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In several of these models the threat of default on debt is the key
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I But not in all - e.g., in many cases the focus is on collateral
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I These might be much more important for small and
unlisted/unrated firms

In a few papers the entire cross-sectional distribution of firms is a
key state variable

I But unfortunately still not in most of them

I Early generation models rely only on the mean
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The focus here is on the “Distance to Insolvency”

I Builds on Leland (1994)

I Relies only on readily available firm-level data on equity
return volatility
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The Classic Model of the Levered Firm

The market value of equity

e(z , k, b) = max
k ′,b′

[
d(z , k , k ′, b, b′) + βEze(z ′, k ′, b′)

]
,

s.t. d(z , k , k ′, b, b′) = π(z , k)− i(k, k ′) + b′/R − b,

The enterprise or asset value

v(z , k , b) = max
k ′,b′

[
π(z , k)− i(k , k ′) + βEzv(z ′, k ′, b′)

]
,

The market value of the liabilities

v(z , k, b)− e(z , k , b)
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The Classic Model with Optimal Default

The value of equity

e(z , k , b) = max
k ′,b′

[
d(z , k , k ′, b, b′) + βmax{Eze(z ′, k ′, b′), 0}

]
,

Optimal Insolvency or Default

zd = max {z : e(z , k , b) = 0}

Probability of Default

F (zd(k , b)) ' α1 ln(k) + α2 ln(b/k) + ...

I Altman (1968), Ohlson (1980), Campbell et al (2008)
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The Classic Model with Optimal Default - Simplified

Key simplifications: Leland (1994)

I No investment, k ′ = k = 1

I Infinite horizon debt with no issuance, b′ = b

The value of equity

e(z , b) =
[
π(z)− cb + βmax{Eze(z ′, b), 0}

]
,

Optimal Insolvency or Default

zds = max {z : e(z , b) = 0}

But now the value of assets and liabilities are trivial to compute

v(z) = Ez

∑
βtπ(zt)−−V A

cb/(1− β)−−V B
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Equity Value and Default

Equity value

e(z , b) = v(z)− cb/(1− β)

+ x(z , b)

where x(z , b) an be seen as the option value associated to
operating the levered firm.

I Even if v(z) < cb/(1− β) there may be value in continuing to
operate - gambling for resurrection

I When equity is free to pick (optimal) default then x(z , b) > 0

However it is also possible that x(z , b) is negative - equity is a
short position on the default option.

I If default is triggered by some covenant violation, or some
liquidity shortage



Equity Value and Default

Equity value

e(z , b) = v(z)− cb/(1− β) + x(z , b)

where x(z , b) an be seen as the option value associated to
operating the levered firm.

I Even if v(z) < cb/(1− β) there may be value in continuing to
operate - gambling for resurrection

I When equity is free to pick (optimal) default then x(z , b) > 0

However it is also possible that x(z , b) is negative - equity is a
short position on the default option.

I If default is triggered by some covenant violation, or some
liquidity shortage



Equity Value and Default

Equity value

e(z , b) = v(z)− cb/(1− β) + x(z , b)

where x(z , b) an be seen as the option value associated to
operating the levered firm.

I Even if v(z) < cb/(1− β) there may be value in continuing to
operate - gambling for resurrection

I When equity is free to pick (optimal) default then x(z , b) > 0

However it is also possible that x(z , b) is negative - equity is a
short position on the default option.

I If default is triggered by some covenant violation, or some
liquidity shortage



Equity Value and Default

Equity value

e(z , b) = v(z)− cb/(1− β) + x(z , b)

where x(z , b) an be seen as the option value associated to
operating the levered firm.

I Even if v(z) < cb/(1− β) there may be value in continuing to
operate - gambling for resurrection

I When equity is free to pick (optimal) default then x(z , b) > 0

However it is also possible that x(z , b) is negative - equity is a
short position on the default option.

I If default is triggered by some covenant violation, or some
liquidity shortage



Equity Value and Default

Equity value

e(z , b) = v(z)− cb/(1− β) + x(z , b)

where x(z , b) an be seen as the option value associated to
operating the levered firm.

I Even if v(z) < cb/(1− β) there may be value in continuing to
operate - gambling for resurrection

I When equity is free to pick (optimal) default then x(z , b) > 0

However it is also possible that x(z , b) is negative - equity is a
short position on the default option.

I If default is triggered by some covenant violation, or some
liquidity shortage



Default and Asset Values

Default threshold is obtained in terms of asset values

v(zds) = vd

= cb/(1− β)− x(zds , b)

Probability of Default
G (v(z)− vd)

Empirical Issues

I What is the empirical distribution of asset values, G?
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Assume G (·) is lognormal with variance σv .

I Probability of Default is

N

[
v(z)− vd

v(z)

1
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I Distance to Default is

v(z)− vd

v(z)

1

σv

In continuous time

I The number of steps to reach default
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Implementation

However we would still need to compute

I The market value of assets, v(z)

I Its variance, σv
I And the default threshold vd

The KMV-style estimates

I Just assume vd = cb/(1− β) = V B

I The so-called Distance to Default
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The Big Idea

Use the fact that:
v(z)− vd

v(z)

1

σv
' 1/σe

Is this a good enough approximation?

I It is exact when debt is risk free and there is no risk of default

I In this case x(z , b) = 0 and vd = cb/(1− β) = V B

I Hence

e(z , b) = v(z)− cb/(1− β)

σe =
v(z)

v(z)− vd
σv

Unfortunately this is the case where its also uninteresting
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Bounding Distance to Insolvency

In general
vd = cb/(1− β) + x(z , b)

Depending on the option value this default cut-off could be larger
or smaller than the the value of outstanding liabilities, cb/(1− β)

I Formally the equity value can be above or below
v(z)− cb/(1− β) = V A − V B

I This also means that e(z , b) can be concave (when strictly
positive)

Practically this means 1/σe could actually be either smaller or
larger than the Distance to Insolvency

v(z)− vd

v(z)

1

σv
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Empirical Findings

The estimated distance to insolvency measure (inverse equity
volatility) correlates fairly well with

I Credit ratings and

I Credit default swaps

But a few empirical issues also arise

I Equity volatility is volatile: e.g. the crash of October 1987

I Equity volatility does not mean much for unlevered firms
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Some Final Thoughts on Solvency Measures

“Financial soundness” seems to be about bankruptcy or solvency

However in many models of financial constraints - and in practice
too

1. Effects of credit markets show up even if firms never default
I Models with collateral constraints

b′ ≤ θ(z)k ′

2. Default risk is often associated with lack of liquidity and not
solvency

zd = max {z : π(z , k) + (1− δ)k = b}

I Between 2000 and 2011 33% of US firms who failed to make
payments on their debt (a default event) never filed for
bankruptcy
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