Modeling the Credit Card Revolution: The Role of IT Reconsidered

Lukasz A. Drozd¹ Ricardo Serrano-Padial²

¹Wharton School of the University of Pennsylvania

²University of Wisconsin-Madison

April, 2014

The Role of IT in Credit Markets

The Role of IT in Credit Markets

The Role of IT in Credit Markets

- Conventional view of consumer default on unsecured debt
 - $\circ\,$ court-based process, truthful revelation of state
 - $\circ~$ exogenous eligibility defined by law

- Conventional view of consumer default on unsecured debt
 - $\circ\,$ court-based process, truthful revelation of state
 - exogenous eligibility defined by law
- Conventional approach at odds with data

- Conventional view of consumer default on unsecured debt
 - $\circ\,$ court-based process, truthful revelation of state
 - exogenous eligibility defined by law
- Conventional approach at odds with data
 - [1.] most debt discharged informally
 - Dawsey & Ausubel (2004): >50% of \$ defaulted on

- Conventional view of consumer default on unsecured debt
 - $\circ~$ court-based process, truthful revelation of state
 - exogenous eligibility defined by law
- Conventional approach at odds with data
 - [1.] most debt discharged informally
 - Dawsey & Ausubel (2004): >50% of \$ defaulted on
 - [2.] vast resources involved in collection of unpaid debt
 - employment: 350k+ (\approx 30% share of cc-receivables)

Basic Idea of the Paper

- In the model:
 - $\circ~$ Enforcement by the lending industry with access to IT
 - enforcement = Ex post 'State verification' (solvency status)
 - IT = signal extraction technology

Basic Idea of the Paper

- In the model:
 - $\circ~$ Enforcement by the lending industry with access to IT
 - enforcement = Ex post 'State verification' (solvency status)
 - IT = signal extraction technology

- Comparative Statics Exercise: IT progress
 - Increase in signal precision (main channel)
 - $\circ~$ Reduction in transaction costs

Basic Idea of the Paper

Portfolio Recovery Associates, Inc.

Preview of Results

 \Rightarrow accounts for most puzzling development in cc-market

Preview of Results

charge-off rate = (net) debt discharged / total debt

CONSUMERS

B,Y — First sub-period — Second sub-period —

LENDERS

LENDERS

LENDERS

LENDERS

Equilibrium Contracts

• Three types of equilibrium contracts

Equilibrium Contracts

• Three types of equilibrium contracts

• $L \leq L_{min}(d=1)$: *Risk-free* contracts (no default regardless of d)

Equilibrium Contracts

- Three types of equilibrium contracts
 - $L \leq L_{min}(d=1)$: *Risk-free* contracts (no default regardless of d)
 - $L > L_{min}(d = 1)$: Risky Contracts (positive probability of default)
 - $L \in (L_{min}(d=1), L_{min}(d=0)]$: Non-monitored contracts (default if d=1 for all P(s))
 - $L > L_{min}(d = 0)$: Monitored contracts (default if d = 1, or if d = 0 and $P(s) < \overline{P}$)

• Two types of monitoring strategies for monitored contracts

- Two types of monitoring strategies for monitored contracts
 - Full monitoring: $P(s) = \overline{P}$ for all s
 - prevents strategic default of non-distressed consumers
 - monitoring costs $\propto \bar{P}p$ (do not depend on π)

- Two types of monitoring strategies for monitored contracts
 - Full monitoring: $P(s) = \overline{P}$ for all s
 - prevents strategic default of non-distressed consumers
 - monitoring costs $\propto \bar{P}p$ (do not depend on π)
 - $\circ~$ Selective monitoring: $P(0)=\bar{P}~{\rm and}~P(1)<\bar{P}$
 - prevents strategic default of non-distressed consumers only for s = 0.
 - monitoring costs $\propto \bar{P} \times Prob(d=1,s=0) + P(1) \times Prob(s=1)$

- Two types of monitoring strategies for monitored contracts
 - Full monitoring: $P(s) = \overline{P}$ for all s
 - prevents strategic default of non-distressed consumers
 - monitoring costs $\propto \bar{P}p$ (do not depend on π)
 - $\circ~$ Selective monitoring: $P(0)=\bar{P}~{\rm and}~P(1)<\bar{P}$
 - prevents strategic default of non-distressed consumers only for s = 0.
 - monitoring costs $\propto \bar{P} \times Prob(d = 1, s = 0) + P(1) \times Prob(s = 1)$ (decrease as π increases)

How Do Lenders Price Defaultable Debt

How Does π Impact Pricing?

How Does π Impact Pricing?

Quantitative Extension

- Life-cycle environment (27 periods)
- Analytic model embedded within each period
 - \circ baseline period length (1 sub-period) = 1 year
- \bullet *B* endogenous
- Y stochastic
- $E = (Y < .25\overline{Y}) + medical bills + divorce + unwanted pregnancy$
- Only medical shock assumed directly defaultable \rightarrow low ϕ

Model Accounts for Both Trends and Levels

- information precision x3 over the 90s
- transaction cost declines by 20% (Berger, 2003)

Why Model Matches Trends?

	Benchmark Model		Decomposition		
	90s	00s	τ_{90s}	π_{90s}	
(in % unless otherwise noted)			π_{00s}	τ_{00s}	$ au_{fit}$
CC Debt to Med. Income	9.0	15.1	11.2	13.9	15.1
CC Charge-off Rate	3.5	5.4	5.5	4.1	4.1
Defaults (per 1000) - fraction monitored - fraction strategic	4.5 30 0.0	10.8 18 19	9.0 17 19	7.5 31 0	7.9 32 0
Frequency of Risky Cont. - fraction fully monitored - fraction sel. monitored	21.4 100 0	36.6 1 99	35.7 0 100	31.3 100 0	31.1 100 0
Discharge to Income	74	89	82	80	82
CC Interest Premium	6.5	4.4	6.1	5.3	4.6

Why Model Matches Levels?

Why Model Matches Levels?

Conclusions

- Complementary mechanism of IT-driven expansion of credit card lending
 - departure motivated by:
 - prevalence of informal bankruptcy
 - involvement of lenders in debt collection
- Addresses Achilles' heel of existing models

THE END

BACKUP SLIDES

Literature: Unsecured Credit and IT

Adverse Selection and Ex-ante Role of IT

Narajabad (2012), Athreya, Tam and Young (2008), Sanchez (2012) Livshits, MacGee and Tertilt (2011)

• Informal Bankruptcy

Benjamin and Mateos-Planas (2011), Athreya, Sanchez, Tam and Young (2012), Chatterjee (2010)

Standard Modeling Frameworks

Livshits & MacGee and Tertilt (2006, 2010), Chatterjee, Corbae, Nakajima and Rios-Rull (2007), Athreya (2003) etc...

 \Rightarrow define modeling issues / challenges

Lenders: Contract Assignment

• Choose K = (R, L) & P(s) to maximize

 $\max_{K,P} V(K,P)$

subject to

$$\mathbb{E}\Pi(I, K, P) - \lambda \sum_{I=(d,s)} \delta(I, K, P) P(s) Prob(I) \ge 0,$$

where $I \equiv (d,s)$ and ex-post profit function $\Pi(I,K,P)$ given by

$$\Pi(I, K, P) = \begin{cases} R \max\{b(I, K, P), 0\} & \text{if } \delta(I, K, P) = 0\\ -L + L(1 + \bar{R})(1 - d)P(s) & \text{if } \delta(I, K, P) = 1 \end{cases}$$

Consumers: Decision to Default

• Choose $\delta \in \{0,1\}$ to maximize

$$V(K,P) \equiv \mathbb{E}\max_{\delta \in \{0,1\}} \left[(1-\delta)N(I,K,P) + \delta D(I,K,P) \right]$$

where ${\boldsymbol{I}}=(\boldsymbol{d},\boldsymbol{s})$ and

$N(\cdot)$ is indirect utility fcn. associated with repayment

 $D(\cdot)$ is indirect utility fcn. associated with default

Consumers: Indirect Utility from Repayment

• Under repayment, choose b, c, c' to maximize

$$N(I,K) \equiv \max_{b \le L} U(c,c')$$

subject to

$$\begin{cases} c = Y - B + b - \rho(K, b) \\ c' = Y - b - dE - \rho(K, b) \end{cases}$$

where I = (d, s) and

$$\rho(K, b) = R \max\{b(I, K, P), 0\}/2$$

Consumers: Indirect Utility from Default

• Under default, choose b, c, c' to maximize

$$D(I, K, P) \equiv \max_{-L \le b \le 0} \mathbb{E}_I U(c, c')$$

subject to

$$\begin{cases} c = Y - B + L + b \\ c' = (1 - \theta)Y - (1 - \phi)dE - b - mX(d) \end{cases}$$

where I = (d, s) and

$$X(d) = (1 - d)((\underline{\theta} - \theta)Y + L(1 + \overline{R}))$$

 $\underline{\theta}Y + \overline{R}L$ s.t. d=0-consumer does not default if P = 1

Definition of Equilibrium

• Equilibrium is: indirect utility functions

 $V(\cdot), N(\cdot), D(\cdot)$

and decision functions

 $\delta(\cdot), b(\cdot), K(\cdot), P(\cdot)$

s.t. consistent with problems defined above.

Parameterization

• Calibrated independently: Y 6x6-Markov, $E=0.4,\,p=.1,\,\phi=.25$

Parameterization

- Calibrated independently: Y 6x6-Markov, $E=0.4,\,p=.1,\,\phi=.25$
- Choose β , $\bar{\theta}$, θ , π , λ
 - $\circ\,$ indebtedness for 2004: 15%
 - charge-off rate for 2004: 5%
 - discharge to income of bankruptcy filer in the 90s
 - $\,\circ\,$ 3 fold increase in π centered around .5
 - $\lambda = .3$ to get regime switch around $\pi = .5$

Parameterization

- Calibrated independently: Y 6x6-Markov, $E=0.4,\,p=.1,\,\phi=.25$
- Choose β , $\bar{\theta}$, θ , π , λ
 - indebtedness for 2004: 15%
 - charge-off rate for 2004: 5%
 - discharge to income of bankruptcy filer in the 90s
 - $\,\circ\,$ 3 fold increase in π centered around .5
 - $\lambda = .3$ to get regime switch around $\pi = .5$
- Decline of transaction cost by 20% (consistent with Berger, 2003)

Direct Impact of IT-Based Solution

- In early 90s, GE capital developed PAYMENT; first comprehensive solution (Markuch et al., 1992) to direct collection resources:
 - Markov model of evolution of delinquent debt as a function of possible actions taken by collectors
 - $\circ\,$ systematic comparison of accounts treated vs non-treated
 - report 7-9% gain in overall effectiveness and improved borrower goodwill
 - explicit mention that most gains due to more frequent selection of *no action*
 - as for first implementation of this sort of system this is big number

Direct Impact of IT-Based Solution

• Banerjee (2001) directly looks at yield from litigation on cc-receivables:

 $\circ\,$ yield from litigation boosted from 24% to 40% by IT!

Direct Impact of IT-Based Solution

- Other industry studies report even higher numbers:
 - PRA, major debt collection agency, reports 120% gain in debt recovered per dollar spent on collection over the years 1997-2004 (Annual Report, 2011)
 - Trustmark National Bank, discussed adoption of Fair ISAAK debt collection system in late 90s: 35-58% gain on consumer receivables with same staff

Other Important Evidence

- In 90s all 3 major credit bureaus started offering collection scores, marketed to debt collection industry; this accounts for 7% of their revenue, which suggests:
 - 1. these scores aid collection by segmenting/prioritizing debtors
 - $\circ\,$ 2. segmentation and prioritization is of first order importance

Comparison to the Model

• IT progress rate in the ballpark of assumed numbers:

 \circ in model 33% gain in efficiency, industry data report vary between 9%-120%

- Cost of monitoring on the high side, but not unreasonable:
 - pre-PAYMENT GE spent \$150 million on final write-offs \$400 million
 - suggests 150/(400/.74)=.28 as upper bound on monitoring cost (we use .3)
 - aggregate costs also consistent with the model's implication: data: 350k*\$50k*30% -2% x \$800 billion on 5%x800 billion aggregate charge-offs