The Dire Effects of the Lack of Monetary and Fiscal Coordination

Francesco Bianchi and Leonardo Melosi
Duke University and FRB of Chicago

The views in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of Chicago or any other person associated with the Federal Reserve System
Legacies of the Great Recession include a large public debt

Some scholars have argued that fiscal imbalances have implications for price dynamics

Emphasis on monetary and fiscal coordination

This paper is mainly about the consequences of lack of coordination
CBO projections imply that debt is on an unstable path.
CBO projections imply that debt is on an **unstable path**

Fed ha insisted that **inflation stability** remains a central goal
CBO projections imply that debt is on an **unstable path**

Fed has insisted that **inflation stability** remains a central goal

Suggestive of **possibility of conflict between the two authorities**: Ability of the Fed to control inflation requires fiscal backing
We develop a NK model that features large contractionary shocks that trigger large recessions and debt accumulation. Agents understand that:

1. Fiscal adjustments would be needed after the large recession
2. Government might be unable or unwilling to make such adjustments
3. Absent these fiscal adjustments, central bank could let inflation rise to stabilize debt
4. Central bank might oppose such a change in policy

We use the model to study:

- The consequences of the conflict between the two authorities
- A policy proposal that resolves the conflict by separating short-run and long-run fiscal stabilizations
Main Results

- Lack of coordination has **dire effects**
 1. A spiral of low output, high inflation, and high debt arises
 2. Expectation of conflict jeopardizes attempts to mitigate the recession
Main Results

- Lack of coordination has **dire effects**
 1. A spiral of low output, high inflation, and high debt arises
 2. Expectation of conflict jeopardizes attempts to mitigate the recession

- Absent fiscal backing, the Fed loses control of inflation. **Hawkish monetary policy is counterproductive**
Main Results

- Lack of coordination has **dire effects**
 1. A spiral of low output, high inflation, and high debt arises
 2. Expectation of conflict jeopardizes attempts to mitigate the recession

- Absent fiscal backing, the Fed loses control of inflation. **Hawkish monetary policy is counterproductive**

- **Coordinated strategy** to inflate away only debt accumulated during the recession
 \[\Rightarrow\] Milder recession and rather stable inflation
Main Results

- Lack of coordination has **dire effects**
 1. A spiral of low output, high inflation, and high debt arises
 2. Expectation of conflict jeopardizes attempts to mitigate the recession

- Absent fiscal backing, the Fed loses control of inflation. **Hawkish monetary policy is counterproductive**

- **Coordinated strategy** to inflate away only debt accumulated during the recession
 - Milder recession and rather stable inflation

- This coordinated strategy also useful to **rule out liquidity traps**
Private Sector: Households

- The representative household maximizes expected utility

\[E_0 \left[\sum_{t=0}^{\infty} \beta^t \exp \left(\tilde{d}_{\xi_t} \right) \left[\log C_t - h_t \right] \right] \]

subject to the budget constraint:

\[P_t C_t + P_t^m B_t^m + P_t^s B_t^s = P_t W_t h_t + B_{t-1}^s + (1 + \rho P_t^m) B_{t-1}^m \]

\[+ P_t D_t - T_t + TR_t \]

- Discount factor shock, \(\tilde{d}_{\xi_t} \), can assume two values, high or low (\(\tilde{d}_H \) or \(\tilde{d}_L \))

- \(\xi_t \) follows a Markov-switching process:

\[H^d = \begin{bmatrix} \rho_{hh} & 1 - \rho_{ll} \\ 1 - \rho_{hh} & \rho_{ll} \end{bmatrix} \]

Bianchi and Melosi
Private Sector: Firms

Representative firm faces:

- Monopolistic competition
- Sticky prices (Quadratic adjustment cost)
- TFP shocks
- Production function in which labor is the only input
The government budget constraint

\[b_t^m = b_{t-1}^m R_{t-1,t}^m / (\Pi_t Y_t / Y_{t-1}) - \tau_t + e_t \]

where all variables are normalized with nominal output

Government expenditures: \(e_t = g_t + tr_t \) with

- Government purchases (exogenous) as a fraction of output: \(g_t \)
- Transfers-to-output ratio: \(tr_t \)

\[\frac{tr_t}{tr^*_t} = \left(\frac{tr_{t-1}}{tr^*_{t-1}} \right)^{\rho_{tr}} \left(\frac{Y_t}{Y^*_t} \right)^{(1-\rho_{tr})\phi_y} \]
Policy Rules

- Fiscal Rule

\[\ddot{\tau}_t = \rho_{\tau,\xi^p_t} \ddot{\tau}_{t-1} + (1 - \rho_{\tau,\xi^p_t}) \left[\delta_{b,\xi^p_t} \ddot{b}^m_{t-1} + \delta_y (\ddot{y}_t - \ddot{y}^*_t) \right] \]

- Monetary Rule

\[\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\rho_{R,\xi^p_t}} \left[\left(\frac{\Pi_t}{\Pi} \right)^{\psi_{\pi,\xi^p_t}} \left(\frac{Y_t}{Y^*_t} \right)^{\psi_{y,\xi^p_t}} \right]^{(1 - \rho_{R,\xi^p_t})} \]

- The Markov-switching process \(\xi^p_t \) determines the policy mix conditional on the state of demand \(\xi^d_t \)
Monetary/Fiscal Policy Mix

When policy regimes are taken in isolation, the two policy rules and the linearized budget constraint are key to determine existence and uniqueness of a REE:

\[\hat{R}_t = \psi \hat{\pi}_t + \ldots \]

\[\tilde{\tau}_t = \delta_b \tilde{b}_{t-1}^m + \ldots \]

\[\tilde{b}_t^m = \beta^{-1} \tilde{b}_{t-1}^m + \ldots + b^m \beta^{-1} \left(\hat{R}_{t-1} - \ldots - \tilde{\pi}_t \right) - \tilde{\tau}_t \]

\[\rightarrow \tilde{b}_t^m = (\beta^{-1} - \delta_b) \tilde{b}_{t-1}^m + \ldots + b^m \beta^{-1} (\psi \hat{\pi}_{t-1} - \ldots - \tilde{\pi}_t) \]
Policy Regimes

High state of demand \((\zeta^d_t = H)\):

- Coordination: Monetary led policy mix \((AM / PF)\):
 \[
 \psi_\pi = \psi^M_\pi > 1 \quad \delta_b = \delta^M_b > \beta^{-1} - 1
 \]

- Coordination: Fiscally led policy mix \((PM / AF)\):
 \[
 \psi_\pi = \psi^F_\pi < 1 \quad \delta_b = \delta^F_b = 0 < \beta^{-1} - 1
 \]

- Non-Coordination: Conflict Regime \((AM / AF)\):
 \[
 \psi_\pi = \psi^C_\pi > 1 \quad \delta_b = \delta^C_b = 0 < \beta^{-1} - 1
 \]

Low state of demand \((\zeta^d_t = L)\): Fiscally-led policy mix \((PM / AF)\)
Evolution of Regimes

The matrix Q^H controls the evolution of regimes in the high state of demand:

$$Q^H = \begin{bmatrix}
p_{MM} & 1 - p_{FF} & 1 - p_{CC} & 0 \\ 1 - p_{MM} & p_{FF} & 0 & 1 - p_{CC} \\ 0 & 0 & p_{CC} & 0 \\ 0 & 0 & 0 & p_{CC}
\end{bmatrix}$$

The matrix Q governs the overall evolution of regimes:

$$Q = \begin{bmatrix}
p_{hh}Q^H & (1 - p_{ll}) \cdot l_4 \\ (1 - p_{hh}) \cdot 0.25 \cdot 1_{4 \times 4} & p_{ll} \cdot l_4
\end{bmatrix}$$

⇒ Agents take into account the possibility of large recessions and the consequent changes in policy makers’ behavior
We solve the MS DSGE model using the method proposed by Farmer, Waggoner, and Zha (2009):

\[S_t = C(\xi_t, \theta, Q) + T(\xi_t, \theta, Q) S_{t-1} + R(\xi_t, \theta, Q) \varepsilon_t \]

Agents are aware of regime changes and their beliefs matter for the solution of the model.

Temporary explosive dynamics are allowed, as long as the model is overall stationary.

This important feature allows us to study the properties of the conflict regime.
Parameters (Bianchi and Melosi AER 2017)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\psi_{\pi,M}$</td>
<td>1.7890</td>
<td>$\rho_{\tau,F}$</td>
<td>0.6501</td>
<td>ρ_{hh}</td>
<td>0.9999</td>
</tr>
<tr>
<td>$\psi_{y,M}$</td>
<td>0.4413</td>
<td>$\psi_{\pi,C}$</td>
<td>2.0000</td>
<td>ρ_{ll}</td>
<td>0.9465</td>
</tr>
<tr>
<td>$\rho_{R,M}$</td>
<td>0.8697</td>
<td>$\rho_{\tau,C}$</td>
<td>0.6501</td>
<td>ρ_{MM}</td>
<td>0.9902</td>
</tr>
<tr>
<td>$\delta_{b,M}$</td>
<td>0.0778</td>
<td>δ_y</td>
<td>0.2814</td>
<td>ρ_{FF}</td>
<td>0.9932</td>
</tr>
<tr>
<td>$\rho_{\tau,M}$</td>
<td>0.9666</td>
<td>ϕ_y</td>
<td>-2.0000</td>
<td>κ</td>
<td>0.0072</td>
</tr>
<tr>
<td>$\psi_{\pi,F}$</td>
<td>0.6903</td>
<td>ρ_{tr}</td>
<td>0.4620</td>
<td>$b_0^m / 4$</td>
<td>0.7700</td>
</tr>
<tr>
<td>$\psi_{y,F}$</td>
<td>0.2655</td>
<td>\overline{d}_h</td>
<td>0.0429</td>
<td>100γ</td>
<td>0.4120</td>
</tr>
<tr>
<td>$\rho_{R,F}$</td>
<td>0.6576</td>
<td>\overline{d}_l</td>
<td>-0.1300</td>
<td>100τ</td>
<td>0.5000</td>
</tr>
</tbody>
</table>
Conflict with Fiscally-led Resolution

Notes: Posterior mode estimates of probability of low valuation regime. The sample is quarterly and spans 1952:Q1 to 2013:Q3.

Bianchi and Melosi
Vicious Circle

- Key mechanism:
 1. Large recession generates debt accumulation: $b \uparrow$
 2. Expectation that eventually debt will be inflated away: $\pi \uparrow$
 3. Central bank increases interest rate more than one-to-one: \textbf{Real interest rate} \uparrow
 4. Real activity goes down: $y \downarrow$
 5. Low real activity + high real interest rate induce further debt accumulation: $b \uparrow$

- Spiral of low growth, high(er) inflation, debt accumulation

- \textbf{Vicious Circle} ends when one of the two authorities gives up
Conflict with Monetary-led Resolution

Output Gap

Inflation

FFR

Debt-to-GDP Ratio

Bianchi and Melosi
Conflict with Uncertain Resolution

Output Gap

Inflation

FFR

Debt-to-GDP Ratio

LD->Conflict(ML)->ML
LD->Conflict(FL)->FL
LD->Conflict(Uncertain Outcome)

Bianchi and Melosi
Take Away

If the fiscal authority is not expected to take the necessary fiscal adjustments

1. The central bank can accommodate these beliefs
 \[\Rightarrow\text{persistently high inflation}\]

2. The central bank can fight back
 - if the central bank is expected to eventually give up \[\Rightarrow\text{spiral of low output, high inflation, and high debt}\]
 - if the government is expected to eventually give up \[\Rightarrow\text{recession coupled with persistently low inflation, and high debt}\]

\[\Rightarrow\text{CB cannot stabilize inflation without fiscal backing}\]
\[\Rightarrow\text{Institutional conflicts inevitably lead to bad outcomes: Ineffective or detrimental policy interventions}\]
A Coordinated Strategy

- We propose a policy that separates the issue of **long-term fiscal sustainability** from the need of **short-run fiscal intervention**

- Policy makers commit to inflate away *just* the amount of debt resulting from the large recession itself....

- ... in response to private sector’s loss of confidence that the necessary fiscal adjustments will ever be taken

- We model a **shadow economy** to keep track of the amount of debt deriving from the discrete demand shock. Policy makers...

 1. ...do not react to debt and inflation caused by the discrete demand shock, while...
 2. ...follow a monetary-led policy mix in response to all other shocks
A Coordinated Monetary and Fiscal Rule

- Policymakers announce policies for regular debt and the emergency budget debt

\[
\tilde{\tau}_t = \left(1 - \rho^M_\tau\right) \left[\delta^M_b \tilde{b}^S_{t-1} + \delta^F_b \left(\tilde{b}_{t-1} - \tilde{b}^S_{t-1} \right) \right] + \ldots
\]

\[
\tilde{R}_t = \left(1 - \rho^M_R\right) \left[\psi^M_\pi \tilde{\pi}^S_t + \tilde{\psi}^F_\pi \left(\tilde{\pi}_t - \tilde{\pi}^S_t \right) \right] + \ldots
\]

- The fiscal authority is not responsible for the emergency budget debt \(\tilde{b}_t - \tilde{b}^S_t \):

\[
\tilde{\delta}^F_b = \tilde{\psi}^F_\pi = 0
\]

- The central bank allows inflation to rise by \(\tilde{\pi}_t - \tilde{\pi}^S_t \), which is the amount needed to stabilize the emergency budget \(\tilde{b}_t - \tilde{b}^S_t \)

- The targeted inflation and debt are determined in a shadow economy where

1. There is no discrete demand shock
2. Policymakers always follow the monetary-led policy mix
Implementation of Coordinated Policies

Output Gap

Inflation

FFR

Debt-to-GDP Ratio

- **Total Debt**
- **Regular-Budget Debt**
- **Emergency-Budget Debt**

Bianchi and Melosi
Avoiding Liquidity Traps

- The zero lower bound can be a significant constraint on the ability of a central bank to combat deflation.

- Krugman (1998) and Eggertsson and Woodford (2003) suggest to use forward guidance to promise that monetary policy will drive a boom when the central bank will have again room to maneuver.

- Our coordinated strategy can also be used to promise a boom at the end of large recessions.

- Policymakers can adopt this strategy to rule out liquidity traps (Benhabib, Schmitt-Grohe, Uribe (2002) and Woodford (2003)).

- Possible advantage: Easier to convince public if fiscal policy involved.

- Historical relevance: Roosevelt’s emergency budgets.
Avoiding Liquidity Traps

- Our proposed policy makes a liquidity trap **fiscally unsustainable**
Conclusions

- Non-coordinated policies inevitably lead to bad outcomes
- The central bank cannot stabilize inflation if the govt is expected to withdraw its backing
- Not only hawkish monetary policy is ineffective, but it can also backfire
- A coordinated strategy to inflate away just a fraction of debt:
 1. mitigates the recession and stabilizes price dynamics
 2. can be useful to prevent monetary policy from hitting the ZLB
The representative household maximizes expected utility

$$E_0 \left[\sum_{s=0}^{\infty} \beta^t \exp \left(\xi^d_t \right) \left[\log C_t - h_t \right] \right]$$

subject to the budget constraint:

$$P_t C_t + P_t^m B_t^m + P_t^s B_t^s = P_t W_t h_t + B_{t-1}^s + (1 + \rho P_t^m) B_{t-1}^m + P_t D_t - T_t + TR_t$$

Shocks to the discount factor: $$\xi^d_t = \bar{d}_{\xi^d_t}$$, which can assume two values, high or low ($$\bar{d}_H$$ or $$\bar{d}_L$$)

$$\xi^d_t$$ follows a Markov-switching process:

$$H^d = \begin{bmatrix} p_{hh} & 1 - p_{ll} \\ 1 - p_{hh} & p_{ll} \end{bmatrix}$$
Firms choose their price $P_t(j)$ so to maximize the PV of future profits subject to

1. A downward-sloping demand curve:
 \[Y_t(j) = (P_t(j)/P_t)^{-1/v} Y_t \]

2. Quadratic price adjustment cost:
 \[AC_t(j) = 0.5 \varphi \left(P_t(j)/P_{t-1}(j) - \Pi \right)^2 Y_t(j) P_t(j)/P_t \]

3. The production function
 \[Y_t(j) = h_t^{1-\alpha}(j) \]
Woodford’s (2001) Bonds

- Govt bonds B_t^m: perpetuity with coupons that decay exponentially
- A bond issued in period t pays ρ^j dollars $t + j$ periods later with $0 \leq \rho < \beta^{-1}$
- It can be shown that: $P_{t-j}^m = \rho^j P_t^m$ for any $j > 0$

\implies The equilibrium prices of the (infinitely) many perpetuities are function of the price of the current bond

\implies A bond of this type issued k periods ago is equivalent to ρ^k current bonds

\implies Do not need to keep track of infinitely many maturities
Policy Regimes

- **High state of demand** \((\zeta_t^d = H)\):
 - Monetary led policy mix \((AM/ PF)\):
 \[
 \psi_\pi = \psi_M^\pi > 1 \quad \delta_b = \delta_M^b > \beta^{-1} - 1
 \]
 - Fiscally led policy mix \((PM/ AF)\):
 \[
 \psi_\pi = \psi_F^\pi < 1 \quad \delta_b = \delta_F^b = 0 < \beta^{-1} - 1
 \]
 - Two Fight Regimes \((AM/ AF)\):
 \[
 \psi_\pi = \psi_C^\pi > 1 \quad \delta_b = \delta_C^b = 0 < \beta^{-1} - 1
 \]

- **Low state of demand** \((\zeta_t^d = L)\):
 - Four FL regimes that differ on beliefs about the post-recession policy mix