What Anchors for the Natural Rate of Interest?

Claudio Borio, Piti Disyatat and Phurichai Rungcharoenkitkul

7 September 2018

Federal Reserve Bank of Boston Annual Conference

PUEY UNGPHAKORN INSTITUTE FOR ECONOMIC RESEARCH

Secular decline in real interest rates

Prevailing explanations

- Natural rate, S-I factors
 - Secular stagnation, savings glut, safe asset shortage
- Monetary factors "neutral" in the long-run

What if...

- Market rates diverged from natural rate persistently
- Monetary policy not neutral in the long-run
 - Financial cycle

S-I a theory for the natural rate applied to market rate

- Equality to market rate a maintained hypothesis
- Underlying theory not tested

A long historical perspective (Borio et al (2017))

- Since 1870-2016, 19 countries
- Direct link with "usual suspects"
 - Growth, productivity, demographics, income distribution, relative price of capital

Link or no link?

Note: Median values of 19 advanced countries

Usual suspects: Not guilty

	(1)	(2)	(3)	(4)	(5)	(6)
	Full sample	Gold standard	Interwar	Postwar	Pre-Volcker	Post-Volcker
GDP growth (+)	-0.09**	-0.00	-0.07	0.08	0.07	0.03
Population growth (+/–)	-0.83*	-0.50	0.25	-0.77**	-0.00	-0.68
Dependency ratio (+)	0.02	-0.03	-0.04	0.03	0.14***	-0.03
Life expectancy (–)	0.04	-0.20***	0.41	0.23**	0.47***	-0.32***
Relative price of capital (+)	0.01	0.11**	-0.06	-0.00	-0.06*	0.01
Income inequality (–)	0.10*	-0.01	0.00	-0.26***	-0.10	-0.10
Constant	-1.97	15.33***	-17.90	-14.27*	-42.48***	31.18***

Monetary regimes and real long-term rate

Globally, monetary policy of anchor countries outperform S-I factors

Key elements

- Change in relative demand/supply of safe assets
- Higher spread between risky and safe assets

But...

Conceptual and empirical drawbacks

Premia and spreads: widen or tighten?

Premia and spreads: widen or tighten?

10-year sovereign bond term premia

Sign-restricted VAR: Contribution of SAS small

Historical decompositions of real 5y5y rate (Percent)

What compass for monetary policy?

Natural rate model-dependent

- Inflation sufficient?
- Equilibrium should be sustainable
 - Financial instability incompatible with sustainability
 - Defitinition of natural rate should encompass "financial equilibrium"

The long hand of the financial cycle

- Credit booms predict busts
- Busts leave long-lasting scars
- Monetary non-neutrality

Key Ideas (Juselius et al. (2017))

- Financial cycle anchored to two long-run relationships that pin down sustainable credit-GDP ratio
 - Leverage gap

$$\widetilde{lev}_t = (cr_t^r - y_t^r) - \beta_{lev} p_{A,t}^r - \overline{lev}$$

Debt service gap

$$\widetilde{dsr}_t = (cr_t^r - y_t^r) + \beta_{dsr}i_{L,t} - \overline{dsr}$$

where cr_t^r = real credit, y_t^r = real output, $p_{A,t}^r$ = real asset price, $i_{L,t}$ = nominal average lending rate on stock of credit

 Credit-to-GDP, real asset prices, and nominal lending rate proportional in the long-run

US Leverage and Debt Service Gaps

Source: Juselius et al. (2017)

The two gaps interact...leading to endogenous cycles

- Output effects large and very persistent
- Crisis not result of shocks

Policy can smooth the financial cycle

What anchors for the natural rate of interest?

Underlying theme

- Multiplicty of outcomes subject to policy
- Path-dependency
 - Busts linked to booms
 - CB reaction function conditions vulnerability to boombust, thus intertemporal policy trade-off

Key features

- OLG of firms and households; financing essential
- Strategic complimentarity among banks
 - Pool of borrowers depends on loan rate
- Multiple equilibria
 - Boom: low rate, ample credit, high output
 - Bust: high rate, scarce credit, low output
 - Regime switch conditional on bank capital
- Policy determines risk-taking, hence bank profits and evolution of bank capital

A theoretical model

Monetary hysteresis

Monetary hysteresis

What anchors for the natural rate of interest?

- Path-dependence implies that asymmetric policy may bias rates down over successive cycles
- Endogneity of natural rate to policy undermine it as anchor for policy

Policy frameworks

- Monetary policy is the ultimate financial anchor; Sets the price of leverage
- Potential for highly persistent effects needs to be recognized;
 - Monetary policy is the wind

PUEY UNGPHAKORN INSTITUTE FOR ECONOMIC RESEARCH

FOSTERING RESEARCH INFORMING POLICY

www.pier.or.th