed for results related to impulse responses
- Exposition can be improved (proofs, typos, details...)