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Abstract

Central bankers often suggest that programmable money may not be desirable, as it could com-

promise the uniformity, or singleness, of money. We explore this concern in a simple model that

endogenizes the creation of programmable money and the liquidity values of di�erently programmed

currencies (i.e., the degree of singleness). Programmable money is privately valuable due to commit-

ment frictions. However, its creation can be socially costly in the presence of informational frictions

in recognizing di�erent types of money. We demonstrate that preserving the singleness of money is

not necessarily socially bene�cial. Moreover, the prohibition of programmable money reduces social

welfare when informational frictions are mild, and enhances welfare when commitment frictions are

negligible.
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1 Introduction

Many researchers and practitioners believe that a truly special feature of digital money, compared to

traditional money, is its programmability. This characteristic allows for the embedding of software

programs into digital money to automatically enforce pre-speci�ed rules when certain conditions are

met, eliminating the need for human intervention or intermediaries. Today, programmable money are

often implemented by blockchain-based smart contracts that execute state-dependent transactions of

monetary values recorded on a distributed ledger.1 For example, a smart contract can execute or block

a payment transfer according to pre-de�ned conditions (e.g., delivery or expiry date). Kahn and von

Oordt (2024) have even argued that it may be optimal to program an expiry date after which the digital

currency cannot be transferred and so looses its value. Proponents argue that programmable money has

the potential to revolutionize �nancial transactions by overcoming commitment problems, automating

transactions, and improving e�ciency. Some central banks also incorporate programmability into the

design of their central bank digital currencies.2

However, money balances that are programmed di�erently may possess distinct market values re-

�ecting their associated transferability, maturity, contractibility and risk. This variation could lead to

a deviation from the concept of the uniformity or "singleness" of the money stock, where each unit of

currency should maintain the same value and purchasing power as any other unit of the same denomi-

nation. The nature and the importance of the singleness of money is discussed in a recent BIS report

by Garratt and Shin (2023):

"Singleness ensures that monetary exchange is not subject to �uctuating exchange rates be-

tween di�erent forms of money, whether privately issued (e.g., deposits) or publicly issued

(e.g., cash). With singleness of money, an unambiguous unit of account supports all economic

transactions in society."

1A programmable money based on smart contracts de�ne the rules of the monetary system in the form of computer

scripts. These rules can be programmed in terms of state variables such as time, location, payment size, origin, and

destination.
2For example, the Banco Central do Brasil published guidelines for the implementation of Digital Real which emphasize

�the development of innovative models with the incorporation of technologies, such as smart contracts and programmable

money� (https://www.bcb.gov.br/detalhenoticia/667/noticia.). The e-CNY project also allows programmability that �en-

ables self-executing payments according to prede�ned conditions or terms agreed between two sides, so as to facilitate

business model innovation.� (http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf).

See Chiu, Kahn and Koeppl (2022) and Lee et al. (2024) for how tokenization and smart contracts in general can overcome

commitment problems.
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"However, creditworthiness alone is typically insu�cient to maintain singleness, as singleness

relies on the universally shared con�dence in the value of money among users. Even a minor

seed of doubt, whether justi�ed or not, can ripple through monetary exchanges and potentially

undermine money's role as a medium of exchange. In this context, 'moneyness' extends

beyond merely the absence of credit risk."

"To be clear, singleness of money does not preclude varying credit risks across intermediaries

(...) Singleness attributes to the payment, rather than to private liabilities as a store of

value." Garratt and Shin (2023)

This is an important consideration for the design of digital money. Indeed, some central bankers have ex-

pressed concerns that the introduction of programmable money could threaten the singleness of money.3

"If programmability becomes a highly desired feature of money, and its supply is freely devel-

oped, it could jeopardize the singleness of money. This might lead to the use of multiple units

of account in parallel within a country, or to a more fragile parity between di�erent repre-

sentations of the same unit of account." Speech by Ida Wolden Bache (Governor of Norges

Bank)

Given the innovative potential of programmability and its profound implications for maintaining the

singleness of money, fundamental research is required to guide policy decisions. However, there are cur-

rently no formal economic theories to answer questions on the interactions between the programmability

and the singleness of money such as:

� Why is programmable money bene�cial?

3Relatedly, Carolyn A. Wilkins, an external member of Bank of England Financial Policy Committee, argued in a

speech: �programming could also undermine the uniformity of money which is required to provide a safe base to the

�nancial system. One could easily imagine that a CBDC that had programmed restrictions would become a less pre-

ferred means of payment than other forms of money. It makes sense, therefore, that a digital pound would not include

any government or central bank-initiated programmable features, although users could set up their own programmable

payments if they wanted.� (https://wwwtest.bankofengland.co.uk/speech/2023/may/carolyn-wilkins-keynote-speech-at-

om�f). Furthermore, the 2023 Consultation Paper by the Bank of England and the HM Treasury: �We do not propose to

develop a digital pound that enables government or central bank-initiated programmable money. As discussed in Part B,

payments programmability could provide enhanced functionality for users to set rules on their payments. While it may

be possible to program the digital pound so that it could only work in certain ways, this is not relevant to HM Trea-

sury and the Bank's policy objectives for the digital pound. Further, this functionality could damage the uniformity of

the CBDC and cause user distrust.� (https://www.bankofengland.co.uk/-/media/boe/�les/paper/2023/the-digital-pound-

consultation-working-paper.pdf)
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� Why is the singleness of money important?

� Under which conditions does programmability con�ict with singleness?

� Should programmability be restricted to preserve the singleness of money?

This paper addresses these questions by developing a microfounded model of programmable money.

The environment below features agents with absence of double coincidence of wants so that a means of

payment is needed. Banks provide this means of payment which can be programmed to be more or less

liquid. Some buyers (L) are more likely to consume early and it is ine�cient that they consume late

but they cannot commit to refrain from consuming late. It is therefore e�cient that those buyers use

programmed money. Some other buyers (H) are less likely to consume early than late, however, it does

not matter for e�ciency when they consume. Those buyers do not care in general for programmed money.

Sellers also have some preference shocks and some (early sellers) would like to consume rather earlier

than later. Those sellers who want to consume earlier will have no lust for programmed money since it

cannot be spent, the other sellers (late sellers) will be indi�erent. Optimally, L buyers should meet late

sellers, and H sellers should trade with early sellers. But sellers do not know their types yet when they

trade with buyers. In addition, we will also introduce private information as another layer of ine�ciency:

the buyer's type is private information and some sellers cannot recognize programmed money from other

types of money. Our model endogenizes the creation of programmable money, and the liquidity values

of di�erently programmed monies (i.e., the degree of singleness). We use this framework to evaluate the

societal bene�ts of both programmability and singleness. We investigate the impact of informational

(represented by parameter π) and commitment frictions (represented by σL) on the equilibrium creation

of programmable monies and the degree of singleness, clarifying under what circumstances the prohibition

of programmability could enhance welfare.

Our study also suggests that singleness is not a necessary condition for optimality. Indeed, an

intervention that forces all monies to be traded at par, achieving perfect singleness, can be damaging as

the Gresham's law can apply with �bad� money driving out �good� ones.

The idea that the stock of money should remain uniform is not new but advances in new technology

makes it easier to program money, which brings some bene�ts. In addition, unlike traditional payment

services e.g., PayPal, blockchain-based cryptocurrencies bundle programmability with the digital rep-

resentation of money (Lee, 2021), implying that di�erently programmed cryptocurrencies cannot have

fungible digital representations...
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2 Environment

We consider a �nite-horizon model with four consecutive periods.4 In the �rst and the fourth periods,

agents trade in a centralized market (CM). In the second and third periods, agents are subject to bilateral

matching in a decentralized market. Hence, the four consecutive periods are denoted CM1, DM1, DM2

and CM2.There are a large number of short-lived agents: buyers, sellers and bankers. Buyers and

bankers enter the economy in CM1 and buyers exit at the end of the following DM2, while bankers exit

at the end of the following CM. Sellers enter the economy in DM1 and DM2 and exit at the end of the

following CM. The discount factor between CM1 and DM1 is β.5

Buyers

A buyer in CM1 can be of type i = L or type i = H with Pr(i = L) = fL and Pr(i = H) =

fH = 1 − fL. A type i = H,L buyer is subject to a shock that determines whether the buyer values

consumption in DM1 or DM2. Let q1be the consumption in DM1 and q2 the consumption in DM2.

Then the preferences of buyer i is

Ui(q1, q2) = ηiu(q1) + (1− ηi)ui(q2)

where ηi ∈ {0, 1} is a stochastic variable that takes value 1 with probability σi and 0 otherwise, and

where

u′(q) > 0, u′′(q) < 0, u′(0) = ∞

uL(q) = εq

uH(q) = u(q)

Hence, type L buyers derive utility u(q1) from consumption in DM1 with probability σL and derive

utility εq2 with ε < 1 from consumption in DM2 with probability 1− σL; Type H buyers derive utility

u(q1) from consumption in DM1 with probability σH and derive utility u(q2) from consumption in DM2

with probability 1− σH . Also, assume σL > σH . Therefore, L buyers are more likely to consume early

than H buyers, but in case they consume late, their marginal utility is (arbitrarily) low.

Sellers

There are two types of sellers. Some sellers enter the economy in DM1 and others enter in DM2.

Sellers in DM1 produce q1 with a linear cost function. They are subject to a consumption shock. With

4It is straightforward to present our model in a standard, in�nite-horizon monetary framework such as Lagos and Wright

(2005) by repeating the �nite economy in an overlapping-generations fashion.
5The timing and the size of discounting do not matter but introducing it facilitates the economic interpretation of the

model as it matches the feature in a standard monetary model such as Lagos and Wright (2005).
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Figure 1: Model Setup

probability αe, the seller is an early (e) seller who wants to consume in DM2 with a linear utility. With

probability 1 − αe, the seller is a late (ℓ) type who wants to consume in the CM with a linear utility

function. The type is not known at the time of DM1 production but it is randomly decided after the

DM1. Sellers in DM2 produce q2 with a linear cost function and want to consume in CM with a linear

utility function. The terms-of-trade in DM1 and DM2 are determined by TIOLI o�ers from the buyers.

Bankers

Bankers create and sell tokens in one CM for ϕ numeraire goods and keep reserve of the numeraire

good to redeem them in the following CM. We assume that reserves generate a return rate 1/β (this

implies that CIA does not distort consumption). The tokens can be programmed so that it is transferable

in DM2 with probability p ∈ {0, 1}. The price at which the bank sells the token is thus a function of p:

ϕp. The token can always be transferred in DM1. However, in DM2, the token can either be programmed

(p = 1) so that it is not transferableor it is not programmed (p = 0) and it is always transferable.. The

banker can commit to the promise that the bearer of a token can redeem it for one unit of numeraire

goods in the next CM. The banker is subject to a balance-budget constraint that the numeraire good

reserve needs to be su�cient for redemption. Buyers of type i can purchase any portfolio (mi0,mi1)

constituted of p = 0 tokens and p = 1 tokens respectively.

First best benchmark
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It is straightforward to compute the �rst best allocation in this economy. In DM1, all buyers should

consume q∗ solving u′(q∗) = 1. In DM2, H-buyers should consume q∗, while L-buyers should not consume

since their marginal utility is always lower than the marginal cost of production. All other consumption

levels are indeterminate.

Finally, we de�ne the meaning of singleness and programmability in our simple setup. We use Mi

to denote the set of tokens that buyer i is holding in equilibrium. Then Mi ⊂ {{0, 1}, {0}, {1}} for

i = H,L, where for example MH = {0, 1} and ML = {1} means that H buyers hold a portfolio of both

p = 1 and p = 0 tokens, while L-buyers only hold p = 1 tokens.

De�nition 1. The degree of singleness, S, measures the fraction of meetings where all balances created

in equilibrium, ML∪MH , are valued the same. The degree of programmability, P, measures the fraction

of balances created in equilibrium with p = 1:

P =
fLmL1 + fHmH1∑

p=0,1 fLmLp + fHmHp
.

3 Equilibrium Characterization with Perfect Recognizability

With probability αe, the seller in DM1 wants to consume in DM2 and with probability 1−αe, the seller

wants to consume in the CM2. The type is known only ex-post. So a portfolio mi = (mi0,mi1) can

induce the seller to sell qi1 = mi1(1 − αe) + mi0. We now derive the transaction values of tokens in

each market. In DM2, each token p can buy 1− p units of q2. In particular, since p = 1 tokens are not

transferable, they cannot buy anything in DM2. In DM1, each token p transferred to a seller can buy

1− αe + αe(1− p) unit of q1.

The demand for p-tokens To derive the demand for tokens, we �rst determine the marginal value

of a token p to a type L buyer in the DM,

∂v′L(mi)

∂mip
= σLu

′(q1L)[1− αe + αe(1− p)] + (1− σL)ε(1− p),

where the buyer buys 1 − αe + αe(1 − p) units from a seller in DM1 w.p. σL, and buys (1 − p) units

from a seller in DM2 w.p. 1−σL to derive marginal utility ε. In the CM, given the price of token p, ϕp,

a type L buyer's FOC wrt the quantity of mip is

−ϕp +
∂v′L(mi)

∂mip
≤ 0.
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The marginal value of a token p to a type H buyer in the DM is

∂v′H(mi)

∂mip
= σHu′(q1H)[1− αe + αe(1− p)] + (1− σH)u′(q2H)(1− p),

where the buyer buys 1−αe +αe(1− p) unit from a seller in DM1 w.p. σ1, and buys (1− p) units from

a seller in DM2 w.p. 1− σL. In the CM, given the price of token p, ϕp, a type H buyer's FOC wrt the

quantity of mip is

−ϕp +
∂v′H(mi)

∂mip
≤ 0.

The bank supply of p-tokens Being risk neutral, the bank will supply any amount of p-tokens to

buyers as long as it makes a non-negative pro�t. We denote by ϕp the real revenue of selling a p-token.

For each token, the bank invests ϕp, which generates ϕp/β in the last CM. With this revenue, the bank

has to ful�ll its promise to redeem token holders. Therefore the bank's problem pins down the price of

each p-token, as a function of the number of tokens that will be redeemed.

If a p-token is held solely by type i buyers, then the expected redemption is

σi[1− αe + αe(1− p)] + (1− σi)(1− p),

and the zero-pro�t condition of the banker gives

ϕp = β(σi(1− αe + αe(1− p)) + (1− σi)(1− p)). (1)

Otherwise, if a p-token is held by both types, then the zero-pro�t condition of the banker is given by

ϕp = β
1

fLmLp + fHmHp

∑
i=L,H

ρimip[σi(1− αe + αe(1− p)) + (1− σi)(1− p)]. (2)

Proposition 1. With ε < 1 and σL > σH , the unique equilibrium with perfect recognizability is such

that type L buyers only hold p = 1-tokens and type H buyers only hold p = 0-tokens. The equilibrium

allocation does not depend on the value of αe.

With perfect recognizability, sellers know which token they are purchasing from buyers. Therefore,

sellers are producing more for p = 0-tokens than for p = 1-tokens. This would induce L-buyers to hold

p = 0-tokens. However, when they purchase tokens from the bank, p = 0 tokens are more expensive than

p = 1-tokens because they are redeemed more often. As L-sellers derive little utility in CM2 (ε < 1) and

given they do not consume in CM2 often (σL > σH), they prefer to purchase the cheaper p = 1-tokens,

that better accommodate their (expected) consumption needs.
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Prohibition of programmable money

Next, we consider the case where the regulator prohibits programmable money . Therefore there are only

tokens with p = 0, which is bank deposit as we know it (it can be transferred at will). The equilibrium

conditions for the L and H type buyers, and the banker are given by:

ϕ0 = βσLu
′(q1L) + β(1− σL)ε,

ϕ0 = βu′(q1H),

ϕ0 = β.

Since ε < 1, this then implies that u′(q1H) = 1 < u′(q1L). Given H-buyers have a larger marginal

utility of consumption in both DMs relative to L-buyers, they are willing to pay more than L-buyers

for p = 0-tokens. Therefore L-sellers �nd these tokens too expensive, they do not acquire as many than

H-buyers and as a result, they reduce their consumption. Therefore the equilibrium allocation without

programmability cannot be optimal. We summarize the results as follows,

Proposition 2. With perfect recognizability, the �rst-best allocation is supported with S = 0 and P =

fL
fL+fH(1−αe)

. Prohibiting programmability makes type L buyers worse o�, reducing social welfare, even

though it can fully restore the singleness of money. In this sense, programmability is essential.

Interestingly, prohibiting programmable money hurts those L-buyers who, we would think, bene�t

from being able to spend it in DM2 (relative to programmable tokens). The reason is a pecuniary

externality of sort: Banks anticipate that all their tokens will be redeemed and they respond by increasing

the price (ϕ0). As a consequence, L buyers are worse o�, since that price is too high relative to their

marginal value of consumption in DM2.

4 Imperfect Recognizability

Next we consider the case where tokens can be programmed, but we now assume that a fraction π of

DM1 sellers cannot observe the token characteristic p. Those sellers who cannot observe p may want to

use contractual terms to learn them. However, this is not possible, because all buyers active in DM1

(selling their token) derive the same utility from consumption. Faced with an unknown token, it is

natural to assume that sellers use the population average to value that token. So a unit of (unknown)

token can induce an uninformed seller to sell qπ1 = (1 − αe) + αe(1 − p̃) units of DM1 goods, which is

the expected payo� of consuming a unit in the CM plus the expected payo� of consuming in DM2 given
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that the fraction of transferable tokens is

1− p̃ = 1− P =
fLmL0 + fHmH0∑

p=0,1 fLmLp + fHmHp
.

Then the marginal value of a token p to a type L buyer in the DM is

∂vL(mL)

∂mLp
= σLu

′(q1L)(1− π) [1− αe + αe(1− p)]

+σLu
′(qπ1L)π [1− αe + αe(1− p̃)] + (1− σL)ε(1− p).

In the CM, given the price of token p, ϕp, a type L buyer's FOC wrt the quantity of mLp is

−ϕp +
∂vL(mL)

∂mLp
≤ 0.

The marginal value of a token p to a type H buyer in the DM is

∂vH(mH)

∂mHp
= σHu′(q1H)(1− π) [1− αe + αe(1− p)]

+σHu′(qπ1H)π [1− αe + αe(1− p̃)] + (1− σH)u′(q2H)(1− p).

In the CM, given the price of token p, ϕp, a type H buyer's FOC wrt the quantity of mHp is

−ϕp +
∂vH(mH)

∂mHp
≤ 0.

Next we show that it is still an equilibrium that type L-buyers only hold p = 1-tokens and type

H-buyers only hold p = 0-tokens.

Proposition 3. By continuity, for π not too high, MH = {0}, ML = {1} is an equilibrium of the

economy with imperfect recognizability.

The result in Proposition 3 is intuitive. If the adverse selection problem in DM1 is not too severe (π

is small), the expected price of a token will not di�er too much from the price of the same token in the

equilibrium with perfect recognizability. Therefore, the incentives of H and L buyers to only hod one

type of token are preserved.

Proof. Consider an equilibrium with MH = {0},ML = {1}. The equilibrium conditions for the type L-

and H-buyers, and the bank are now given by:
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ϕ1 = βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(qπ1L)π [1− αe + αe(1− p̃)] ,

ϕ0 = βσHu′(q1H)(1− π) + βσHu′(qπ1H)π [1− αe + αe(1− p̃)] + β(1− σH)u′(q2H),

ϕ0 = β,

ϕ1 = βσL(1− αe),

1− p̃ =
fHmH0

fLmL1 + fHmH0
.

Since H-buyers only hold p = 0-tokens that are transferable in both DMs, the consumption in DM1

when they meet an informed seller is equal to their consumption in DM2, q1H = q2H ≡ qH . Since they

hold mH0 units of p = 0-tokens, qH = mH0. However, when they meet an uninformed seller in DM1,

they can only obtain mH0 [1− αe + αe(1− p̃)] units of consumption. Therefore, we have

q1H = q2H =
qπ1H

1− αe + αe(1− p̃)
> qπ1H .

In contrast, for L-buyers who only hold p = 1-tokens, their consumption in DM1 is higher when they

meet an uninformed seller (relative to when they meet an informed one) because that uninformed seller

values the token at the average value. Therefore

q1L = mL1(1− αe) < mL1(1− αe + αe(1− p̃)) = qπ1L.

To verify that this is an equilibrium, we need to check that the �rst order conditions are satis�ed.

First, L-buyers should have no incentives to hold p = 0-tokens, that is

ϕ0 >
∂vL(mL)

∂mL0
,

or

1 > σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) + (1− σL)ε. (3)

Note that the FOC of L-buyers given ϕ1 implies that

σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃))

=σL(1− αe) + αeσLu
′(q1L)(1− π).

Using this result, inequality (3) becomes

1 > σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε. (4)
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Also, from the low type's FOC, we know that

βσL(1− αe) > βσLu
′(q1L)(1− π)(1− αe),

which implies that

1 > u′(q1L)(1− π).

Therefore we can bound the RHS of(4),

σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε

<σL(1− αe) + αeσL + (1− σL)ε

=σL + (1− σL)ε

<1.

This shows that (4) and therefore (3) always hold. Hence L-buyers have no incentives to hold p = 0-

tokens. Next, we also need to show that H-buyers have no incentive to hold p = 1-tokens. This is the

case if π is low enough so that

ϕ1 > βσHu′(q1H)(1− π)(1− αe) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)).

Proposition 4. In the equilibrium with MH = {0} and ML = {1} prohibiting programmability is

welfare-reducing for π not too large, and is welfare-improving for σL not too small.

Proof. When π = 0, the �rst-best allocation is supported with programmability, and not supported

without it. By the continuing existence of the MH = {0},ML = {1} equilibrium with imperfect

recognizability when π is not too large, welfare with programmability is close to the �rst best welfare

with π = 0. In particular, prohibiting programmability would create a �rst order loss in informed

meeting by moving away from the �rst allocations in those meetings, and would generate only a second

order gain by shifting the allocation in uninformed meetings, because there are few uninformed meetings

when π is small. We now examine the e�ect of σL in this equilibrium. When there is no programmability,

the social welfare is

W̃ = fL[σLW1L + (1− σL)W2L] + fH [σHW1H + (1− σH)W2H ]

where
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W1L = u(q1L)− q1L,

W2L = q2L(ε− 1),

W1H = u(q1H)− q1H ,

W2H = u(q2H)− q2H .

The equilibrium conditions imply

ϕ0 = βσLu
′(q1L) + β(1− σL)ε,

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H),

ϕ0 = β.

Hence, we have

1 = u′(q1H) = u′(q2H) = σLu
′(q1L) + (1− σL)ε,

implying that q1H = q∗H and q1L is arbitrarily close to q∗1L as σL → 1. As a result, W̃ approaches its

�rst-best level as σL → 1.

When σL = 1, the welfare with programmability is

W̄ = fL[(1− π)W1L + πWπ
1L] + fH [σH(1− π)W1H + σHπWπ

1H + (1− σH)W2H ]

with

W1L = u(q1L)− q1L

Wπ
1L = u(qπ1L)− qπ1L

W1H = u(q1H)− q1H

Wπ
1H = u(qπ1H)− (qπ1H)

W2H = u(q2H)− q2H

Note that

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q1H = mH0

q2H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))
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implying that

qπ1L = q1L
1− αe + αe(1− p̃)

1− αe

qπ1H = q1H(1− αe + αe(1− p̃)) = q2H(1− αe + αe(1− p̃)).

Hence, whenever p̃ < 1, some quantities are not at their �rst-best levels. Therefore, W̄ is lower than its

�rst-best level when σL = 1. By continuity, this is true for σLclose to 1

5 Special Cases

Example with Log Utility

As shown in the next section, for CRRA preference in general, we only need to consider cases (i) and

(iv).

Case (i) MH = {0},ML = {1}

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ1 = βσL
(1− π)

q1L
(1− αe) + βσL

π

qπ1L
(1− αe + αe(1− p̃))

ϕ0 = βσH
(1− π)

q1H
+ βσH

π

qπ1H
(1− αe + αe(1− p̃)) + β

(1− σH)

q2H

ϕ0 = β

ϕ1 = βσL(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0

Equilibrium quantities and prices

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q1H = mH0

q2H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))

14



mL1 =
1

1− αe

mH0 = 1

1− p̃ =
fH

fL
1−αe

+ fH

ϕ0 = β

ϕ1 = βσL(1− αe)

Type H has no incentives to hold p = 1-tokens if

σL(1− αe) > σH(1− π)(1− αe) + σHπ.

σL(1− αe) > σH(1− αe) + σHπ(1− (1− αe)).

(σL − σH) (1− αe)

σHαe
> π.

Case (iv) MH = {0, 1},ML = {1}

The equilibrium conditions for the L- and H-buyers and the bank are given by:

ϕ1 = βσL
(1− π)

q1L
(1− αe) + βσL

π

qπ1L
(1− αe + αe(1− p̃))

ϕ1 = βσH
(1− π)

q1H
(1− αe) + βσH

π

qπ1H
(1− αe + αe(1− p̃))

ϕ0 = βσH
(1− π)

q1H
+ βσH

π

qπ1H
(1− αe + αe(1− p̃)) + β

(1− σH)

q2H

ϕ0 = β

ϕ1 = β
σLfLmL1 + σHfHmH1

fLmL1 + fHmH1
(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0 + fHmH1

Equilibrium quantities

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃)) =
q1L

1− αe
(1− αe + αe(1− p̃))

q1H = mH0 +mH1(1− αe)

q2H = mH0

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))
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ϕ0 = β

ϕ1 = βσL
(1− αe)

q1L

Type L has no incentives to hold p = 0-tokens whenever

ϕ0 > βσL
(1− π)

q1L
(1− αe) + βσL

π

qπ1L
(1− αe + αe(1− p̃)) + β(1− σL)ε

1 >
σLfLmL1 + σHfHmH1

fLmL1 + fHmH1
(1− αe) + (1− σL)ε

Since σLfLmL1+σHfHmH1

fLmL1+fHmH1
∈ (σH , σL), this condition holds whenever

1 > σL(1− αe) + (1− σL)ε,

which is always satis�ed since αe > 0 and ε < 1. We now verify conditions such that, at the given prices,

H-buyers want to acquire type p = 1-tokens. Suppose a H-buyer does not acquire p = 1-tokens, but only

p = 0-tokens. Then she consumes

q1H = mH0

q2H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))

where mH0 is given by

ϕ0 = βσH
(1− π)

mH0
+ βσH

π

mH0
+ β

(1− σH)

mH0

and so mH0 = 1. Then q1H = q2H = 1 and qπ1H = 1 − αe + αe(1 − p̃). The �rst order condition with

respect to p = 1-tokens is

−ϕ1 + βσH
(1− π)

q1H
(1− αe) + βσH

π

qπ1H
(1− αe + αe(1− p̃)) =

−ϕ1 + βσH(1− π)(1− αe) + βσHπ

and since

ϕ1 ∈ (β(1− αe)σH , β(1− αe)σL)

the H-buyer will prefer to acquire p = 1-tokens if

β(1− αe)σL < βσH(1− π)(1− αe) + βσHπ,
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or,

(1− αe) (σL − σH)

σHαe
< π.

This shows the following result,

Proposition 5. When

π ≤ π̄ ≡ (σL − σH)(1− αe)

αeσH
,

the unique equilibrium is �separating�: MH = {0},ML = {1}. When π > π̄, the unique equilibrium is

�pooling�: MH = {0, 1},ML = {1}.

The degree of singleness, S is given by

S =

π, with programmable money

1, without programmable money

(5)

and the degree of programmability is given by

P =

p̃, with programmable money

0, without programmable money

Proposition 6. Imperfect recognizability increases programmability and singleness: a higher π leads to

a higher degree of singleness S,and a (weakly) higher degree of programmability P.

Proof. The �rst part is straightforward since (5) shows that S is increasing in π. For the second part,

when π < π̄, the equilibrium degree of programmability is

p̃ = 1− fH
fL

1−αe
+ fH

which does not depend on π. Therefore, increasing π in this range does not increase programmability.

When π > π̄, the degree of programmability is

p̃ = 1− fHmH0

fLmL1 + fHmH0 + fHmH1

where

ϕ1mH1 =
[βσL(1− αe)− ϕ1]

[ϕ1 − β(1− αe)σH ]

σLfL
fH

β

ϕ1mH0 = ϕ1β
(1− σH)

β − ϕ1

ϕ1mL1 = βσL

17



Hence

p̃ = 1−
fHϕ1β

(1−σH)
β−ϕ1

fLβσL + fHϕ1β
(1−σH)
β−ϕ1

+ fH
[βσL(1−αe)−ϕ1]
[ϕ1−β(1−αe)σH ]

σLfL
fH

β
= 1− A(ϕ1)

cst+A(ϕ1) +B(ϕ1)

where A′(ϕ1) > 0 and B′(ϕ1) < 0. Hence

p̃′(ϕ1) = −A′(ϕ1) [cst+A(ϕ1) +B(ϕ1)]− [A′(ϕ1) +B′(ϕ1)]A(ϕ1)

[cst+A(ϕ1) +B(ϕ1)]
2

= −A′(ϕ1) [cst+B(ϕ1)]−B′(ϕ1)A(ϕ1)

[cst+A(ϕ1) +B(ϕ1)]
2 < 0

where the inequality follows from A′(ϕ1) > 0 and B′(ϕ1) < 0. So, and intuitively, the degree of

programmability is decreasing with the price of p = 1-tokens.

Next, ϕ1 is implicitly given by (From FOC of buyer H wrt mH1)

ϕ1 = βσH

[
(1− π)

(1− αe)

mH0 +mH1(1− αe)
+ π

1

(mH0 +mH1)

]
(6)

So if π increases, more weight is given to uninformed-MU of cons 1
(mH0+mH1)

than to informed-MU of cons

(1−αe)
mH0+mH1(1−αe)

. At the same time, MUC-informed is lower than MUC-uninformed since αe > 0. Hence,

when π increases, the expected MUC increases, holding everything else constant, the RHS increases

(because more weight is given to the event with higher MUC) . This tends to increase ϕ1. However,

there is reshu�ing of portfolio when ϕ1 increases, since

mH0 = β
(1− σH)

β − ϕ1

mH1 =
1

ϕ1

[βσL(1− αe)− ϕ1]

[ϕ1 − β(1− αe)σH ]

σLfL
fH

β

so mH0 increases with ϕ1, but mH1 decreases with it. If the decline in mH1 is too pronounced, so that

mH0 + mH1(1 − αe) decreases fast with ϕ1, then both MUC increases (by a lot) so that there are no

increases in ϕ1 that can re-establish the equality (after the increase in π). Then ϕ1 has to drop (and

not increase). In other words, if the elasticity of q1H = mH0 +mH1(1 − αe) with respect to ϕ1 is less

than -1, then the RHS will be amplifying the increase in ϕ1, so that ϕ1 should decrease rather than

increase. Below we show that elasticity of q1H = mH0 +mH1(1− αe) with respect to ϕ1 is less than -1

is a su�cient condition for dϕ1/dπ < 0.

The �rst step is to re-arrange (6),

ϕ1mH0 + ϕ1mH1(1− αe) = βσH(1− αe) + βσHπαe
ϕ1mH0

(ϕ1mH0 + ϕ1mH1)
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or

ϕ1
(1− σH)

β − ϕ1
+

[βσL(1− αe)− ϕ1]

[ϕ1 − β(1− αe)σH ]

σLfL
fH

(1− αe) = σH(1− αe) + σHπαe

ϕ1β
(1−σH)
β−ϕ1[

ϕ1β
(1−σH)
β−ϕ1

+ [βσL(1−αe)−ϕ1]
[ϕ1−β(1−αe)σH ]

σLfL
fH

β
]

1

fH
A(ϕ1) +

1

fH
B(ϕ1)(1− αe) = σH(1− αe) + σHπαe

1
fH

A(ϕ1)[
1
fH

A(ϕ1) +
1
fH

B(ϕ1)
]

A(ϕ1) +B(ϕ1)(1− αe) = fHσH(1− αe) + πfHσHαe
A(ϕ1)

[A(ϕ1) +B(ϕ1)]

(A(ϕ1) = fHϕ1mH0, and B(ϕ1) =
fH

1−αe
ϕ1mH1) Hence,

[A′(ϕ1) +B′(ϕ1)(1− αe)] dϕ1 = fHσHαe
A(ϕ1)

[A(ϕ1) +B(ϕ1)]
dπ + πfHσHαe

A′(ϕ1) [A(ϕ1) +B(ϕ1)]−A(ϕ1) [A
′(ϕ1) +B′(ϕ1)]

[A(ϕ1) +B(ϕ1)]
2 dϕ1

[A′(ϕ1) +B′(ϕ1)(1− αe)] dϕ1 = fHσHαe
A(ϕ1)

[A(ϕ1) +B(ϕ1)]
dπ + πfHσHαe

A′(ϕ1)B(ϕ1)−A(ϕ1)B
′(ϕ1)

[A(ϕ1) +B(ϕ1)]
2 dϕ1

Therefore

dϕ1

dπ
= fHσHαe

A(ϕ1)
[A(ϕ1)+B(ϕ1)][

A′(ϕ1) +B′(ϕ1)(1− αe)− fHσHαeπ
B(ϕ1)A′(ϕ1)−B′(ϕ1)A(ϕ1)

[A(ϕ1)+B(ϕ1)]
2

]
Since A′(ϕ1) > 0 and B′(ϕ1) < 0, the sign of the denominator is not clear. But a su�cient condition for

it to be negative is A′(ϕ1) +B′(ϕ1)(1− αe) ≤ 0, or (ϕ1mH1 more responsive than ϕ1mH0)

A(ϕ1) = fHϕ1β
(1− σH)

β − ϕ1

A′(ϕ1) = fHβ
(1− σH)

β − ϕ1
+ fHϕ1β

(1− σH)

(β − ϕ1)2

A′(ϕ1) = fHβ
(1− σH)(β − ϕ1) + ϕ1(1− σH)

(β − ϕ1)2

A′(ϕ1) = fHβ2 (1− σH)

(β − ϕ1)2

and

B(ϕ1) = fH
[βσL(1− αe)− ϕ1]

[ϕ1 − β(1− αe)σH ]

σLfL
fH

β

B′(ϕ1) = σLfLβ
− [ϕ1 − β(1− αe)σH ]− [βσL(1− αe)− ϕ1]

[ϕ1 − β(1− αe)σH ]
2

B′(ϕ1) = −σLfLβ
2 (1− αe) (σL − σH)

[ϕ1 − β(1− αe)σH ]
2

Therefore,

A′(ϕ1) +B′(ϕ1)(1− αe) = fHβ2 (1− σH)

(β − ϕ1)2
− σLfLβ

2 (1− αe)
2 (σL − σH)

[ϕ1 − β(1− αe)σH ]
2
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This is negative whenever

fHβ2 (1− σH)

(β − ϕ1)2
≤ σLfLβ

2 (1− αe)
2 (σL − σH)

[ϕ1 − β(1− αe)σH ]
2

[ϕ1 − β(1− αe)σH ]
2

(β − ϕ1)2
≤ σLfL

fH
(1− αe)

2 (σL − σH)

(1− σH)

Since ϕ1 ∈ (βσH(1− αe), βσL(1− αe)) and the LHS is increasing in ϕ1, a su�cient condition is

[βσL(1− αe)− β(1− αe)σH ]
2

(β − βσL(1− αe))2
≤ σLfL

fH
(1− αe)

2 (σL − σH)

(1− σH)

β2 (σL − σH)
2
(1− αe)

2

β2(1− σL(1− αe))2
≤ σLfL

fH
(1− αe)

2 (σL − σH)

(1− σH)

(σL − σH)

(1− σL(1− αe))2
≤ σLfL

fH

1

(1− σH)

Then dϕ1/dπ < 0 and then p̃ is increasing in π in the equilibrium where π > π̄.

Numerical Example

Comparative statics wrt αe: For αe ∈ (0, 0.095), case i is an equilibrium, for αe ∈ (0.095, 1), case iv is

an equilibrium.

������
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Figure 2: E�ects of αe (dash: welfare without programmability)

Figure 3: E�ects of π (dash: welfare without programmability)
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Appendix

Proof of Proposition 1:

In equilibrium, there are potentially two tokens in circulation: p1 = 0 and p0 = 1. We use Mi to

denote the set of tokens chosen by type i. There are potentially nine equilibrium outcomes.

ML

{1} {0} {0,1}

{1} x x x

MH {0} i ii iii

{0,1} iv v vi

Obviously, type H holding only p1 is not an equilibrium because q2H = 0 and, for any �nite ϕ0, type

H have an incentive to hold some p0. If there were initially no p0 tokens, bankers can make a pro�t by

creating some. Hence, we only need to consider six remaining cases.

Case (i): MH = {0},ML = {1}

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe)

Since q1H = q2H ≡ qH , we have

ϕ0 = βu′(qH)

or

u′(qH) = 1.

Type H has no incentive to hold p1 if

ϕ1 > βσHu′(qH)(1− αe)

σL > σH .

and type L has not incentives to hold p0if

ϕ0 > βσLu
′(q1L) + β(1− σL)ε
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or

1 > ε.

So this is an equilibrium.

Case (ii): MH = {0},ML = {0}

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

q1H = q2H ≡ qH

Hence we have

1 = u′(qH) = σLu
′(q1L) + (1− σL)ε.

We now check the incentives to o�er p1 to serve type L only. Type L has an incentive to hold if

ϕ1 ≤ βσLu
′(q1L)(1− αe)

⇒ϕ1 ≤ β(1− (1− σL)ε)(1− αe).

Type H has no incentives to hold if

ϕ1 > βσHu′(qH)(1− αe) = βσH(1− αe)

And the banker makes non-zero pro�t if

ϕ1 > βσL(1− αe)

Since σL > σH , it is pro�table to introduce p1 i�

1− (1− σL)ε > σL

or

1 > ε.

Since the proposed equilibrium can be disturbed, this is not an equilibrium.

Case (iii) :MH = {0},ML = {0, 1}
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The equilibrium conditions for the L type, H type and the banker are given by:

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe)

These imply that

β = βσL + β(1− σL)ε

or

1 = σL + (1− σL)ε

which contracts with the assumption that ε < 1. So this is not an equilibrium.

Case (iv) :MH = {0, 1},ML = {1}

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ1 = βσHu′(q1H)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H) =
ϕ1

(1− αe)
+ β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = β
fLmLσL + fHmHσH

fLmL + fHmH
(1− αe)

Note that the last condition implies that

ϕ1 > βσH(1− αe),

which, together with the second FOC above, imply that

u′(q1H) > 1.

But the third FOC above also implies that

β =
ϕ1

(1− αe)
+ β(1− σH)u′(q2H) > βσH + β(1− σH)u′(q2H)
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implying

u′(q2H) < 1.

This contradicts with the fact that

q1H ≥ q2H .

So this is not an equilibrium.

Case (v) :MH = {0, 1},ML = {0}

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ1 = βσHu′(q1H)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H) =
ϕ1

(1− αe)
+ β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσH(1− αe)

The last three conditions imply that

ϕ0 = β = βσH + β(1− σH)u′(q2H)

implying

u′(q2H) = 1.

The �rst FOC implies that

1 = σLu
′(q1L) + (1− σL)ε

implying that

u′(q1L) > 1

Finally, the fact that type L does not hold p1 requires that

ϕ1 > βσLu
′(q1L)(1− αe)

or

1 >
σH

σL
> u′(q1L)

but this contradicts with the condition above. So this is not an equilibrium.

Case (vi) :MH = {0, 1},ML = {0, 1}

25



The equilibrium conditions for the L type, H type and the banker are given by:

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ1 = βσHu′(q1H)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = β
fLmLσL + fHmHσH

fLmL + fHmH
(1− αe)

The �rst four conditions imply that

ϕ0 = ϕ1/(1− αe) + β(1− σL)ε

ϕ0 = ϕ1/(1− αe) + β(1− σH)u′(q2H)

implying

1 >
1− σL

1− σH
ε = u′(q2H)

which then implies that

1 > u′(q2H) ≥ u′(q1H)

but this contradicts with the condition that

β = ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H).

So this is not an equilibrium.
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To prove: Case (i) and (iv) re equilibria with CRRA preferences:

CASE (i) : Consider an equilibrium with MH = {0},ML = {1}

The consumption levels are then

q1H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))

q2H = mH0

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q2L = 0

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ1 = βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(qπ1L)π(1− αe + αe(1− p̃))

ϕ0 = βσHu′(q1H)(1− π) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0

Since mH0 = q1H and (1− αe + αe(1− p̃))mH0 = qπ1H we have

q1H =
qπ1H

1− αe + αe(1− p̃)

Since q1H = q2H ≡ qH , we have

q1H = q2H =
qπ1H

1− αe + αe(1− p̃)

First, type L has no incentives to hold p0:

ϕ0 > βσLu
′(q1L)(1− π) + βσLu

′(qπ1L)π(1− αe + αe(1− p̃)) + β(1− σL)ε

or

1 > σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) + (1− σL)ε

Note that the FOC of the low type given ϕ1 implies that (setting p = 0):

−ϕp + βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(qπ1L)π(1− αe + αe(1− p̃)) = 0

−σL(1− αe) + σLu
′(q1L)(1− π)(1− αe) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) = 0
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so

σLu
′(q1L)(1− π)(1− αe) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) = σL(1− αe)

σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃))

=σL(1− αe) + αeσLu
′(q1L)(1− π).

Using this result, the above condition becomes

1 > σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε

Also, from the low type's FOC, we know that

βσL(1− αe) > βσLu
′(q1L)(1− π)(1− αe)

⇒ 1 > u′(q1L)(1− π)

Therefore the RHS of the above condition is

σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε

<σL(1− αe) + αeσL + (1− σL)ε

=σL + (1− σL)ε

<1.

Hence the low type has no incentives to hold p0.

Next, type H has no incentives to hold p1 if

ϕ1 > βσHu′(q1H)(1− π)(1− αe) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)).

This requires

βσL(1− αe) > βσHu′(q1H)(1− π)(1− αe) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)).︸ ︷︷ ︸
=ϕ0−β(1−σH)u′(q2H)

σL(1− αe) + (1− σH)u′(q2H) > 1

Notice that (FOC H):

1 = u′(q2H)− πσH [u′(q2H)− u′(qπ1H)(1− αe + αe(1− p̃))]

1 = u′(q2H)− πσH [u′(q2H)− u′(q2H(1− αe + αe(1− p̃)))(1− αe + αe(1− p̃))]

1 = u′(q2H)− πσH

q2H
[u′(q2H)q2H − u′(q2H(1− αe + αe(1− p̃)))q2H(1− αe + αe(1− p̃))]
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1 = u′(q1H)− πσH [u′(q2H)− u′(qπ1H)(1− αe + αe(1− p̃))]

1 = u′(q1H)
[
1− πσH + πσH(1− αe + αe(1− p̃))k

]
Since u is concave, u′′(q) < 0 for all q. Suppose the coe�cient of relative risk aversion is less than 1,

then u′(x)x is increasing. Then u′(αq)αq < u′(q)q for all α < 1. In this case, (or in the homothetic case)

u′(q2H) ≥ 1.

Hence H has no incentive to hold p1 whenever

βσL(1− αe) > βσHu′(q1H)
[
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

]
.

σL(1− αe)

σH
>

[
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

]
[1− πσH + πσH(1− αe + αe(1− p̃))k]

.

Since p̃ < 1 and does not go to one as αe → 1 (if anything p̃ → 0 in that case) the inequality

above shows the conjecture that for αe su�ciently high, this equilibrium no longer exists

because ϕ1 becomes so low that the H type chooses to hold some p1 token.

CASE (ii) : Consider an equilibrium with MH = {0},ML = {0}

The consumption levels are then

q1H = qπ1H = q2H = mH0

q1L = qπ1L = q2L = mL0

The equilibrium conditions for the L type, H type and the banker are given by:

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ0 = βu′(q1H)

ϕ0 = β

p̃ = 0

We now check the incentives to o�er p1 to serve type L only. Type L has an incentive to hold if

ϕ1 ≤ βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(q1L)π(1− αe + αe(1− p̃))

So

ϕ1 ≤ βσLu
′(q1L) [(1− αe) + παe(1− p̃)]

⇒ ϕ1 ≤ β(1− (1− σL)ε) [(1− αe) + παe(1− p̃)]
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Type H has no incentives to hold if

ϕ1 > βσHu′(q1H)(1− π)(1− αe) + βσHu′(q1H)π(1− αe + αe(1− p̃))

> βσHu′(q1H) [(1− αe) + παe(1− p̃))]

And the banker makes non-zero pro�t if

ϕ1 > βσL(1− αe)

It is pro�table to introduce p1 i�

β(1− (1− σL)ε) [(1− αe) + παe(1− p̃)] > βσL(1− αe)

(1− ε+ σLε) [(1− αe) + παe(1− p̃)] > σL(1− αe)

in the worst case scenario p̃ = 1 then it is pro�table to introduce p1 whenever

1 ≥ ε,

which is always the case. So MH = {0},ML = {0} cannot be an equilibrium.

CASE (iii): Consider an equilibrium with MH = {0},ML = {0, 1}

The consumption levels are then

q1H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))

q2H = mH0

q1L = mL0 +mL1(1− αe)

qπ1L = (mL0 +mL1) (1− αe + αe(1− p̃))

q2L = mL0
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The equilibrium conditions for the L type, H type and the banker are given by:

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ1 = βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ0 = βσH(1− π)u′(q1H) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe)

1− p̃ =
fHmH0 + fLmL0

fLmL1 + fLmL0 + fHmH0
> 0

Notice (important for below) that the second FOC implies

1 > (1− π)u′(q1L)

This implies

1 = σL [(1− π)u′(q1L) + πu′(qπ1L)(1− αe + αe(1− p̃))] + (1− σL)ε

σL(1− αe) = σL [(1− π)u′(q1L) + πu′(qπ1L)(1− αe + αe(1− p̃))]− σL(1− π)u′(q1L)αe

and subtracting both equations,

1− σL(1− αe) = (1− σL)ε+ σL(1− π)u′(q1L)αe

1− σL + σLαe = (1− σL)ε+ σL(1− π)u′(q1L)αe

Since 1 > (1 − π)u′(q1L), this contradicts ε < 1. So MH = {0},ML = {0, 1} cannot be an equilib-

rium.

CASE (iv): Consider an equilibrium with MH = {0, 1},ML = {1}

In this case, the consumption levels are

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q2L = 0

and

q1H = mH0 +mH1(1− αe) ≥ (mH0 +mH1) (1− αe) ≡ q̃H

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))

q2H = mH0 ≤ q1H
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The equilibrium conditions are

ϕ1 = βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ1 = βσH(1− π)u′(q1H)(1− αe) + βσHπu′(qπ1H)(1− αe + αe(1− p̃))

ϕ0 > βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ0 = βσH(1− π)u′(q1H) + βσHπu′(qπ1H)(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = β
σL (fLmL1) + σH (fHmH1)

fLmL1 + fHmH1
(1− αe) = βϕ̃(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0 + fHmH1
< 1

This is an equilibrium condition whenever at mH1 = 0, the H buyer wants to purchase p1. De�ne

q̃1H = mH0

q̃π1H = mH0(1− αe + αe(1− p̃))

q2H = mH0

Then H buyer wants to buy p1 i�

ϕ1 < βσH(1− π)u′(q̃1H)(1− αe) + βσHπu′(q̃π1H)(1− αe + αe(1− p̃))

ϕ1 < βσH(1− π)u′(q2H)(1− αe) + βσHπu′(q2H)(1− αe + αe(1− p̃))k

ϕ1 <
[
βσH(1− π)(1− αe) + βσHπ(1− αe + αe(1− p̃))k

]
u′(q2H)

and we also have

ϕ0 ≤ βσH(1− π)u′(q2H) + βσHπu′(q2H)(1− αe + αe(1− p̃))k + β(1− σH)u′(q2H)

1 ≤
[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
u′(q2H)

Hence a necessary condition is

ϕ1 <

[
βσH(1− π)(1− αe) + βσHπ(1− αe + αe(1− p̃))k

]
[1− σHπ + σHπ(1− αe + αe(1− p̃))k]

ϕ̃(1− αe) <
σH(1− π)(1− αe) + σHπ(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]

At the same time, it must be that L-buyers do not want to purchase p0. Using the FOC with respect

to p1, since

u′(q1L) =
ϕ̃(1− αe)

σL(1− π)(1− αe) + σLπ(1− αe + αe(1− p̃))k
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The FOC wrt p0 implies,

1 >
(1− π) + π(1− αe + αe(1− p̃))k

(1− π)(1− αe) + π(1− αe + αe(1− p̃))k
ϕ̃(1− αe) + (1− σL)ε.

Hence, MH = {0, 1},ML = {1} is an equilibrium whenever

ϕ̃(1− αe) < [1− (1− σL)ε]
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

(1− π) + π(1− αe + αe(1− p̃))k
,

and

ϕ̃(1− αe) < σH
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]

Which is the tighter upper-bound on ϕ̃(1− αe)?

[1− (1− σL)ε]
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

(1− π) + π(1− αe + αe(1− p̃))k
< σH

(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]

[1− (1− σL)ε]
[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
< σH

[
(1− π) + π(1− αe + αe(1− p̃))k

]
1− σH − (1− σL)ε

[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
< 0

or
1− σH

1− σL
< ε

[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
which cannot be. So the tighter constraint is

ϕ̃(1− αe) < σH
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]
.

Therefore that bounds is separating case (i) and (iv).

CASE (v) : Next consider the equilibrium with MH = {0, 1},ML = {0}

In this case, the consumption levels are

q1L = mL0

qπ1L = mL0(1− αe + αe(1− p̃)) ≤ q1L

q2L = mL0

and

q1H = mH0 +mH1(1− αe)

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))

q2H = mH0 ≤ q1H

We want to show that this cannot be an equilibrium because L buyers would want to purchase p1.
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The equilibrium conditions are

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ1 > βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ0 = βσH(1− π)u′(q1H) + βσHπu′(qπ1H)(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ1 = βσH(1− π)u′(q1H)(1− αe) + βσHπu′(qπ1H)(1− αe + αe(1− p̃))

ϕ0 = β

ϕ1 = βσH(1− αe)

1− p̃ =
σLfLmL0 + σHfHmH0

fLmL0 + fHmH0 + fHmH1
< 1

We have from the FOC of the L-buyer wrt p0,

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

1 =
[
(1− π) + π(1− αe + αe(1− p̃))k

]
σLu

′(q1L) + (1− σL)ε

1− (1− σL)ε

σL [(1− π) + π(1− αe + αe(1− p̃))k]
= u′(q1L)

and we need

ϕ1 > βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

σH(1− αe) >
[
σL(1− π)(1− αe) + σLπ(1− αe + αe(1− p̃))k

]
u′(q1L)

σH(1− αe) >

[
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

(1− π) + π(1− αe + αe(1− p̃))k

]
(1− (1− σL)ε)

or

σH

(1− αe)
[
(1− π) + π(1− αe + αe(1− p̃))k

]
[(1− π)(1− αe) + π(1− αe + αe(1− p̃))k]

> (1− (1− σL)ε)

Or rearranging,

(1− σL)ε > 1− σH

(1− αe)
[
(1− π) + π(1− αe + αe(1− p̃))k

]
[(1− π)(1− αe) + π(1− αe + αe(1− p̃))k]

= 1−AσH .

since A < 1 and

AσH < σH < σL

while ε < 1, the inequality above can never be satis�ed.

Hence MH = {0, 1},ML = {1} cannot be an equilibrium.

CASE (vi): Consider an equilibrium with MH = {0, 1},ML = {0, 1}
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In this case, the consumption levels are

q1L = mL0 +mL1(1− αe)

qπ1L = (mL0 +mL1) (1− αe + αe(1− p̃))

q2L = mL0

and

q1H = mH0 +mH1(1− αe)

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))

q2H = mH0 ≤ q1H

The equilibrium conditions are

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ1 = βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ0 = βσH(1− π)u′(q1H) + βσHπu′(qπ1H)(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ1 = βσH(1− π)u′(q1H)(1− αe) + βσHπu′(qπ1H)(1− αe + αe(1− p̃))

ϕ0 = β

ϕ1 = β
σL (fLmL1) + σH (fHmH1)

fLmL1 + fHmH1
(1− αe) = βϕ̃(1− αe)

1− p̃ =
fHmH0 + fLmL0

fLmL1 + fLmL0 + fHmH0 + fHmH1
< 1

Hence,

1 = σL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

and using that expression to get rid of u′(qπ1L) in the FOC wrt p1,

ϕ̃(1− αe) = σL(1− π)u′(q1L)(1− αe) + [1− σL(1− π)u′(q1L)− (1− σL)ε]

ϕ̃(1− αe) = 1− (1− σL)ε− αeσL(1− π)u′(q1L)

u′(q1L) =

[
1− ϕ̃(1− αe)− (1− σL)ε

]
αeσL(1− π)
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and now solving for u′(qπ1L) using FOC wrt p0,

1 = σL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

1 = σL(1− π)

[
1− ϕ̃(1− αe)− (1− σL)ε

]
αeσL(1− π)

+ βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

1 =

[
1− ϕ̃(1− αe)− (1− σL)ε

]
αe

+ βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

αe =
[
1− ϕ̃(1− αe)− (1− αe)(1− σL)ε

]
+ αeβσLπu

′(qπ1L)(1− αe + αe(1− p̃))[
ϕ̃+ (1− σL)ε− 1

]
(1− αe) = αeβσLπu

′(qπ1L)(1− αe + αe(1− p̃)) > 0

This requires

1 < ϕ̃+ (1− σL)ε

however, since ϕ̃ < σL this contradicts ε < 1.

Therefore MH = {0, 1},ML = {0, 1} cannot be an equilibrium.
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