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Abstract

We develop and solve a model of optimal portfolio choice with transaction costs and pre-

dictability in house prices. We model house prices using a process with a time-varying expected

growth rate. Housing adjustments are infrequent and characterized by both the wealth-to-

housing ratio and the expected growth in house prices. We find that the housing portfolio share

immediately after moving to a more valuable house is higher during periods of high expected

growth in house prices. We also find that the share of wealth invested in risky assets is lower

during periods of high expected growth in house prices. Finally, the decrease in risky portfolio

holdings for households moving to a more valuable house is greater in high-growth periods.

These findings are robust to tests using household-level data from the Panel Study of Income

Dynamics (PSID) and Survey of Income and Program Participation (SIPP) surveys. The coeffi-

cients obtained using model-simulated data are consistent with those obtained in the empirical

tests.
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1 Introduction

Housing plays an important role in the portfolio choices of households because it accounts for

an important fraction of their wealth. Housing possesses three specific characteristics that make

portfolio allocation decisions nontrivial. First, it is a durable consumption good and an investment

asset. Second, moving to a new house involves high transaction costs; therefore, homeowners

would find it optimal to rebalance their housing position less frequently than other investment

assets. Third, house prices present a certain degree of predictability. In this paper, we generalize a

well-known portfolio choice problem introduced by Grossman and Laroque (1990) (GL henceforth)

to account for these three specific characteristics of housing. We first present empirical evidence of

the predictability of house prices. Using data on aggregate housing prices for the U.S., we estimate

a housing pricing process where its expected growth rate switches among high-, medium-, and low-

growth regimes. Our estimates indicate that house prices in the U.S. have most frequently been

in a medium-growth regime, with essentially flat real house prices. Conversely, real house prices

grew 9.42% on average in periods of high expected growth and declined 16.19% in periods of low

expected growth. We also estimate the model at the U.S. state level using the repeat sales indexes

constructed by the Federal Housing Finance Agency (FHFA). The results demonstrate that there

are important differences in expected growth rates and timing across U.S. states.

We introduce these regime-switching house pricing processes in a partial equilibrium model that

solves for the housing consumption and portfolio choices of an agent. In the model, the agent incurs

a transaction cost when selling the house that she currently owns to buy a new one. The existence

of transaction costs makes housing consumption lumpy. Our model delivers qualitative and quanti-

tative implications for the optimal consumption and portfolio decisions subject to transaction costs.

We test such implications using household level data on wealth, housing values, and asset holdings

available from the Panel Study of Income Dynamics (PSID) and the U.S. Census Bureau’s Survey

of Income and Program Participation (SIPP). We construct an indicator that captures the existence

of periods of high expected growth in house prices at the U.S. state level. This indicator is based

on the smoothed probabilities of being in a high-growth regime. In the empirical tests, we employ

this indicator to determine whether housing return predictability affects housing and non-housing

portfolio holdings across households. Moreover, we create a large panel of model simulated data for
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households with heterogeneity in transaction costs, locations across the U.S., and the initial ratio

of total wealth to housing wealth (i.e., the wealth-to-housing ratio). We use these model-generated

data to run tests similar to those that we empirically estimate using PSID and SIPP data.

Our main findings can be summarized in three sets of contributions. First, we demonstrate the

effects of transaction costs and house price predictability on the portfolio holdings of housing assets.

As in the GL model, an agent only moves to a more valuable house when her wealth-to-housing ratio

reaches an optimal upper boundary.1 Similarly, an agent only moves to a less valuable house when

her wealth-to-housing ratio reaches an optimal lower boundary. In contrast to GL, these boundaries

are time varying and depend on the dynamics of the expected growth rate of house prices. As a

result, in our model, two state variables determine the agent’s decisions: (i) the wealth-to-housing

ratio and (ii) the time-varying expected growth rate of house prices. The intuition behind these

state variables is as follows. Agents only move to a more valuable house when they are too wealthy

for the house in which they live. Conversely, they move to a less valuable house when their current

house is too large for their declining wealth; in this case, the agents decide to substitute housing

for non-housing consumption and non-housing assets. This mechanism is richer when expectations

about future house price growth change over time. In periods of high expected growth in house

prices, waiting to move to a more valuable house makes the potential new house more expensive

over time. This consideration is why a lower wealth-to-housing ratio is required to purchase a more

valuable house in periods of high expected growth in house prices.2

Second, we reveal the implications of transaction costs and house price predictability for housing

adjustments. We find a lower adjustment in the wealth-to-housing ratio for households that move

to a more valuable house during periods of high expected growth in house prices compared to

households moving in other periods. The housing portfolio share immediately after moving is

higher for households moving during periods of high expected growth in house prices. Empirically,

the decline in the wealth-to-housing ratio before and after moving is 61.2% lower for households

moving during periods of high expected growth in house prices.

Third, we reveal the implications of housing transaction costs and house price predictability
1We use “more valuable house” throughout the paper to denote that the value of the house is higher in terms of

price per square meter times the size of the house.
2The opposite argument is at work during periods of low expected growth in house prices: the wealth-to-housing

ratio that determines the lower bound during a regime of high price growth is significantly lower than the ratio that
determines the lower bound during a regime of lower house price growth.
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for the portfolio choices of non-housing assets. We find that the share of wealth invested in risky

assets is lower during periods of high expected growth in house prices. Specifically, in a regime of

high expected growth, a $100, 000 increase in home equity increases the risky share of liquid wealth

by 13.4%, whereas a $100, 000 increase in home equity in any regime of lower growth increases the

risky share of liquid wealth by 24.8%. Additionally, conditional on moving, the change in risky

asset holdings relative to total wealth is higher in periods of high expected growth in house prices

than in any regime of lower growth. The average decrease in risky stock holdings relative to liquid

wealth is approximately 5.2% for households that purchase more valuable houses in periods of high

expected growth.

Finally, through simulations, we replicate the same tests that we run on the PSID and SIPP

data. Our simulation results suggest that the model explains the important features that we find

in the data. Specifically, we demonstrate that the calibrated model captures the empirical results

in terms of sign and magnitude.

Related Literature

Our paper follows the literature studying investment decision problems under fixed adjustment

costs.3 The model in Grossman and Laroque (1990) is a milestone in this literature. There are

two lines of research related to our study that depart from this seminal paper. First, the empirical

aspect of our analysis is connected to the literature on (S,s) models, which empirically investigates

the inaction region and tests the GL model, such as Eberly (1994), Attanasio (2000), Martin (2003),

and Bertola, Guiso, and Pistaferri (2005).

Second, our model and its primary implications are related to papers that focus on particular

implications of portfolio choice in the presence of housing, such as Flavin and Yamashita (2002),

Damgaard, Fuglsbjerg, and Munk (2003), Cocco (2005), Yao and Zhang (2005), Flavin and Nak-

agawa (2008), Van Hemert (2008), Stokey (2009b), and Fischer and Stamos (2013). In general,

this stream of the literature assumes that house prices evolve stochastically following a random

walk process. Damgaard, Fuglsbjerg, and Munk (2003) also generalize the GL setting by allowing

for both perishable and durable goods, the price of which follows a geometric Brownian motion.

This theoretical study focuses on understanding the relationship between perishable and durable
3See Stokey (2009a) for a review of stochastic control problems in the presence of fixed adjustment costs.
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consumption and the impact of specific joint dynamics of durable good and stock prices on portfolio

choices. Cocco (2005) finds that investment in housing plays a crucial role in explaining the patterns

of PSID cross-sectional variation in the composition of wealth and level of stock holding. Because

housing investments are risky, younger and poorer homeowners have limited financial wealth to

invest in stocks. Yao and Zhang (2005) investigate households’ asset allocation and housing de-

cisions in a life-cycle model. This model predicts that housing investment has a negative effect

on stock market participation, as in Cocco (2005). Chetty and Szeidl (2011) distinguish between

home equity wealth and mortgage debt, as they have opposite signed effects on portfolio choice.

They find that increases in mortgage debt reduce stock holding significantly, whereas increases in

home equity wealth raise stock holding. In addition, they provide evidence that higher housing

investment substantially reduces the amount that households invest in risky stocks.4 Fischer and

Stamos (2013) also study the decisions of households that face time-varying expected growth rates

in house prices and show that homeownership rates, as well as the sizes of housing and mortgages,

increase during good periods of housing market cycles. However, their results do not point to a

statistically significant impact of the regime of housing market cycles on stock holding.5

2 Predictability in Housing Markets

This section presents evidence supporting the time variation in expected house price growth rates

for the U.S. at the national and state levels. We estimate a regime switching mechanism, as in

Hamilton (1990), to identify time-varying first moments. In Appendix A, we demonstrate that

the predictability of housing prices is robust to the approach whereby price-rent ratios predict
4Our paper is also related to the sizable literature that incorporates stock return predictability into portfolio choice

models. Lynch and Balduzzi (2000) examine the re-balancing behavior of an agent in the presence of stock return
predictability when transaction costs are non-zero. Brennan, Schwartz, and Lagnado (1997), Barberis (2000), Kim
and Omberg (1996), and Campbell and Viceira (1999) analyze the impact of myopic versus dynamic decision-making
when stock returns are predictable, but they refrain from considering the impact of transaction costs. Instead, in this
paper, we analyze the impact of housing, as a consumption and investment good, on portfolio choices in the presence
of transaction costs on housing and housing return predictability.

5Our work differs from Fischer and Stamos (2013) in at least three dimensions. First, we estimate an indicator
to capture the periods of high expected growth in house prices at the U.S. state level. This indicator allows us to
empirically quantify the effect of house price predictability on portfolio choice decisions. Second, Fischer and Stamos
(2013) do not find that the regime of the housing market affects the share of wealth invested in the stock market using
PSID data. However, we provide evidence showing that the share of wealth invested in risky assets is lower during
periods of high expected growth in house prices. Third, our model is parsimonious and provides testable implications
that can be compared to the GL model and Damgaard, Fuglsbjerg, and Munk (2003).
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future returns on housing and how these two measures of predictability are empirically related.6 In

particular, we consider a house price process of the form:

dP

P
= µidt+ σpdZ, (1)

where P denotes the house price level, µi is the expected growth rate when regime i is realized, and

σp is the standard deviation of the growth rate, which we do not consider to be regime dependent.

The dynamics of the underlying regime i follow a homogeneous first-order Markov chain. Let us

assume that the expected growth in house prices, µi, may only take three values: high (µh), medium

(µm), or low (µl).

Column (1) of Table 1 reports the parameter estimates of equation (1) using the U.S. house

price data constructed in Shiller (2005). The sample period is 1925−2010, and the data frequency is

annual.7 We also report estimates using quarterly data from the Federal Housing Finance Agency

(FHFA) for the U.S. in aggregate and U.S. states. We adjust all of the data for core inflation,

which measures inflation in the personal consumption expenditure basket less food and energy.

For the long time series of U.S. aggregate data, we estimate an average real annual growth rate of

−16.19%,−0.15%, and 9.42% during regimes of low, medium, and high expected growth in house

prices, respectively. We reject the null hypothesis that the expected growth rate is identical across

regimes.8 The conditional probability of remaining in the regime of medium growth in house prices,

λmm, is 96.86% at the aggregate U.S. level. This result implies that the economy is typically in a

regime of medium growth in house prices.

The probability of a shift from the medium- to high-growth regime, λmh, is only 3.13%. Finally,

this estimation exercise demonstrates that the conditional probability of switching from a high- to

medium-growth regime, λhm, is 12.09%, whereas the conditional probability of switching from the
6We find strong linkages between the rent-price ratio and the estimated probabilities of being in a high-growth

regime for housing prices. This result is relevant because the dividend-price ratio has been traditionally used as a
predictor variable for stock returns.

7The Case-Shiller House Price Index (HPI) time series dates back to 1890 but is more reliable after 1925.
8Tests for the number of regimes are typically difficult to implement because the variables in models with multiple

regimes do not follow standard distributions. Under the null hypothesis of a single regime in the simple two-regime
model, the parameters of the other regime are not identified, and thus, there are unidentified nuisance parameters.
The presence of unidentified parameters means that conventional likelihood ratio tests are not asymptotically χ2

distributed. We report a test for linearity in all output, which is based on the likelihood-ratio statistic between the
estimated model and derived linear model. Then, we report the approximate upper bound for the significance level
of the LR statistic as derived by Davtes (1977). For an example of this procedure, see Garcia and Perron (1996).
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high- to low-growth regime, λhl, is 9.45%. This result implies that periods of high growth in house

prices are not very persistent.

[TABLE 1 HERE]

Figure 1 depicts the time series of real annual housing returns and the smoothed probability

of being in regimes of high and low expected growth in house prices. The figure illustrates that

the probability of being in a high-growth regime is greater than 50% on only two occasions. Those

two occasions correspond to World War II and the most recent housing market boom. Regarding

the latter, the probability of being in high-growth regime began to grow in 1996 and remained

at its maximum value from 2000 to 2005. The value of this probability was extraordinarily high

and persistent during this recent period. The high value of the smoothed probability of being in a

regime of low expected growth in house prices illustrates that a period of downward correction in

aggregate housing prices followed this housing market boom.

[FIGURE 1 HERE]

We use quarterly state-level FHFA house price indexes beginning in the first quarter of 1983.9

Estimates using the FHFA aggregate index result in lower annualized growth rates than those

estimated with the Case-Shiller index (see Column (2)). Both indexes are constructed using the

same basic repeated sales methodology but use different data sources and implement the mechanics

of the repeat-valuations framework in distinct ways.10 Overall, FHFA HPI measures the aggregate

price appreciation of a broad middle segment of the U.S. stock of single-family homes.

To account for the geographic heterogeneity in housing markets, we further analyze house

prices at the state level.11 Table 1 reports the parameter estimates for five of the most populated

U.S. states (Columns (3)-(7)). During the most recent housing market boom, not all U.S. states
9House price indexes at the state level are extremely noisy for a number of states before the mid-80s, with sharp

appreciation periods immediately followed by sharp depreciation periods. The noise in the first part of the sample
makes the regime estimation challenging. The series become more stable for most states after the mid-80s. The same
issue is also documented by Del Negro and Otrok (2007) who argue that recent movements in house prices at U.S.
state level were mainly due to expansionary monetary policy.

10The FHFA HPI is a good estimate of the typical price appreciation of single-family houses, whereas the Case-
Shiller HPI is a good estimate of the capital appreciation that would result from owning a representative sample of
U.S. homes.

11Other levels of aggregation (i.e., metropolitan statistical area) are available, but we find that the state-level data
is sufficiently disaggregated to establish our empirical conclusions.
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experienced similar house price patterns to the U.S. aggregate. For example, house prices rose

by 100% in California and then fell by 60%, whereas they barely moved in Texas. Part of this

cross-sectional variation may stem from institutional differences across states, but that aspect is

beyond the scope of this paper. Appendix A reports these results for all U.S. states. There is

the substantial heterogeneity in house price processes across U.S. states. For some states, such as

California, Florida, and New York, the high-growth regime displays quarterly mean real growth

rates of 2.75%, 3.05%, and 2.54%, respectively, whereas for other states, such as Illinois and Texas,

the high-growth regimes are characterized by modest growth in house prices with quarterly mean

real growth rates of 1.13% and 0.45%, respectively.

Historically, regimes of high growth in house prices did not occur simultaneously across the

different U.S. states. The recent period of boom-and-bust in house prices is an exception. Panels

A and B of Figure 2 depict the smoothed probability of being in a regime of high or low growth,

respectively.12 This figure illustrates the pronounced cyclicality in the quarterly house price growth

rates. Periods of high growth in house prices occur and present a long duration in some U.S. states.

For example, the expected duration of a high-growth regime is 6.12 years for California, 5.75 years

for Florida, 5.50 years for New York, and 4.20 years for Illinois. These expected durations are lower

than that of the U.S. aggregate, 8.75 years, implying that several U.S. states have much longer

cycles. For example, Texas has less pronounced cycles, and the spread between its high and low

growth rates is not substantial. It has experienced relatively modest growth, with the expected

duration of the high-growth regime being 17.25 years.13

[FIGURE 2 HERE]

Overall, the housing returns for the U.S. states are well captured by a three-regime switching

model, and the mean growth rate in each regime is accurately portrayed. To understand the main

implications of house price predictability for portfolio decisions, we first examine a model with

infrequent housing adjustments in the presence of predictability. Then, we develop relevant qual-
12Note that the probability of being in a regime of medium growth in house prices is high when both the probability

of being in the regimes of high growth (Panel A) and low growth (Panel B) are low.
13Figure 2 suggests that episodes of high growth were driven by a small group of outlier states in the first part of

the sample, and therefore, these episodes were not synchronized. However, the effects of the recent period of high
growth in house prices (1999− 2006) are synchronized across several U.S. states. This period is identified as a regime
of high growth in house prices for the U.S. aggregate using the short time series from the FHFA HPI or the long time
series from the Case-Shiller HPI.
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itative implications that we test using data featuring extensive information on housing purchases,

portfolio holdings, and measures of housing return predictability at the state level.

3 The Model

We examine the consumption and portfolio choice of an agent in a continuous time economy with a

risk-free asset, a risky asset, and two consumption goods: a perishable and a durable good, housing,

with uncertain and persistent price evolution. Transactions in the housing market are costly. The

infinitely lived agent has non-separable Cobb-Douglas preferences over housing and non-housing

goods. She derives utility over a trivial flow of services generated by the house. This specification

can be generalized as long as preferences are homothetic. Davis and Ortalo-Magne (2011) present

evidence from the Decennial Census of Housing indicating that expenditure shares on housing are

constant over time. The period utility function can be expressed as:

u(C,H) =
1

1− γ
(CβH1−β)1−γ , (2)

where H is the service flow from the house (in square footage) and C represents non-housing

consumption. 1 − β measures the preference for housing relative to non-housing consumption

goods, and γ is the coefficient of relative risk aversion. The period-by-period budget constraint

requires that the agent spends her income on the consumption of non-housing goods, changing the

house size, and investing in risky and risk-free assets for the following period.

The housing stock depreciates at a physical depreciation rate δ. If the agent does not buy or

sell any housing assets, the dynamics of the housing stock follows the process:

dH = −δHdt, (3)

for a given initial condition H0 = H̄. We assume that the square foot price of the house, P , follows

a geometric Brownian motion with time-varying drift:

dP = P µidt+ P σP (ρPSdZ1 +
√

1− ρ2
PSdZ2), (4)
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where µi is the time-varying drift and ρPS is the correlation coefficient between the house price, P ,

and value of the risky financial asset, S, defined below.

Following Section 2, we assume that house price growth is predictable in the sense that µi

follows an n-regime Markov chain and i takes values in the set 1, ..., n. The generator matrix of the

Markov chain is Λ = [λjk] for j, k ∈ {1, ..., n}. Thus, the probability of moving from regime j to k

within the time ∆t is approximately λjk∆t. We solve the model for the general case of n regimes,

but we focus on the three-regime case in the numerical section of the paper. We assume that the

agent knows with certainty the economy’s regime; thus, µi is observable by the agent at time t.

Let W define the agent’s wealth in units of non-housing consumption. Wealth is composed of

investments in financial assets (riskless and risky financial assets) and the value of current housing

stock:

W = B + Θ +HP, (5)

where B is the wealth held in the riskless asset and Θ is the amount invested in the risky asset.

The price of the risky asset, S, follows a geometric Brownian motion:14

dS = S αSdt+ S σSdZ1. (6)

Given the process for risky asset prices, the housing stock’s law of motion, and house price

dynamics, wealth evolves according to the following process in regime i (for i = 1, ..., n):

dW = [r(W −HP ) + Θ(αS − r) + (µi − δ)HP − C]dt

+ (ΘσS +HPρPSσP )dZ1 +HPσP

√
1− ρ2

PSdZ2. (7)

The homeowner can sell the house at any time τA. The agent incurs a transaction cost that

is proportional to the value of the house that she is selling. As the quantity of housing changes

discretely at the stopping time τA, the notation H(τ−A ) is used to distinguish the amount of housing

14A large number of studies find that aggregate stock market returns are also predictable. We also estimate the
parameters of equation (1) using annual values for the S&P500 index. We obtain a mean of the nominal annual
growth rate of -19.90% during the low-growth regimes and 12.72% during the high-growth regimes. We are unable
to reject the null hypothesis that the expected growth is identical across regimes for stock prices due to the noise
around the estimates. The relatively stronger results for predictability in housing prices leads us to consider a model
with predictability in housing prices and not in stock prices.
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immediately prior to the sale from the quantity of housing immediately after the sale, H(τA).

At the instant the house is sold, the homeowner’s wealth is W (τA) = W (τ−A ) − εP (τA)H(τ−A ),

where εP (τA)H(τ−A ) is the transaction cost. The homeowner first decides whether it is optimal

to instantaneously sell the house by comparing the value function associated with her problem

conditional on selling a house (action) with the value function conditional on not selling (inaction).

In addition to voluntary housing adjustments, we incorporate moves that are required for ex-

ogenous reasons. Marital status changes that involve relocating to a new house and changes in

family size are two possible interpretations of the exogenous moves. Following Stokey (2009b),

we assume that this shock follows a Poisson distribution with a constant arrival rate κ. Let the

stopping time τX define the arrival of the next exogenous relocation shock. The homeowner’s next

housing adjustment occurs at the minimum of the time of the exogenous relocation shock, and

the time the agent chooses the next adjustment in the case the exogenous shock has not occurred,

τ = τA ∧ τX .

The value function of this problem, V (W (0), P (0), H(0), i), satisfies the following Bellman equa-

tion in which the consumer chooses the optimal consumption of non-housing and housing, asset

allocation, and optimal stopping time for buying a new house:

V (W (0), P (0), H(0), i) = sup
C,Θ,H(τ),τ

E

[∫ τ

0
e−ρtu(C,H)dt+ e−ρτV (W (τ), P (τ), H(τ), i)

]
, (8)

for i = 1, ..., n and W (τ) = W (τ−) − εP (τ)H(τ−). We can use the homogeneity properties of the

value function to reduce the problem with four state variables (W,P,H, i) to one with two state

variables, z = W/(PH), and i, as

V (W,P,H, i) = H1−γP β(1−γ) V

(
W

PH
, 1, 1, i

)
= H1−γP β(1−γ)v (z, i) . (9)

Furthermore, let ĉ and θ̂ denote the scaled controls ĉ = C/(PH) and θ̂ = Θ/(PH). We refer to

the ratio z as the wealth-to-housing ratio.

A solution consists of a value function v(z, i) defined on the state space, where bounds zi and zi

define an inaction region, z∗i is the optimal regime-dependent return point, and a consumption policy

ĉ∗(z, i) and portfolio policy θ̂∗(z, i) defined on (zi, zi). The function v(z, i) satisfies the Hamilton-

11



Jacobi-Bellman equation on the inaction region. Value matching and smooth pasting conditions

hold at the two bounds, and an optimality condition holds at the return point. Compared to

Grossman and Laroque (1990) and Damgaard, Fuglsbjerg, and Munk (2003), the novel feature

exploited here is the Markov chain process governing the dynamics of the expected growth rate

of house prices. Therefore, the model features optimal rules that reflect the ability of the agent

to invest in a different regime of house price growth in the future. The agent must determine

the optimal rule in each regime while accounting for the optimal rule in the other. Thus, the

model generates richer rules than the standard one-regime models. Finally, the model accounts

for the expected net loss from the exogenous moving shock. The following proposition indicates

the properties of the optimal housing and portfolio choices derived from our model. Appendix B.1

provides further details on the derivation of the model.

Proposition 1 The solution of the optimal portfolio choice problem defined above presents the

following properties:

1. v(z, i) satisfies

(ρ̃i + κ)v(z, i) = sup
ĉ,θ̂

u(ĉ) +Dv(z, i) +
∑
j 6=i

λij(v(z, j)− v(z, i))

+κMi
(z − ε)(1−γ)

1− γ

}
for z ∈ (zi, zi), (10)

where

Dv(z, i) =((z − 1)(r + δ − µi + σ2
P (1 + β(γ − 1)))

+ θ̂(αS − r − (1 + β(γ − 1))ρPS σSσP )− ĉ)vz(z, i)

+
1
2

((z − 1)2σ2
P − 2(z − 1)θ̂ ρPS σPσS + θ̂2σ2

S)vzz(z, i), (11)

v(z, i) = Mi
(z − ε)(1−γ)

1− γ
for z /∈ (zi, zi), (12)

ρ̃i = 0.5(−2ρ− 2(γ − 1)(µi − δ + β(γ − 1)(1 + β(γ − 1))σ2
P ) and Mi is defined as

Mi = (1− γ) sup
z≥ε

zγ−1v(z, i) for i = 1, ..., n. (13)
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2. The return point z∗i attains the maximum in

v(z∗, i) = Mi
z
∗(1−γ)
i

1− γ
for i = 1, ..., n. (14)

3. Value matching and smooth pasting conditions hold at the two thresholds (zi, zi)

v(ẑ, i) = Mi
(ẑi − ε)(1−γ)

1− γ
, (15)

vz(ẑ, i) = Mi(ẑi − ε)−γ , (16)

for ẑi = zi, zi and i = 1, ..., n.

4. Given a wealth-to-housing ratio z, where v(z, i) > Mi
(z−ε)1−γ

1−γ , the agent chooses a optimal

consumption ĉ∗(z, i) and portfolio θ̂∗(z, i) and b̂∗(z, i)

ĉ∗(z, i) =
(
vz(z, i)
β

)1/(β(1−γ)−1)

, (17)

θ̂∗(z, i) = −ω vz(z, i)
vzz(z, i)

+
ρPSσP
σS

(z − 1), (18)

b̂∗(z, i) = 1− (1 + θ̂∗(z, i))/z, (19)

for i = 1, ..., n, and the constant ω is defined as ω = [αS − r + (1− β(1− γ))ρPSσP ] /σ2
S.

Figure 3 provides intuition regarding these equilibrium results in a simple set up with two

regimes: a regime of high expected growth in house prices and a regime of low expected growth.

Consider that an agent has a total wealth-to-housing ratio equal to 2.5 at the initial time t = 0.

Assume that t = 0 belongs to a time interval in which the expected growth in house prices is high.

The agent must pay a transaction cost every time she adjusts her housing consumption; therefore,

she does not move to a more valuable house until she has accumulated a sufficient amount of wealth

to compensate for this transaction cost. When the wealth-to-housing ratio, W/(PH) in the figure,

reaches the upper bound, the agent sells her house and purchases a more valuable one to reset her

wealth-to-housing ratio to its optimal level. In Figure 3, this event corresponds to point 1 at time

t = τ1. As a result, the ratio W/(PH) returns to the optimal level z∗h, which corresponds to point

1∗. Now assume that the economy moves towards a regime of low growth in house prices shortly

13



after τ1. Note that both the upper and lower bounds in this period of low expected house price

growth are higher than their respective bounds in the period of high growth. The wealth-to-housing

ratio evolves over time until it reaches the upper bound again (point 2) at time t = τ2. Therefore,

the agent purchases a more valuable house (point 2∗). At time t = τ3, there is a shift to the regime

of high expected growth in house prices (point 3). As a result, the upper bound shifts down and

the agent moves to a more valuable house (point 3∗). The example continues with symmetrical

situations in which the agent moves to a smaller house when her ratio reaches the lower bound

(points 4, 5, and 6).

[FIGURE 3 HERE]

Predictability in housing returns implies that the wealth-to-housing ratio determines not only

the optimal timing for re-balancing wealth composition but also the time-varying expected growth

rate of house prices.15 The time-varying expected growth rate of house prices causes a shift in

the location of the bound where it is optimal to pay the transaction costs for re-sizing housing

holdings.

4 Numerical Results and Model Predictions

There is no closed-form solution to the portfolio choice problem described in Section 3. Conse-

quently, we implement an iterative algorithm based on Grossman and Laroque (1990) to derive

the numerical solution to this problem. A detailed description of this algorithm can be found in

Appendix B.2. We use the numerical results of the model to both provide economic intuition and

introduce the main predictions of the model.

Table 2 reports the parameters that we use to calibrate the model. We assume a coefficient of

relative risk aversion γ of 10 to approximately match the stock holdings relative to financial wealth

observed in the PSID and SIPP data. We set the rate of time preference ρ at 2.5%. The parameter

1 − β measures the degree to which the agent values housing consumption relative to numeraire

consumption. This parameter is set at 0.3, which is consistent with the average share of household

housing expenditure in the U.S. We assume that the risk-free rate is equal to 1.5% annually. Using
15In Grossman and Laroque (1990), the only state variable is the wealth-to-housing ratio.
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U.S. data over the 1889 − 2005 period, Kocherlakota (1996) reports an average real return on a

market index of 7.7% and a standard deviation of 16.55%.

[TABLE 2 HERE]

Academics and practitioners agree that it is difficult to obtain an accurate estimate of the

standard deviation of house prices at the individual house level. For example, using the standard

deviation of house price indexes as a proxy for the standard deviation of the price of an individual

house leads to low estimates due to the inertia of the indexes (i.e., see the low values of σP in Table

1.)16 To obtain the numerical results from our model, we use the annual standard deviation of

house prices obtained in Section 2 (see Table 1) as the systematic standard deviation of house prices,

σP,1 = ρPSσP , and we set the idiosyncratic standard deviation of house prices, σP,2 =
√

1− ρ2
PSσP ,

at 5% as a baseline value. Therefore, we consider the standard deviation of individual house prices,

σP , as the combination of a systematic component, σP,1, and an idiosyncratic component, σP,2.17

Then, we convert the quarterly parameters in Table 1 to annual parameters by multiplying the

expected growth parameters by four and using the matrix exponential function for the transition

probabilities.

Furthermore, we assume that the housing transaction cost is 10% of the unit’s value as a baseline

parameter. This figure includes commissions, legal fees, the time cost of searching, and the direct

cost of moving the consumer’s possessions. For simplicity, we set the physical annual depreciation

rate of housing, δ, at 0%. We set the hazard rate κ for exogenous moves at 3%.18 A higher hazard

rate has the same effects as a higher transaction cost: it increases the overall cost of housing and

makes voluntary adjustments less attractive.

In the reminder of this Section, we introduce the predictions of the model and the numeri-

cal results regarding housing portfolio choices (Subsection 4.1), the size of housing adjustments

(Subsection 4.2), and the predictions of non-housing portfolio choices (Subsection 4.3). In Section
16Stanton and Wallace (2011) emphasize that indices generate downwardly biased estimates of the idiosyncratic

volatility of prices around the index and thus systematically undervalue embedded default options in mortgage
products.

17Campbell and Cocco (2003) estimate a standard deviation parameter for house prices of 16.2%, whereas Cocco
(2005) estimates a standard deviation parameter for house prices of 11.5%. Yao and Zhang (2005) set the standard
deviation at 10%.

18Cocco (2005) sets the hazard rate at 5.44% to roughly match the frequency of total (endogenous and exogenous)
housing transactions observed in the PSID data.

15



6 we use household-level data from the PSID and SIPP to empirically test each of these model

predictions.

4.1 Housing Portfolio Holdings. Model Predictions

The regime-switching mechanism together with transaction costs generates rich portfolio rules re-

garding the agents’ house holdings. As in Grossman and Laroque (1990), the existence of transac-

tion costs makes the wealth-to-housing ratio that determines the lower bound of the inaction region

of housing transactions, zi, significantly different, and lower than the wealth-to-housing ratio that

determines its upper bound, zi, for a given regime i, that is, zi < zi. However, the model with both

predictability in house prices and transaction costs predicts that this inaction region of housing

transactions is time varying. The following hypothesis formalizes this prediction:

Hypothesis 1. The wealth-to-housing ratio that determines the upper bound during a regime

of high price growth is significantly lower than the ratio that determines the upper bound during

a regime of lower house price growth. Analogously, the wealth-to-housing ratio that determines

the lower bound during a regime of high price growth is significantly lower than the ratio that

determines the lower bound during a regime of lower house price growth.

Figure 4 supports this hypothesis using numerical results that we obtain from the model when

we use the parameter values in Table 2 and the parameters for the U.S. aggregate house price

process of Column (2) of Table 1. This figure displays the difference between the value function,

v(z(t), i), and the value of adjusting house holdings, (z(t)− ε)1−γMi/(1− γ), against the value of

the wealth-to-housing ratio, z(t). If this difference is positive, then the agent does not move to a

more or less valuable house. As in Grossman and Laroque (1990), the agent only moves when this

difference is zero, that is, when the value function from not moving given by v(z(t), i) is equal to

the value from moving given by (z(t) − ε)1−γMi/(1 − γ).19 However, Figure 4 illustrates that, in

our model, the upper and lower boundaries are not static. Instead, they depend on the regime of

expected growth in house prices, i. Panels A, B, and C present the results for regimes of high,
19This is equivalent to saying that the values of the upper bounds zi and the lower bounds zi are determined

by the value matching conditions in equation (15) for each regime i, by which the agent is indifferent between not
moving and moving. Additionally, the smooth pasting conditions in (16) assure that v(z(t), i) is differentiable on the
threshold that triggers the agent to move. Figure 4 illustrates that this implies that v(z(t), i) is less concave than
(z(t)− ε)1−γMi/(1− γ) at these points. However, v(z(t), i) must become more concave than (z(t)− ε)1−γMi/(1− γ)
somewhere between zi and zi.
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medium, and low growth in house prices, respectively. Specifically, the upper (lower) bound that

corresponds to the regime of high growth in house prices is lower than the upper (lower) bounds of

the medium- and low-growth regimes. This finding is one of the main contributions of this paper.

[FIGURE 4 HERE]

Table 3 reports the numerical results that we obtain from the model when we use the parameter

values in Table 2 and the parameters for the U.S. aggregate house price process shown in Column

(2) of Table 1. These numerical results also support Hypothesis 1. We find that the agent buys

a more valuable house when her wealth-to-housing ratio falls below zh = 0.452, zm = 1.569, and

zl = 2.530, in the high-, medium- and low-growth regimes, respectively. However, she moves to a

smaller house when her wealth-to-housing ratio exceeds zh = 4.827, zm = 7.954, and zl = 26.104

(see Column (1) in Table 3). The optimal wealth-to-housing ratio under transaction costs, z∗, is

higher than the constant ratios of 0.628, 2.956 and 7.329 that would be chosen under no transaction

costs, znt, (see Column (2)). Transaction costs make housing less attractive as an investment and,

consequently, we should expect higher wealth-to-housing ratios when we consider transaction costs.

[TABLE 3 HERE]

The dynamics of the wealth-to-housing ratio are not the only drivers of housing transactions.

They can also be initiated by a change in the expected growth rate of house prices. A transaction

occurs when the regime switches from high to medium (low) and the agent’s wealth-to-housing

ratio z(t) falls within the region [zh = 0.452, zm = 1.569] ([zh = 0.452, zl = 2.530]). In this case,

the lower bound increases from zh to zm (or to zl). As result, z(t) 6 zm (or z(t) 6 zl ) and,

consequently, it is optimal for the agent to sell the current house and reduce her housing holdings.

Finally, we calibrate our model at the U.S. state level using parameters for the house price

processes of California, Florida, New York, Illinois, and Texas reported in Columns (3) − (7) of

Table 1. The results of this calibration exercise are shown in Panel B of Table 3. We find that

accounting for different levels of house price predictability across U.S. states is crucial to capture

the housing holdings across U.S. households. For example, California, Florida and New York are

characterized by low values of the bounds and narrow inaction regions in high-growth regimes

compared to states with lower expected house price growth in each respective regime.20

20These narrow inaction regions can be associated with the 2000 − 2006 period in which house prices grew at a
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4.2 Size of Housing Adjustments. Model Predictions

The predictability of house prices impacts the probability of moving to a new house and the size

of the housing adjustment. Column (3) of Table 3 presents the expected tenure or length of time

between house purchases. When we use the parameters for the U.S. aggregate house price process

in Column (2) of Table 1, we find that the expected length of stay in a house of a given size is lower

in a high-growth regime than a the medium-growth regime. This result is equivalent to saying that

the probability of making a housing purchase is higher in a high-growth regime than in the medium

one after having made a housing purchase. Interestingly, we find a more frequent adjustment in

a low-growth regime that features a wider inaction region. This finding seems counterintuitive,

but a similar result is obtained in Grossman and Laroque (1990). If the housing stock depreciates

rapidly, there will be very frequent purchases. In our framework, instead, the large expected decline

in house price growth in the low-growth regime, µl, makes the expected growth of the wealth-to-

housing ratio larger, increasing the probability of reaching the upper boundary. To illustrate this

effect, Column (5) reports the expected growth rate of the wealth-to-housing ratio at the optimal

return point. Similar to the U.S. as a whole, some states such as California, Florida, and Texas

feature more frequent adjustments in low-growth regimes with very wide inaction regions.

To assess the impact of housing return predictability, we solve the model setting the cross terms

of the generator matrix to zero, λkj = 0, and selecting the expected growth rate of the medium-

growth regime. We refer to this framework as DFM because the effect of predictability in house

prices is not considered, as in Damgaard, Fuglsbjerg, and Munk (2003). Two main results arise

from the calibration under the DFM framework (see Panel A of Table 3). First, the inaction region

is narrower in DFM. Second, the expected duration between moves is higher in DFM, increasing

from approximately 22 to 28 years. Because the Markov-switching mechanism means that moves

are not always a result of the wealth-to-housing ratio reaching the bounds, but result from a regime

shift that leaves the agent’s wealth-to-housing ratio outside the inaction region of the new regime.

Finally, the expected length of stay is significantly lower than that found in a GL framework

because the agent can substitute numeraire consumption for housing consumption. As a result, the

optimal fraction of wealth placed in housing is lower than in the case where there is no numeraire

high rate. Conversely, based on the estimated smoothed probabilities (see Figure 2), the very large inaction region
of California and Florida in the low-growth regime is due to the dramatic downturn during the 2007− 2011 period.

18



consumption.

Regarding the size of housing adjustments, Column (4) illustrates that the size of an upward

adjustment in the wealth-to-housing ratio is higher in the low-growth regime (13.126) than in

the regimes of medium (4.340) and high (2.645) growth in house prices. This result means that,

conditional on moving to a different house, households move to more valuable houses in regimes of

high growth than in regimes of lower growth. The following hypothesis describes this effect:

Hypothesis 2. Conditional on moving, the relative size of an upward adjustment is lower in a

regime of high growth in house prices than in any lower growth regime.

Conditional on moving, the size of an upward adjustment in a high-growth regime is substan-

tially lower in such states as California, Florida and New York because the increase in house value

is larger in these states, for a given level of total wealth. In terms of the analysis of the model

predictions, we focus on the upward adjustment because the sample of households that downsize

their houses is small both in the PSID and SIPP datasets.21 In the empirical Section 6.2, we use

household level data to test whether the probability of increasing housing holdings is higher in

periods of high growth in house prices than in periods of lower growth.22

4.3 Non-Housing Portfolio Holdings. Model Predictions

In this subsection we explore the non-housing portfolio rules generated by the regime-switching

mechanism and the existence of transaction costs. The upper panel of Figure 5 plots the fraction

of wealth invested in risky assets against wealth for the three regimes of the expected growth rate

of house prices, Θ∗(z(t), i)/W (t), for any regime i. Each curve is drawn only for the realizations

of z(t) within the housing transaction inaction region. As in Grossman and Laroque (1990) and

Damgaard, Fuglsbjerg, and Munk (2003), the share of wealth that the agent holds in risky assets

reflects the fact that the agent is more risk tolerant when her wealth-to-housing ratio, z(t), is

close to the bounds, and more risk averse in the middle of the inaction region. Closer to the
21The previous literature demonstrates that the probability of upgrading to a more valuable house increases with

the wealth-to-housing ratio (see Martin (2003)).
22Although, the model predicts a lower expected tenure or higher probability of increasing housing holdings in a

low-growth regime for some states, we cannot test this hypothesis because our dataset does not include a sufficient
number of years of low-growth regimes for these states. Therefore, we test whether the transition from a medium-
to high-growth regime makes the upward adjustment more likely. We also test whether, conditional on moving,
households buy more valuable houses relative to their wealth in periods of high growth in house prices.
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boundaries of the inaction region, the monetary loss associated with the potential transaction costs

is compensated by a change to the optimal wealth-to-housing ratio. Therefore, the agent is less

risk averse leading to higher fractions of wealth invested in risky assets. The relatively high risk

aversion coefficient that we use to obtain our numerical results, γ = 10, leads to an equilibrium in

which the agent allocates a small fraction of her wealth to the risky asset.

[FIGURE 5 HERE]

Column (6) of Table 3 reports the relative risk aversion associated with the indirect utility of

total wealth, −(W (t)VWW )/VW ) = −(z(t)vzz)/vz. In a regime of high growth in house prices,

the agent is more risk averse after a housing purchase. In this case, the loss of utility associated

with the transaction is large due to the higher fraction of wealth optimally invested in housing

and the relative risk aversion rises from 10 to 11.4 for the U.S. Moreover, in our model, the

regime-dependent coefficient of relative risk aversion reflects the possibility of regime switches in

the future. Therefore, the agent must determine the portfolio rule in each regime, while accounting

for the possibility of a future shift in the expected growth rate of housing prices. The upper panel

of Figure 5 also plots the fraction of wealth invested in risky assets against wealth in the DFM case.

In the medium-growth regime, the policy function has a different shape approaching the lower and

upper boundaries where the high-medium and medium-low-growth regime inaction regions overlap.

The agent is more risk averse leading to lower stock holdings than in DFM. Where the inaction

regions overlap, it is not optimal to readjust housing when a regime switch occurs. However, this

is not the case for non-housing portfolio holdings. A negative jump in stock holdings occurs during

a switch from a medium-to-high or medium-to-low regime.

Column (7) of Table 3 presents the average holding of risky asset after a home purchase, which

is denoted by E(Θ/W )/E(τ) to emphasize that this parameter is the average of Θ/W over the

cycles. Transaction costs make the agent more risk averse. As a result, the averages are lower than

the shares chosen by an agent facing no transaction costs (see Column (8)). There is a substantial

decrease in average stock holdings when introducing transaction costs in the high growth regime,

falling from 18.2% to 17.4%.

In a high-growth regime in house prices, the average stock holdings is 17.4% for U.S., lower

than the 20.4% and 23.9% in medium- and low-growth regimes, respectively. Then, the average
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risky holdings in a high-growth regime are substantially lower than in a medium- or low-growth

regime for such states as California and Florida for which the annual expected growth rate in house

prices in a high-growth regime is approximately 12%. Furthermore, the model predicts a decrease

in stock holdings when an upward housing adjustment is triggered. Conditional on moving, the

change in risky asset holdings relative to wealth, ∆(Θ/W ), is larger in a high-growth regime (see

Column (9)), when housing is quite attractive for investment purposes.

These predictions on risky stock holdings are summarized by the following hypotheses:

Hypothesis 3.1. Risky asset holdings relative to wealth are lower in a regime of high house

price growth than in any regime of lower house price growth on average.

Hypothesis 3.2. Conditional on moving, the change in risky asset holdings relative to wealth

is larger in a regime of high growth in house prices than in any lower growth regime.

Finally, we analyze the consumption of non-housing goods and the portfolio holdings of risk-

free assets. Columns (10) and (11) represent the average numeraire consumption rate just after a

housing trade and the optimal consumption rate without transaction costs, respectively. In general,

the propensity to consume non-housing goods is increasing in z(t). This propensity only differs

as the agent approaches the boundaries. Increases in z(t) yield increasingly smaller increases in

the consumption rate when the agent approaches the upper boundary, whereas decreases in z(t)

generate increasingly large declines in the consumption rate when the agent approaches the lower

boundary as illustrated in Figure 6. Regarding the risk-free portfolio holdings, the lower panel in

Figure 5 plots the fraction of wealth invested in the risk-free asset, B∗(z(t), i)/W (t). The agent is

only a net borrower in a high-growth regime under the parameters in this numerical example. The

agent finances housing holdings with a net short position in the financial market and therefore her

home equity share is lower than one. Her borrowing (net saving) decreases (increases) with her

ratio z(t).

[FIGURE 6 HERE]

21



5 Data

We use survey data at the household level to test the theoretical predictions of the model. We

obtain the data from two surveys, the PSID from 1984 to 2007, and the SIPP of the U.S. Census

Bureau from 1997 to 2005. Both surveys have data on asset holdings and housing wealth.

In the analyses using PSID data, we calculate financial wealth as the sum of an individual’s

house value, their second house value (net of debt), business value (net of debt), other assets (net

of debt), stock holdings (net of debt), checking and savings balances, IRAs and annuities less

the mortgage principal on the primary residence.23,24 We divide these variables into two groups:

those that are considered risky assets and those that are considered safe assets. The risky assets

comprise stock holdings, IRAs and annuity holdings. The safe asset includes other assets (net of

debt), checking balances, and savings balances, less the principal on the primary residence. The

variables regarding financial wealth are net of debt, with the sole exception of the primary residence

value in both the PSID and SIPP.

In the analyses using SIPP data, we calculate risky assets as the sum of equity in stocks and

mutual funds, equity in IRAs, and equity in 401k and thrifts. The safe assets are interest-earning

assets in banks and other institutions less the outstanding mortgage balance. The value of financial

wealth is calculated by adding the risky asset value to safe asset value, business equity, the property

value of the primary residence, housing equity in the second residence and other assets. In both the

PSID and SIPP data-sets, the measure of house value is given by homeowners’ estimate of home

value. Home value is problematic in that there might be a large amount of measurement error in

the figure quoted. However, we argue that whereas most homeowners only have a general idea of

the value of their home, owners who are near to the bound or have recently bought a house have

more precise knowledge of the value of their home.

We also include human capital as part of each household’s total wealth. Following Jagannathan

and Wang (1996), we estimate the human capital of each household as capitalized wage income,

that is, as the present value of a growing annuity.25 We assume that for each household, the wage
23Other assets include bonds and insurance.
24For comparability across different survey waves, we exclusively focus on first mortgages.
25As Palacios-Huerta (2003) acknowledges, measuring human capital as capitalized wage income has several limi-

tations. First, it does not account for the capital gains in the stock of human capital. Second, this simple measure
assumes that the labor supply is exogenous. Third, it ignores the worker’s skill premium and experience. Fourth, it
does not net out the effect of physical capital on labor income and human capital returns. Fifth, this measure does
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remains constant at the current real level until age 65, and then the wage ends, as in Heaton

and Lucas (2000) and Eberly (1994). Appendix C contains additional details regarding the specific

variables that we use from the PSID and SIPP surveys and the methodological approach to account

for human capital.

Table 4 presents the descriptive statistics for the main variables that we use in the empirical

analysis. We present statistics for the full sample and for the selection of households that moved

to a more or less valuable house (second and third pairs of columns, respectively.) We present the

means and standard deviations of the relevant variables. The most important variable in the model

is the wealth-to-housing ratio, z.26 Stock holdings are approximately 10.2% of financial wealth,

and safe assets without debt holdings represent 10.9% of financial wealth, or 14.1% for households

that buy a more valuable house. We report statistics on stock holdings without retirement assets

(IRA, 401k). We define the dummy mBIG (mSMALL) to identify households selling the current

house to buy a more (less) valuable house in the same U.S. census region.

[TABLE 4 HERE]

We also report summary statistics for variables that aid us in distinguishing between changes

in housing that occur for reasons that are exogenous to the model and changes in housing that

occur because individuals have a total wealth-to-housing ratio that is close to the boundary. To

account for moves that are required for exogenous reasons, we use variables that capture changes

in the household around each home purchase. Consequently, we control for changes in family size,

marital status, and employment status in our empirical specification.27

Our model does not explicitly study the portfolio choices of renters. We focus our study on

understanding the portfolio decisions of homeowners. In our model, as in Stokey (2009b), renting

would be equivalent to holding zero equity in a house. Table 5 provides information on the per-

centage of movers by current ownership status (owner, renter, or occupied) across all households in

the PSID and SIPP surveys. The four columns represent the percentage of households that moved

not account for regional differences. We have run different robustness checks on these five limitations for all of the
results that we present. We find that the results obtained using the measure of human capital in Jagannathan and
Wang (1996) are robust.

26Although we present statistics for the wealth-to-housing ratio without and with human capital, we use the measure
with human capital in the remainder of the paper.

27Both the PSID and SIPP provide data on family size, marital status, and employment status at the household
level.
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to a new address in the same U.S. macro-region, moved to a new address in the same U.S. state,

and moved to a new address and were not previously homeowners.

We can easily identify the households moving to a different house in the PSID because it explic-

itly reports whether there has been a move since the previous interview. The SIPP does not report

house moves explicitly; thus, we must identify them by tracking the households’ address identifiers.

Table 5 reports that the percentage of owners who move is much lower than the percentage of

renters who move. This finding is consistent with the fact that renters face lower transaction costs

than homeowners. The percentage of movers to a different U.S. census region or U.S. state is very

low among owners. Finally, new homeowners represent 5.47% (3.79%) of the total homeowners in

the SIPP (PSID).

[TABLE 5 HERE]

6 Empirical Results

In this section, we use the household survey data described in Section 5 to test the model’s pre-

dictions that we stated in Section 4. Moreover, we replicate the same tests using model-simulated

data to address the concern that the model is non-linear due to the Markov switching mechanism,

whereas the reduced-form regressions estimated in the this section are mostly linear. To gener-

ate model-simulated data, we consider the empirical distribution of the cross-section of wealth-

to-housing ratios, zt, observable in the SIPP in 1996.28 For simplicity, we limit our exercise to

simulating the choices of households from the five U.S. states for which we present house price

parameters in Section 2 and optimal policies in Section 4. They represent approximately 36% of

the U.S. population, but they are representative of the geographic heterogeneity in U.S. housing

markets. Overall, we generate 50 years of quarterly data for 2, 721 individual households. For each

simulated database, we perform regressions similar to those run on the PSID and SIPP data. We

repeatedly simulate panel data 5, 000 times to produce a sampling distribution for the statistics of

interest. Using these sampling distributions, we can test whether the estimates obtained using the

PSID and SIPP data could have been generated by our model with high probability.
28Using a procedure similar to that of Eberly (1994), we filter the data with a regression of the wealth-to-housing

ratio on the same set of demographic characteristics that we will include later in the regressions. This procedure
absorbs determinants of the wealth-to-housing ratio other than the dynamic variation featured by our model.
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To generate a rich model simulated data-set that represents what we observe in reality, we

introduce heterogeneity across households in three dimensions. First, we assume five levels of

transaction costs ranging from 5% to 25% of the value of their house with a marginal increase of

5%. The current literature does not provide any quantitative assessment of the level of transaction

costs that households face in addition to the average real estate agent costs of selling the house. We

adopt the following rule to assign a transaction cost level to each household. The higher the number

of years that households have lived in the same house, the higher the transaction costs that they

face. The intuition behind this rule is that transaction costs are increasing in home tenure due to tax

reasons, depreciation of the housing stock and other costs that are difficult to measure. Second, we

divide the households into two groups, urban and non-urban, within each state. The only difference

between an urban and a non-urban household in U.S. state j is the set of parameters that defines

their house price processes and the optimal policies calibrated on the same set of parameters.29

Overall, 53% of the 2, 721 individual households are classified as urban households. Third, we

assume an idiosyncratic house price shock specific to each household. This household-specific

parameter allows us to account for further heterogeneity across households without changing the

optimal policy rules. Households are homogenous in all other aspects. Additional details on the

generation of model-based data are provided in Appendix D.

Moreover, we need to construct an indicator variable that captures the existence of periods of

high expected growth in house prices at the U.S. state level. To be consistent with our model,

this variable can be inferred from the smoothed probabilities of being in a regime of high growth

in house prices. To obtain a binary variable from these estimated probabilities, we assume that

the binary variable 1
µh
jt for U.S. state j (i.e., j=California) at time t is equal to one when the

following two conditions hold: (i) the smoothed probability of being in the regime associated with

the highest expected real housing return in state j is higher than its historical average plus half of

its historical standard deviation for four consecutive quarters; and (ii) the real housing return in

state j is higher than the mean real housing return in the high-growth regime for the U.S. aggregate
29We average the real house price indexes for the largest MSAs of state j (i.e., Los Angeles and San Francisco for

California) creating an urban index for state j and we estimate the three regime Markov switching model using the
real housing returns of the same index. Then, we calibrate our model using the same parameters for the five levels
of transaction costs considered. We report these house price parameters and the associated optimal policies for a
transaction cost level of 10% in the online appendix. We assume that the parameters that define the house price
process of a non-urban household living in state j are those reported in Table 1.
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house price index in the same four quarters of condition (i). We provide an extensive analysis of

the estimation and properties of the indicator variable in Appendix E. This binary variable is based

on these two conditions because they embed two specific pieces of information. The first condition

captures the likelihood that there has been a regime change in state j based on the probability

of a turning point. We define the turning point as the moment when the estimated smoothed

probability of being in a regime of high growth in house prices reaches the 90% significance level.

The logic underlying the first condition is to detect whether a housing market peak relative to

its past historical average in state j has been reached and has lasted for at least four consecutive

quarters. Therefore, condition (i) allows us to classify states’ house prices according to the degree

of cyclicality in their real housing returns.30 This condition is consistent with previous approaches

to determine the turning points of business cycles (see Chauvet and Hamilton (2005)). The second

condition verifies whether the real housing return in state j is substantially high when compared

to the real mean housing return of 6.37% in high-growth regime that characterizes the overall U.S.

housing market over the 2000− 2006 period.31,32 Recall that the rise in house prices has been very

uneven across the U.S. in the 2000−2006 period considered here. House price indexes increased by

more than 10% per year in several states, including California, Florida, Nevada, Maryland, Rhode

Island, New Jersey and Virginia, whereas some states, such as Texas and Ohio, grew at only 2%

per year.

Finally, we replicate the indicator in our simulation exercise. Because we simulate the Markov

switching process, we clearly identify whether the simulated real house price index of state j is in a

high-growth regime. Therefore, we only need to verify whether the housing return of the simulated

house price index of state j in a high-growth regime is higher than the real mean housing return
30The condition that the smoothed probability of being in the regime associated with the highest expected real

housing return reaches the turning point probability is satisfied in some periods by such states as California and
Florida in which housing markets experienced a particularly high appreciation in the same periods. Thus, these
periods are generally characterized by high and pronounced appreciation in house prices. Alternatively, condition (i)
is not satisfied by such states as Alabama and Montana where housing markets experienced prolonged and continuous
high-growth phases that are primarily characterized by modest growth in house prices.

31An alternative approach would be to infer common Markov-switching regimes in a panel data-set with large
cross-section and time-series dimensions. However, this approach raises several challenges regarding how to explicitly
model U.S. state house prices similarities and is outside the scope of this paper.

32Based on the smoothed probabilities for U.S. aggregate, we identify the period 2000−2006 as a high-growth period
and we calculate a mean annual real growth rate of 6.37%. Accordingly, we use this as our threshold for condition
(ii). We check our results for robustness by lowering the threshold to 5%. We find that our empirical results
are not significantly affected by the second condition of our indicator (see Tables 9 − 12 of the online appendix).
Alternatively, we constructed our indicator using the filtered probabilities instead of the smoothed probabilities. Our
empirical results are not affected by this modification.
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in the high-growth regime of the U.S. aggregate for four consecutive quarters.

In the remainder of this section, we test the model hypotheses using the PSID and SIPP

datasets and the model-simulated data. First, we test the effect of transaction costs and house

price predictability on housing portfolio choices (Subsection 6.1). Then we test the frequency and

size of the housing adjustment (Subsection 6.2). Finally we test the model implications regarding

non-housing portfolio choices (Subsection 6.3).

6.1 Housing Portfolio Holdings. Empirical Results

The model predicts that both the upper and lower boundaries of the inaction region are lower

in periods of high expected growth in house prices, as stated in Hypothesis 1. We develop a

difference-in-differences analysis based on the following reduced form model to test this hypothesis:

z̃it =γ0 + γ1 ·mBIGit + γ2 ·mSMALLit + γ3 · 1µhkt

+ γ4 ·mBIGit × 1
µh
kt + γ5 ·mSMALLit × 1

µh
kt + Γ ·Xit + uit, (20)

where z̃it is the total wealth-to-housing ratio of household i at time t; mBIGit is a dummy variable

equal to one if the household is increasing its housing holdings (i.e., moving to a more valuable

house); mSMALLit is a dummy variable equal to one if the household is decreasing its housing

holdings (i.e., moving to a less valuable house); we interact 1µhkt with mBIGit and mSMALLit ; and

Xit contains a set of variables that control for ex-ante changes in the housing stock for reasons

not related to the wealth-to-housing ratio such as changes in employment status, family size and

marital status.33 This parameter also includes age, state, and year fixed effects. Households that

do not move in periods of medium and low growth in house prices are the benchmark group.

Before analyzing the effects of house price predictability on the boundaries of the inaction

region, we explore the existence and geographic heterogeneity of these boundaries in our datasets.

Although the existence of these boundaries has been tested in the empirical S-s literature, we

confirm that they also exist in the PSID and SIPP data in the context of our model. Columns
33The goal is to identify those moves that are triggered by the evolution of wealth and house prices and control

for those moves that result from an increase or decrease in family size alone, such as births, deaths, divorces, and
emancipations. The identification is not perfect, as having children may be correlated with the wealth level, but the
results are robust to the inclusion or exclusion of changes in family size. These robustness checks can be found in
Table 7 and 8 of the online appendix.
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(1)− (3) of Table 6 present the results from running the pooled regression in equation (20) without

the interaction terms. The first two columns indicate that the average value of z̃it for families

that do not move in periods of medium and low growth in house prices, γ0, is 5.812 for the PSID

and 3.569 for the SIPP. Importantly, the total wealth in the total wealth-to-housing ratio includes

human capital as calculated in Section 5. The ex-ante average value of z̃it for households that

moved to a more valuable house is 2.662 for the PSID and 1.717 for the SIPP above the non-

movers average. This difference is significant at the 99% level for both the PSID and SIPP.34 We

find that γ1 is significantly positive and different from zero, which means that the total wealth-to-

housing ratio of the households that move to a more valuable house is significantly higher than the

ratio of those who do not move. Note that γ2 is not significantly different from zero for the PSID,

but is for the SIPP. Thus, the average wealth-to-housing ratio z̃it for non-movers is not significantly

different from the ratio for movers to less valuable houses. It can be inferred that the distribution of

the total wealth-to-housing ratio is skewed to the left and, on average, agents are closer to moving

down according to our model. We also run a test on the coefficients γ1 and γ2 being equal, which is

strongly rejected. This result supports the notion that the upper and lower bounds are significantly

different.

[TABLE 6 HERE]

Once we have demonstrated the existence of the inaction region, we study the effect of house

price predictability on the housing portfolio holdings. Columns (4) and (5) of Table 6 report the

results of the differences-in-differences analysis that were specified in equation (20). We choose

households that did not move in years of medium-low expected growth in house price, 1µhkt = 0,

as the control group. The terms in which we interact mBIGit with 1
µh
kt and mSMALLit with 1

µh
kt

capture the main results in our differences-in-differences analysis. The term mBIGit ×1
µh
kt captures

the difference between the following two terms: (i) the difference between the average z̃it for the

upper boundary in high and medium-low expected growth years; and (ii) the difference between

the average z̃it for non-movers in high and medium-low expected growth years. The negative sign

on the coefficient γ4 indicates that the decrease in z̃it at the upper boundary in the transition from

medium-low to high growth is lower than the decrease in z̃it for non-movers in the same transition.
34Similar results are obtained when running yearly regressions that are not included in the table for clarity.
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However, the coefficient γ5 associated with mSMALLit × 1
µh
kt is not significant for either the PSID

or SIPP. These empirical results confirm the model’s implications: housing return predictability

affects the total wealth-to-housing ratio and the upper bounds. Consequently, the inaction region

changes over time.

Column (6) reports the median and the 1st - 99th percentiles of the distribution of the estimated

coefficients that we obtain using the simulated data. The most important coefficient for our purposes

is γ4 because it captures the time variation of the upper boundary. The estimates of γ4 that we

obtained using PSID and SIPP data are consistent in sign to the coefficient that we obtain using the

simulated data. The sign is negative as expected but the median value is larger than the estimated

coefficients, at least for the set of parameters we used in the simulation. Figure 7 displays the

distribution of γ4 from the simulated data. In addition, it indicates that the 99% confidence

interval of the coefficient obtained using the SIPP data (which is significantly different than zero)

falls within this distribution.35 The bottom panel displays the equivalent results for the distribution

of γ5. In this case, the simulated model has difficulty in generating a distribution of γ5, the sign of

which should be negative according to the model predictions. The sign of this parameter is positive.

In light of this finding, it should not be surprising that our estimates of this parameter using PSID

and SIPP data fail to be empirically robust.

[FIGURE 7 HERE]

6.2 Size of Housing Adjustments. Empirical Results

Hypothesis 2 in Section 4 states that, conditional on moving, the size of an upward housing adjust-

ment, in terms of the change in the wealth-to-housing ratio z̃it, is lower in a regime of high growth

in house prices than in any lower growth regime. To test this hypothesis using household-level data,

we estimate a two-stage selection model, where the first stage captures the homeowner’s decision

to sell her current house to end up with higher housing holdings as a fraction of total wealth.

The second stage estimates the change in her wealth-to-housing ratio conditional on the housing

transaction. We use the SIPP data for this test because they include a higher number of housing

transactions than the PSID data.
35We obtain the same conclusion plotting the 99% confidence interval of the coefficient obtained using the PSID

data.
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We follow Bertola, Guiso, and Pistaferri (2005) and estimate the selection model introduced by

Heckman (1979). Our empirical approach evaluates the effects of housing return predictability on

the frequency and size of an increase in the amount of housing holdings. The model predicts that

an upward adjustment is more likely to be observed, for a given z̃, when house prices experience

high increase. We again use the indicator 1
µh to capture the periods of high expected growth

in house prices in the state where the households are located. In practice, households can sell a

current house located in a state and buy another house in a different state but we do not control

for destination prices. The reason for this lack of control is that we only consider households selling

the current house to buy a more valuable one in the same U.S. state and the percentage of movers

to a different state is substantially low among owners (see Table 5).36

In the first stage, we test these predictions using the following specification:

Prob(bigger home purchaseit = 1) = γ0 + γ1 · z̃i,t−1 + γ2 · 1µhk,t−1 + Γ ·Xit + uit, (21)

where Xit contains a set of variables that control for changes in employment status, family size and

marital status between t and t− 1. It also includes age, state, and year fixed effects.

Columns (1) and (2) of Table 7 report marginal effect estimates from the probit regressions for

increasing the amount of housing holdings. Column (1) indicates that the probability of increasing

housing holdings rises with the value of the total wealth-to-housing ratio, z̃. It also indicates that

the indicator 1µhkt positively affects the probability of increased housing holdings as predicted by

our model. Both coefficients are statistically significant.

[TABLE 7 HERE]

Column (2) reports the median and the 1st and 99th percentiles of the distribution of estimated

coefficients that we obtain using the simulated data. The most important coefficient for our purposes

is that of the indicator 1
µh
kt . The sign is positive, as expected, but the median value is larger

than the estimated coefficient. However, the coefficient falls in support of the distribution of the
36In our setup, we refrain from introducing the option of selling the house at price P in the household’s current

market and buying a more or less valuable one at the price P ′ in the region to which the household relocates in the
next move. In this setup, the household’s indirect utility depends on six state variables, V (W,P,H, P ′, j, k), where j
is the regime (i.e., high, medium or low) characterizing house price P , whereas k is the regime (i.e., high, medium or
low) characterizing house price P ′. A similar model without house return predictability is developed in Flavin and
Nakagawa (2008).

30



estimated coefficients (see Figure 8). The main reason for this difference between the estimated

and the simulated coefficients is the following. In the results obtained using simulated data, moving

is primarily triggered by the wealth-to-housing ratio and/or Markov switching regime process in

housing returns. However, in the results obtained using SIPP data, moving is less frequent and

occurs due to shocks that have not been modeled in our simulation exercise.37

[FIGURE 8 HERE]

Our model also predicts that the size of housing adjustments is higher in periods of high expected

growth in house prices. We correct for the selection bias by adopting the approach in Heckman

(1979). In particular, we use the value of z̃i,t−1 prior to an adjustment as a selection variable

because theory predicts that this parameter affects the likelihood of adjusting but not the size of

an adjustment if it occurs. We use the log of the adjustment ln(z̃i,t−1− z̃i,t) as independent variable

to account for an increase in housing holdings, where z̃i,t−1 is interpreted as the upper boundary

z, and z̃i,t is the optimal return point z∗. Specifically38

ln(z̃i,t−1 − z̃i,t) = γ0 + γ1 · 1µhk,t−1 + Γ ·Xit + uit. (22)

The results of the second stage of the Heckman selectivity regressions are reported in Column

(3) of Table 7.39 The most important effect is captured by the coefficient of the indicator variable

1
µh
kt . The obtained coefficient implies that the difference in the wealth-to-housing ratio before and

after moving is 61.2% lower for households moving during periods of high expected growth in house

prices. The effect is statistically significant and economically sizable when households increase

their housing holdings. The result implies that the distance between the upper bound z̃i,t−1 and

the optimal adjustment point z̃i,t is lower in periods of high expected growth in house prices or,

equivalently, that the increase in housing holdings as a share of total wealth is higher during high
37To obtain coefficients for the wealth-to-housing ratio z̃t−1 and the indicator 1

µh
kt that are significantly similar to

those that we obtain using the empirical data, we must include transaction costs on the order of 25% of the value of
the house for every household in our simulations. These results are available on request.

38In the second stage, we do not include households that sell the current house to buy a more (less) valuable house
but those where the wealth-to-housing ratio increases (decreases) between the two purchases. We have two alternative
arguments. The first is that total wealth is not following the continuous diffusion process assumed by our model but
rather positive or negative jumps may be occurring in the total wealth process. The second is that total wealth might
be affected by measurement error.

39We implement a standard GLS procedure to calculate appropriate standard errors for the estimated coefficients
(see Greene (2008)).
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expected growth rate periods.

The bottom panel of Figure 8 displays the distribution of this coefficient from the simulated

data (see also Column (4) of Table 7). Two conclusions can be drawn from this figure. First, the

median value of the regression coefficient in our model is clearly of the same sign as the empirical

result. Second, the magnitude of the coefficient obtained is well within the body of the frequency

distribution from the simulations. Therefore, our empirical estimates are within the frequency

distribution generated by the simulations.

As a summary, Table 7 provides two relevant empirical findings. First, the probability of an

increase in housing holdings is higher during periods of high expected growth in house prices.

Second, the size of the increase in housing portfolio holdings is higher during these periods.

6.3 Non-Housing Portfolio Holdings. Empirical Results

The model predicts that the household’s risky holdings depend on its wealth-to-housing ratio and

the regime of expected growth in house prices. Specifically, it predicts that in periods of high

expected growth in house prices, the average share of risky assets is lower than in other housing

regimes (Hypothesis 3.1). Moreover, households decrease risky asset holdings to a greater extent

during the process of a housing purchase in periods of high expected growth in house prices (Hy-

pothesis 3.2).

One of the most important contributions of our paper is to empirically analyze the effects of

housing return predictability on stock holding decisions. Because non-housing and housing portfolio

choices are endogenous, they are both affected by unobserved factors (see Cocco (2005) and Davidoff

(2010)). Previous empirical work documented the cross-sectional correlation between house values

and portfolio choices but it did not identify the causal effect of housing on non-housing portfolios

(see Heaton and Lucas (2000), Yamashita (2003), and Cocco (2005)). We follow Chetty and Szeidl

(2011) to pursue this empirical analysis. Their empirical strategy exploits the distinction between

changes in mortgage debt and changes in home equity wealth to capture the causal effect of housing

on portfolio allocations. They provide evidence that an increase in property value mechanically

reduces the share of risky stocks in the portfolio as documented in previous studies. However, home

equity increases stock holdings through a wealth effect. They exploit two instruments to generate

variation in home equity and property value: the real house price index value in the state where
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the household lives in the current year and the real house price index value in the state in the year

that the household bought the house.

We extend their empirical approach to account for predictability in house prices. We use SIPP

data because the SIPP is the only survey containing information on the year of the purchase of the

house. To test Hypothesis 3.1, we include our indicator 1µhkt and interact 1µhkt with house value and

home equity. We instrument for the interaction effects using the interactions of the two FHFA price

indices and our indicator 1µhkt . We estimate a two-stage Tobit specification to isolate the change

in stock shares conditional on participating in the stock market. This model is analogous to the

two-stage least-squares estimates, but corrects for the fact that two thirds of the households are

non-participants using a Tobit specification in which stock holding is left censored at zero. The

dependent variable is stocks in dollar amounts, stocks relative to wealth in liquid assets (LA) and

stocks relative to financial wealth (FW):40

Θit

jit
= γ0 + γ1 · house valueit + γ2 · home equityit + γ3 · 1µhkt

+ γ4 · house valueit × 1µhkt + γ5 · home equityit × 1
µh
kt + Γ ·Xit + uit, (23)

where Θit is the amount invested in risky financial assets by agent i at time t, and jit = {1, LA, FW}.

As we do not have information on the risk characteristics of retirement portfolios in the SIPP, we do

not include retirement assets (i.e., IRA and 401k) in the risky stock holdings in this specification.

As in Chetty and Szeidl (2011), the set of explanatory variables Xit include state, current year,

year of housing purchase and age fixed effects, and a 10-piece linear spline for liquid wealth and

income.

Table 8 presents the results for the test of Hypothesis 3.1. The coefficient estimates in Column

(2) imply that a $100, 000 increase in property value reduces the risky share of liquid wealth

by approximately 21.7%, whereas a $100, 000 increase in home equity increases it by 24.8%. The

coefficient on the interaction between home equity and 1µhkt is −11.4% and is statistically significant.

Therefore, in a regime of high expected growth, a $100,000 increase in home equity increases
40Our specification is similar to that used by Chetty and Szeidl (2011) to examine how the effect of housing on

portfolios covaries with the volatility of local housing markets (see Section 4.3 and Table 7 of their paper). To test
whether the effects of housing on portfolios differ in high versus low-risk environments, they interact a high-risk
indicator with property value and home equity. The high-risk indicator is equal to one when the standard deviation
of annual house price growth rates using the FHFA data by state is above the median volatility of 4.5%.
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the risky share of liquid wealth by 13.4%(= 24.8% − 11.4%). Thus, housing holdings have a

substantial and significant effect on risky stock holdings, as documented by Chetty and Szeidl

(2011). Furthermore, house price predictability affects risky stock holdings through the home equity

channel. This result is consistent with our model predictions. On average, households hold fewer

risky stocks during a period of high house appreciation. Similar conclusions can be drawn when we

estimate the same specification using risky stocks in dollar amount (see Column (1)). Column (3)

indicates that these results are not significant when we use the portfolio choice measure of risky

stocks as a fraction of financial wealth. However, Column (4) shows that these results are significant

when we only consider wealthy individuals, that is households with financial wealth greater than

$100, 000, the behavior of which may be the most relevant for financial market aggregates. The

point estimate of the interaction between our indicator and the home equity coefficient is significant

and larger in magnitude than those in the full sample. Housing return predictability remains an

important determinant of portfolio choice even for wealthier households.

[TABLE 8 HERE]

Because our model mainly provides predictions on the stock share of financial wealth, we perform

regressions on this variable using model-simulated data. We estimate OLS regressions instead of

two-stage Tobit specifications, because each household in the simulations invests in risky stocks

each time. In order to compare the distribution of the OLS coefficients we estimate from the

simulated data, Columns (5) and (6) report the marginal effects on the expected value for the

left-hand-side variable of Columns (3) and (4).41 Column (7) reports the median and the 1st and

99th percentiles of the distribution of the OLS coefficients that we obtain using the simulated data.

The two most important coefficients for our purposes are House value ×1µhkt and Equity ×1µhkt .

Recall that the first coefficient is not significant in our regressions. Overall, the model produces

coefficients that reproduce the empirical results in terms of sign. Figure 9 displays the distribution

of both coefficients from the simulated data. The figure illustrates that the 99% confidence interval

of the coefficient of the interaction Equity ×1µhkt obtained using the SIPP data falls within the

41The rescaling is obtained by multiplying the γ coefficient of the two-stage Tobit specification by the term Φ
“
Xiγ̂
σ̂

”
that is simply the estimated probability of observing an uncensored observation at these values of X. The rescaling
is implemented because our model predicts that each household should participate in the stock market, while only
one third of the households holds risky stocks in the SIPP survey.
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respective distribution. Therefore, the outcomes in the simulations are similar in magnitude to the

estimated coefficient.

[FIGURE 9 HERE]

Additionally, Hypothesis 3.2 states that households should decrease stock holdings to a greater

extent in periods of high growth in house prices around home purchases. We test this hypothesis

using the small subsample of households for which: (i) we observe a home purchase within our data,

and (ii) we observe portfolio shares both before and after the home purchase. As in Chetty and

Szeidl (2011), we include both individuals who transition from renting to owning and individuals

who bought a new and more valuable house within our sample frame. We estimate the following

reduced-form model, where the dependent variable is the change in risky stock holdings in dollar

terms, risky stock holdings relative to liquid wealth (LA) and the change in risky stock holdings

relative to financial wealth (FW) around housing purchases:

∆
(

Θit

jit

)
= γ0 + γ1 · 1µhkt + γ2 ·∆Property valueit + γ3 ·∆Wealthit + Γ ·∆Xit + uit, (24)

where ∆Property valueit and ∆Wealthit denote the changes in value of the house and financial

wealth, respectively.42 As in Chetty and Szeidl (2011), we instrument ∆Property valueit using the

state house price index in the year of the home purchase.43 We extend their empirical strategy

by introducing our indicator 1µhkt to account for predictability in housing returns. We also include

state, age, and year fixed effects as controls. Similar to the previous specifications, we control for

changes in the number of children, marital status, and unemployment status.

Table 9 presents the results of this test. The estimates of the coefficient γ1 indicate that

individuals who buy more valuable houses in periods of high growth in house prices decrease their

risky stock holdings in dollar terms to a greater extent (see Column (1) of Table 9). Moreover,

the average decrease in risky stock holdings relative to liquid wealth for the same households is

approximately 5.2% (see Column (2)). Both coefficients are substantial and significant at the 5%

level. When we estimate our specification on risky stock holdings relative to financial wealth, the
42To reduce the influence of outliers, we exclude 62 households that report changes in total wealth of more than

one million dollars in these specifications.
43Because we only observe portfolio shares over one year, there is little difference between house prices at the time

of purchase and the point at which we observe portfolio shares. As result, we cannot separately instrument for the
effects of changes in wealth (via home equity) on portfolios as in the preceding cross-sectional specifications.
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coefficient γ1 reported in Column (3) is not significant but takes the correct sign. Presumably,

changes in financial wealth around home purchases substantially attenuate the estimated effect of

the indicator 1µhkt on portfolio shares.

[TABLE 9 HERE]

Column (4) reports the outcomes for the coefficient of the indicator 1µhkt that we obtain using the

simulated data. The median value of the distribution is consistent in sign. Figure 10 displays the

distribution of this coefficient from the simulated data and illustrates that the coefficient obtained

from the SIPP data falls within this distribution.

[FIGURE 10 HERE]

7 Conclusions

The presence of housing price predictability and transaction costs affects the optimal behavior of

households. During periods of high growth in housing prices, households that move to a new house

end up with larger shares of housing wealth in their portfolios and larger declines in their shares of

risky stocks. Moreover, during periods of high growth in housing prices, smaller movements in the

wealth-to-housing ratio are required to trigger the purchase of a new home.

To reach these conclusions, this paper extends the seminal work in Grossman and Laroque

(1990) by considering predictability in house prices. We estimate and test a three-regime Markov-

switching process for the expected growth rate of house prices at the U.S. state level. We document

important differences in the magnitude of the expected growth rates and the timing of house price

cycles across U.S. states. In our model, households consider two state variables when making their

decisions under predictability in house prices and transaction costs: their wealth-to-housing ratio

and the time-varying expected growth in house prices. The model provides three novel implications.

First, the boundaries of the wealth-to-housing ratio determining the purchase of a new home are

time varying and depend on the dynamics of the expected growth rate of house prices. Second, we

find lower adjustments in the wealth-to-housing ratio for households that move to a more valuable

house during periods of high expected growth in house prices compared to households moving in

other periods. Third, we illustrate that the share of wealth invested in risky assets is lower during
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periods of high expected growth in house prices. In addition, conditional on moving, the change

in the households’ risky asset holdings relative to their wealth is larger in periods of high expected

growth in house prices than in any lower-growth regime.

Empirical tests using PSID and SIPP data confirm the main implications of the model. Our

empirical results illustrate that the high growth in house prices in some U.S. states experienced over

the 2000-2006 period affected the likelihood of buying a new home and increased the households’

investments in housing. We also confirm that housing price predictability has substantial effects

on financial portfolios. The empirical evidence suggests that households tended to withdraw funds

from stocks over the same period. We also use model-simulated data to replicate the same tests

that we run on the PSID and SIPP data. These results indicate that the calibrated model captures

most of the empirical results in sign and magnitude.

In sum, our paper demonstrates that the effects of transaction costs and house price predictabil-

ity are key elements of both housing and non-housing portfolio allocation decisions. We focus on

the analysis of these decisions using a partial equilibrium model that takes house price predictabil-

ity as given. Interesting directions for future research include endogenizing house prices to better

understand the general equilibrium implications of house price predictability.
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Figure 1: Probability of being in regimes of high and low growth of housing returns.
The top half of the graph shows the real annual change in the Case-Shiller U.S. Home Price Index
and the bottom half shows the smoothed probabilities of being in a regime of high and low growth
for the 1925-2011 period. This graph does not plot the probability of being in a regime of medium
growth, which is one minus the sum of the probabilities of being in the regimes of high and low
growth.
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Figure 2: Geographical heterogeneity of the probability of being in regimes of high and
low growth of housing returns. Smoothed probability of being in a regime of high growth (top
panel) and low growth (bottom panel) for the states of California (CA), Florida (FL), New York
(NY), Illinois (IL), and Texas (TX) based on estimates of Table 1.
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Figure 3: Illustration. Hypothetical path of wealth-to-housing ratio and upper and lower bounds
for a two regime Markov switching process (i.e., high and low growth of housing returns). Changes
in the expected growth of prices cause households to buy or sell the house. When the wealth-
to-housing ratio reaches a bound, the benefits of re-sizing the house outweighs the transaction
costs.

44



0 5 10 15 20 25
0

2

4

6

8

10

12

x 10
15

zt =Wt/HtPt

v(
z t
,h
)
−

(z
t
−

ε)
1−

γ
M

(h
)/
(1

−
γ
)

 

 

High
z∗h

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

x 10
10

zt =Wt/HtPt

v(
z t
,m

)
−

(z
t
−

ε)
1−

γ
M

(m
)/
(1

−
γ
)

 

 

Medium
z∗m

0 5 10 15 20 25
0

1

2

3

4

5

6

x 10
8

zt =Wt/HtPt

v(
z t
,l
)
−

(z
t
−

ε)
1−

γ
M

(l
)/
(1

−
γ
)

 

 

Low
z∗l

Figure 4: Value function and value of changing the home. Panel A (high growth),
Panel B (medium growth) and Panel C (low growth) The difference between the value
function, v(z(t), i), and the value of changing housing consumption, (z(t) − ε)1−γMi/(1 − γ), is
plotted against z(t), where z(t) = W (t)/(H(t)P (t)), and i. o indicates the optimal return point.
These graphs are generated using numerical results that we obtain from the model when we use the
parameter values of Table 2 and the parameters of the U.S. aggregate house price process reported
in Column (2) of Table 1. 45
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Figure 7: Hypothesis 1. Distribution of the coefficient mBIGit × 1
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kt and mSMALLit × 1
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kt

obtained using model simulated data. The upper (lower) panel is a histogram of the realized
coefficient mBIGit × 1

µh
kt (mSMALLit × 1

µh
kt ) over 5, 000 simulations. The continuous line marks

the equivalent coefficient obtained using SIPP data and the dotted line marks the associated 99%
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Figure 8: Hypothesis 2. Distribution of the coefficient 1
µh
kt for the Probit and Heckit

estimation obtained using model simulated data. The upper (lower) panel is a histogram
of the realized coefficient 1
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kt for the Probit (Heckit) estimation over 5, 000 simulations. The

continuous line marks the equivalent coefficient obtained using the SIPP data and the dotted line
marks the associated 99% confidence interval.
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Table 1: Parameter values for the house price process. Estimation of the parameters of the
house price process using a 3-regime process. The growth of house prices in each regime i is denoted
by µi and its standard deviation is denoted by σP , where i can be either i = l (low growth regime),
i = m (medium growth regime)or i = h (high growth regime). Column 1 shows the parameters
for the aggregate U.S. house prices using Case-Shiller data; the parameters are annual; Columns
2−7 show the parameters for U.S. aggregate and five U.S. states using FHFA data; the parameters
are quarterly. The five U.S. states displayed here are, respectively, California, Florida, New York,
Illinois and Texas. The likelihood test is used to test the null hypothesis that house prices follow
a martingale against the alternative of a regime switching mechanism. Data source: Shiller (2005)
and Federal Housing Finance Agency (FHFA).

Case-Shiller Federal Housing Finance Agency
1925− 2011 1983(1Q)− 2012(2Q)

U.S. U.S. California Florida New York Illinois Texas
(1) (2) (3) (4) (5) (6) (7)

µl -0.1619 -0.0134 -0.0561 -0.0449 -0.0083 -0.0144 -0.0350
(0.0286) (0.0016) (0.0083) (0.0039) (0.0017) (0.0017) (0.0036)

µm -0.0015 0.0017 -0.0086 -0.0005 0.0061 0.0031 -0.0052
(0.0047) (0.0010) (0.0019) (0.0014) (0.0045) (0.0012) (0.0016)

µh 0.0942 0.0131 0.0275 0.0305 0.0254 0.0113 0.0045
(0.0146) (0.0014) (0.0021) (0.0028) (0.0018) (0.0014) (0.0011)

σP 0.0383 0.0073 0.0136 0.0121 0.0104 0.0077 0.0074
(0.003) (0.0004) (0.0009) (0.0008) (0.0007) (0.0005) (0.0005)

λll 0.4184 0.7466 0.7550 0.7528 0.9642 1.000 0.4543
(0.3777) (0.1296) (0.4616) (0.1299) (0.0652) (0.03526) (0.2367)

λlm 0.5815 0.2533 0.2449 0.2471 0.0357 0.000 0.5456
(0.3538) (0.1377) (0.2467) (0.1308) (0.0374) (0.0063) (0.2292)

λml - 0.0592 0.0203 0.0394 0.1452 0.0173 0.0734
(0.0294) (0.0201) (0.0223) (0.0891) (0.0277) (0.0501)

λmm 0.9686 0.9249 0.9470 0.9480 0.7399 0.9411 0.8954
(0.0246) (0.0331) (0.0306) (0.0254) (0.1371) (0.0372) (0.0578)

λhl 0.0945 - - - - - -
(0.0929)

λhm 0.1209 0.0322 0.0415 0.0441 0.0543 0.0604 0.0196
(0.1186) (0.3256) (0.0295) (0.04347) (0.0560) (0.0543) (0.0210)

LR-test χ2:
µl = µm = µh 36.248 82.834 54.607 72.195 101.88 72.61 69.61
P-value 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

Num. Obs. 87 118 118 118 118 118 118
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Table 2: Parameter used for benchmark calibration.

Variable Symbol Value

Curvature of the utility function γ 10
Time preference ρ 0.025
House flow services 1− β 0.4
Risk free rate r 0.015
Risky asset drift αS 0.077
Standard deviation risky asset σS 0.1655
Correlation house price - risky asset ρPS 0.25
Transaction cost ε 0.10
House depreciation δ 0
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Ŵ
∗n
c

”
E

(τ
i
)

at
z
∗

P
an

el
A

U
.S

.
H

(0
.7

7,
1.

40
,5
.3

1)
1.

19
6.

92
3.

91
−

0.
01

0
13
.9

0.
13

2
0.

15
3

0.
11

4
0.

01
0

0.
02

1
M

(1
.4

2,
2.

21
,7
.5

0)
1.

90
9.

68
5.

29
0.

00
6

12
.9

0.
19

7
0.

20
1

0.
07

6
0.

01
6

0.
02

7
L

(2
.4

1,
3.

67
,1

3.
15

)
3.

65
19
.0

9
9.

48
0.

06
6

11
.2

0.
24

0
0.

23
9

0.
04

3
0.

02
2

0.
03

8

D
F

M
(1
.5

9,
2.

03
,6
.9

3)
1.

83
26
.6

6
4.

90
0.

00
6

12
.2

0.
19

7
0.

19
8

0.
07

5
0.

01
6

0.
02

9

P
an

el
B

C
al

ifo
rn

ia
H

(0
.4

9,
1.

12
,4
.3

0)
0.

73
5.

60
3.

18
−

0.
01

4
29
.8

0.
04

8
0.

07
3

0.
20

4
0.

00
8

0.
01

8
M

(1
.5

1,
2.

80
,8
.1

2)
3.

44
15
.9

7
5.

32
0.

03
5

10
.8

0.
21

3
0.

23
6

0.
05

3
0.

01
6

0.
02

3
L

(2
.1

1,
8.

16
,1

8.
15

)
6.

54
1.

36
9.

98
0.

20
5

10
.1

0.
26

4
0.

25
6

0.
01

1
0.

03
2

0.
05

3

F
lo

ri
da

H
(0
.5

7,
0.

99
,4
.2

1)
0.

67
5.

20
3.

22
−

0.
00

6
42
.9

0.
02

5
0.

05
5

0.
24

8
0.

00
8

0.
01

8
M

(1
.5

1,
3.

44
,7
.3

9)
2.

58
12
.7

8
3.

95
0.

01
6

10
.3

0.
23

3
0.

22
1

0.
04

0
0.

01
8

0.
01

7
L

(3
.1

2,
6.

68
,1

7.
45

)
5.

84
2.

22
10
.7

6
0.

16
3

10
.0

0.
26

1
0.

25
2

0.
01

6
0.

02
6

0.
04

8

N
ew

Y
or

k
H

(0
.5

3,
1.

73
,4
.1

2)
0.

79
7.

25
2.

38
−

0.
03

4
14
.8

0.
11

7
0.

08
9

0.
07

7
0.

01
0

0.
01

7
M

(1
.4

2,
2.

48
,5
.1

4)
1.

58
14
.9

4
3.

65
−

0.
00

6
10
.8

0.
19

4
0.

18
5

0.
05

9
0.

01
4

0.
01

60
L

(2
.0

1,
2.

78
,7
.0

8)
3.

32
16
.3

7
4.

27
0.

03
2

10
.9

0.
21

7
0.

23
6

0.
04

7
0.

01
5

0.
02

1

Il
lin

oi
s

H
(1
.2

5,
3.

28
,4
.2

2)
1.

38
11
.8

9
2.

96
−

0.
01

4
10
.7

0.
22

4
0.

17
1

0.
02

3
0.

01
7

0.
01

5
M

(2
.4

9,
3.

61
,6
.7

5)
2.

12
12
.8

2
4.

25
0.

00
6

10
.5

0.
23

5
0.

20
9

0.
03

3
0.

01
9

0.
01

5
L

(3
.1

1,
4.

15
,1

1.
65

)
4.

00
14
.4

7
8.

53
0.

05
3

11
.3

0.
25

7
0.

24
2

0.
04

2
0.

02
6

0.
02

6

T
ex

as
H

(1
.5

1,
2.

65
,4
.8

1)
1.

95
22
.7

2
2.

16
0.

00
2

10
.8

0.
21

6
0.

20
3

0.
04

7
0.

01
5

0.
01

5
M

(1
.7

1,
2.

91
,6
.7

8)
2.

58
20
.4

9
3.

87
0.

01
4

10
.7

0.
22

5
0.

22
1

0.
04

4
0.

01
6

0.
01

7
L

(2
.1

3,
5.

71
,1

3.
50

)
4.

39
3.

04
7.

78
0.

12
2

10
.3

0.
25

4
0.

25
0

0.
01

8
0.

02
3

0.
05

3

54



Table 4: Descriptive statistics. Sample averages and standard deviations (in parenthesis) for
the main variables used in our analysis from PSID and SIPP data. The variables Move big and
Move small correspond to the individuals who moved to a house having a higher and lower value,
respectively. Full sample refers to all the individuals in the sample, irrespective of their moving
situation. The ratio z = W/(P · H) corresponds to the ratio of financial wealth net of debt over
housing value without considering human capital as part of the wealth. The ratio z̃ = (W +L)/(P ·
H) corresponds to the ratio of total wealth with human capital L and net of debt over housing
value. ∆Family shows the statistics of changes in family size. ∆Married is one if the individual
gets married, zero otherwise. ∆Employment is one if the individual changes employment status,
zero otherwise. Age corresponds to the age of the household head. Northeast, Midwest, South and
West are U.S. macro-region dummies.

Full sample Move big Move small
PSID SIPP PSID SIPP PSID SIPP
(1) (2) (3) (4) (5) (6)

z = W/(PH) 1.388 1.376 1.322 1.36 1.257 1.213
(1.645) (1.636) (1.78) (1.776) (1.64) (1.451)

z̃ = (W + L)/(PH) 8.956 5.944 13.463 9.019 8.928 5.099
(10.453) (7.153) (15.069) (8.932) (10.691) (5.894)

Stock share Θ/W 0.102 0.18 0.124 0.221 0.107 0.143
(0.225) (0.372) (0.248) (0.392) (0.2) (0.327)

Safe asset share B/W -1.051 -0.779 -1.644 -1.035 -1.682 -0.929
(2.199) (2.187) (2.679) (2.268) (2.903) (2.181)

mBIG 0.063 0.017 - - - -
(0.243) (0.129)

mSMALL 0.023 0.009 - - - -
(0.149) (0.092)

∆Family -0.044 -0.015 0.071 0.077 -0.235 -0.091
(0.667) (0.508) (0.917) (0.728) (1.15) (0.859)

∆Married 0.016 0.011 0.067 0.011 0.033 0.048
(0.126) (0.106) (0.25) (0.105) (0.179) (0.215)

∆Employment 0.148 0.069 0.101 0.097 0.217 0.127
(0.356) (0.253) (0.301) (0.297) (0.413) (0.334)

Age 49.094 52.987 40.386 43.802 46.07 49.436
(15.02) (15.741) (12.954) (12.979) (15.426) (15.263)

Midwest 26.6% 27.2% 26.9% 27.9% 27% 24.9%
(0.442) (0.445) (0.444) (0.449) (0.444) (0.433)

South 40.9% 36.2% 38.9% 31.7% 42.5% 38.5%
(0.492) (0.481) (0.488) (0.466) (0.495) (0.487)

West 16.9% 18.5% 20.7% 26% 20.6% 22.6%
(0.374) (0.389) (0.405) (0.439) (0.405) (0.419)

Northeast 15.6% 18% 13.5% 14.4% 9.9% 13.9%
(0.363) (0.384) (0.342) (0.351) (0.299) (0.347)

Num. Obs. 20189 105877 1273 1797 456 911
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Table 5: Movers. Percentage of households that moved over total households in the PSID and
SIPP surveys across all years. Columns (1)− (2) show the percentage of households that changed
address. Columns (3)− (4) show the percentage of households that moved to a new address in the
same U.S. macro region. Columns (5) − (6) show the percentage of households that moved to a
new address in the same state. Columns (7) − (8) show the percentage of movers that were not
owners in the preceding period.

Move Same U.S. Same U.S. Not Owner
region state at t− 1

PSID SIPP PSID SIPP PSID SIPP PSID SIPP
Status (1) (2) (3) (4) (5) (6) (7) (8)

Owner 15.43% 13.55% 14.82% 12.74% 14.19% 12.00% 3.79% 5.47%
Renter 28.70% 35.16% 27.03% 33.55% 25.26% 32.17% 25.31% 32.67%
Occupied 4.15% 3.49% 3.87% 3.31% 3.56% 3.09% 3.63% 3.06%
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Table 7: Test of Hypothesis 2. Probit for the increase and decrease of housing holdings and
the Heckman selectivity model. Column (1) reports the marginal effect estimates from the probit
regressions for increasing the amount of housing holdings. Column (3) reports estimates on the
log of the housing adjustment ln(z − z∗) for increasing housing holdings. 1µh is an indicator that
captures periods of high expected growth in house prices at the U.S. state level. Standard errors
are reported in parenthesesAll the regressions include a constant and a state and year dummies.
∗∗∗ denotes significance at the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. Column (2) and
(4) report the median of the distribution of the estimated coefficients from the regressions using
the model simulated data. They also report the range defined by the 5th and the 95th percentile of
this distribution in square parentheses. Data source: SIPP (1997− 2005).

Probability of housing increase Size of housing increase

SIPP Model SIPP Model
(1) (2) (3) (4)

z̃ 0.0004∗∗∗ 0.0003
(0.0000) [0, 0.0031]

1
µh 0.0039∗∗ 0.0011 −0.6118∗∗∗ −0.0622

(0.0016) [0, 0.0135] (0.1409) [−0.4444, 0.1869]
∆Family 0.0037∗∗∗ −0.3867∗∗∗

(0.0006) (0.1278)
∆Married 0.0041 −0.1850

(0.0042) (0.2846)
∆Employment 0.0033∗∗ −0.2343∗∗

(0.0014) (0.1153)
Age X X
State X X X X
Year X X

R2 0.368
Num. Obs. 105759 1361
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Table 8: Test of Hypothesis 3.1. Non-Housing Portfolio holdings. Cross Section Two Step Tobit
IV Estimates. Standard errors in parenthesis. All the specifications include state, current year,
purchase year, and age fixed effects. They also include controls for changes in family size, marriage
status, and employment status. Data source: SIPP (1997− 2005).

Stocks Stocks share Stocks share Stocks share
on Liquid Wealth on Wealth on Wealth

(Wealth > $100, 000)
(1) (2) (3) (4)

House value -24626 -21.716∗ -2.974 -2.657
(16978) (11.120) (4.452) (5.351)

Home equity wealth 39172∗∗ 24.821∗∗ -2.766 1.399
(17945) (11.761) (4.956) (5.799)

House value × 1
µh
jt -3649 2.998 -1.508 -1.452

(9259) (6.060) (2.373) (2.491)
Equity × 1

µh
jt -15153∗ -11.352∗ -1.532 -5.680∗∗

(8031) (5.273) (2.179) (2.627)
1
µh
jt 31222∗ 10.299 5.218 14.001∗∗

(17220) (11.278) (4.506) (6.469)
Num. Obs. 35624 35624 35624 22754

Table 9: Test of Hypothesis 3.2. Non-Housing Portfolio Changes around Home Purchases.
IV Estimates. Standard errors in parenthesis. All the specifications include state, current year,
purchase year, and age fixed effects. They also include controls for changes in family size, marriage
status, and employment status. Data source: SIPP (1997− 2005).

∆Stocks ∆Stocks ∆Stocks
on Liquid Wealth on Wealth

(1) (2) (3)
1
µh
jt -15373∗∗ -0.052∗∗ -0.008

(5996) (0.024) (0.014)
∆Property value 46649∗ -0.222 0.003

(26862) (0.147) (0.057)
∆Wealth 14954∗ 0.093∗ 0.007

(8819) (0.055) (0.020)
Num. Obs. 5961 5961 5961
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Appendix

A Analysis of the Measure of Predictability in House Prices

This appendix provides an analysis on the regime-switching measure of predictability in house

prices. Table A-I presents the estimation of the house price regime-switching process using state-

level house prices obtained from FHFA. The sample size varies across states. The earlier states

to display quarterly house prices series start in 1975 and the latest states start in 1986. The

methodology is exactly the same that we used to produce the estimates reported in Table 1.

[TABLE A-I HERE]

In addition to state-level robustness for the Markov-switching estimates, we also follow a dif-

ferent approach to motivate the predictability of housing prices. Following the literature on pre-

dictability using valuation ratios, we also run predictability regressions using price-rent ratios. The

objective of this appendix is to present evidence on the robustness of the time variation of expected

housing returns and, in particular, to show the relation between the Markov switching model used

throughout the paper and the predictability generated by price-rent ratio variations. The price-rent

ratios have been computed as in Campbell et al. (2009) using annualized quarterly data from 1978

to 2007 on house prices from the FHFA and rents from the Bureau of Labor Statistics (BLS). We

use the annualized 1-month Treasury Bill as a risk-free rate to obtain excess returns.

Table A-II presents the results of the in sample predictability regressions. The tables reporting

the predictability results at the MSA level using price-rent ratios are available in the online ap-

pendix. We regress future housing returns, at different horizons, on current rent-price ratios. We

observe that the rent-price ratio has a strong predictive power on future housing returns. At the

U.S. aggregate level, a 1% variation in the rent-price ratio implies a 23.02% variation in a three-year

horizon return using FHFA data for house prices. For longer horizons, results are even stronger.

As we increase the horizon, the coefficient of the rent-price ratios, (dt − pt), which forecasts future

housing returns, becomes higher and more statistically significant.44 When forecasting 4− and
44The explanation for this phenomenon, in the absence of the bubble term, is that the (dt − pt) ratios are highly

persistent. When estimating an AR(1) to rent-price ratios for the sample, we cannot reject non-stationarity, sup-
porting the idea of bubble-like behavior during the last few years. On the other hand, for the trimmed data set, the
autocorrelation coefficient of the rent-price ratios series is 0.93 for annual data. Obviously, this results in a larger R2

as well.
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5−year returns, a 1% increase in rent-price ratios implies an increase of 41% and 47%, respectively,

in housing returns at the aggregate level. Similar results appear at the U.S. census macro region

level. Panel B shows the results with an alternative dataset. We construct rent-prices data using

housing services from NIPA as a proxy for rents, and value of residential investment from the Flow

of Funds to compute prices. The results in Panel B are robust to including most of the last decade,

as opposed to Panel A, whose results reverse if we include the periods of dramatic increase in house

prices.

[TABLE A-II HERE]

Figure A-I plots the rent-price ratio, with a 4−year lead as the regressions suggest, and the

probability of home price growth being in the high state. The sample size of the rent-price ratio

is substantially shorter but for the period in which the two of them overlap, the peaks in the

probability of the high-growth regime correspond to peaks in the rent-price ratio time series. The

correlation is positive for most of the sample except for the last few observations. This is in line

with the inability of the rent-price ratios to explain expected returns that may be explained only

by future expected appreciation. Our partial-equilibrium approach does not allow us to address

the origin of a bubble-like outcome. The online appendix provides a robustness analysis on the use

of our regime-switching based measure.

[FIGURE A-I HERE]

B Model

B.1 Derivation of the Model

This appendix characterizes the optimal return point of the inaction region. The value function of

our problem is

V (W (0), P (0), H(0), i) =

sup
C,Θ,H(τA),τA

E

[∫ τ

0
e−ρτu(C,H(0)e−δt)dt+ e−ρτV (W (τ−)− εP (τ)H(τ−), P (τ), H(τ), i)

]
, (B-1)
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i = 1, ..., n. We can use the homogeneity properties of the value function to reduce the problem

with four state variables (W,P,H, i) to one with two state variables z = W/(PH) and i. The value

function V (W,P,H, i) is homogenous of degree 1− γ in (W,H) and of degree β(1− γ) in (W,P ).

As as result, for any constant φ > 0 we have

V (φW,P, φH, i) = φ1−γV (W,P,H, i), (B-2)

V (φW,φP,H, i) = φβ(1−γ)V (W,P,H, i), (B-3)

i = 1, ..., n. Because of the homogeneity properties (B-2) and (B-3) of the value function, we have

V (W,P,H, i) = H1−γP β(1−γ)V

(
W

PH
, 1, 1, i

)
= H1−γP β(1−γ)v (z, i) , (B-4)

i = 1, ..., n (see Damgaard, Fuglsbjerg, and Munk (2003)). Let us introduce the scaled controls ĉ =

C/(PH) and θ̂ = Θ/(PH). Note that ĉ/z = C/W and θ̂/z = Θ/W . Substituting and simplifying,

we obtain

P (0)β(1−γ)H(0)1−γv(z(0), i) =

sup
ĉ,θ̂,H(τA),τA

E

[∫ τ

0
e−ρτ

P (τ)β(1−γ)(ĉH(0)e−δt)1−γ

1− γ
dt+ e−ρτP (τ)β(1−γ)H(τ)1−γv(z(τ), i)

]
, (B-5)

i = 1, ..., n. Following Damgaard, Fuglsbjerg, and Munk (2003), let

e−ρτP (τ)β(1−γ)H(τ)1−γv(z(τ), i) =

e−ρτP (τ)β(1−γ)H(τ−)1−γ
(
H(τ−)
H(τ)

)γ−1

v

(
W (τ−)− εP (τ)H(τ−)

P (τ)H(τ)
, i

)
=

e−ρτP (τ)β(1−γ)H(τ−)1−γ
(
H(τ−)
H(τ)

)γ−1

v

(
H(τ−)
H(τ)

(
W (τ−)

P (τ)H(τ−)
− ε
)
, i

)

and we can derive

e−ρτP (τ)β(1−γ)(H(0)e−δτ )1−γ (z(τ−)− ε
)1−γ (H(τ−)

H(τ)
(
z(τ−)− ε

))γ−1

v

(
H(τ−)
H(τ)

(
z(τ−)− ε

)
, i

)
,

(B-6)
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i = 1, ..., n. Let us re-express our Bellman equation

P β(1−γ)v(z(0), i) =

sup
c̄,θ̄,τA

E

[∫ τ

0
e−ρ̂τ

P (τ)β(1−γ)c̄1−γ

1− γ
dt+ e−ρ̂τP (τ)β(1−γ)Mi

(z(τ−)− ε)1−γ

1− γ

]
, (B-7)

where

Mi = sup
H(τ)≤He−δτ (z(τ−)ε)/ε

(1− γ)
(
H(τ−)
H(τ)

(
z(τ−)− ε

))γ−1

v

(
H(τ−)
H(τ)

(zτ− − ε) , i
)

= (1− γ) sup
z≥ε

zγ−1v(z, i), (B-8)

i = 1, ..., n and ρ̂ = ρ+ δ(1− γ). Also note that

z∗ = arg max
z≥ε

zγ−1v(z, i) (B-9)

is the value of the transformed state variable after the optimal change in the housing holdings at

time τ , since

z(τ) =
W (τ)

H(τ)P (τ)
=
W (τ−)− εH(τ−)P (τ)

H(τ)P (τ)
=
H(τ−)
H(τ)

(z(τ−)− ε) = z∗. (B-10)

The new level of housing holdings can be expressed in terms of z∗ as H(τ) = H(τ−)(z(τ−) −

ε)/z∗.

B.2 Algorithm for the Numerical Resolution

We adopt a stepwise numerical procedure to find the optimal values (Mi, zi, zi, z
∗
i ) for i = 1, ..., n:

1. Guess Mi = Mi,0 for i = 1, ..., n.

2. Solve the free bound problem as follows:

(i) Guess zi,0 for i = 1, ..., n;

(ii) Solve the ODEs equation (10) using as initial conditions the four equations defined by

equation (15) until the value-matching conditions are satisfied. We adopt a finite difference
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scheme to solve the system of ODEs;

(iii) If the smooth pasting conditions specified by equation (16) are satisfied, then the can-

didate value functions vMi,0(z, i) for i = 1, ..., n are found, otherwise repeat steps (i) and

(ii).

3. Compute the implied M∗i,0 = (1−γ) supz zγ−1vMi,0(z, i) = (1−γ)z∗(γ−1)
i v(z∗i , i) using equation

(13). If M∗i,0 = Mi,0 for each i = 1, ..., n, the problem is solved, otherwise go to step 1.

As a starting point, we use the solution to the problem of no transaction costs, ε = 0, (see the

online appendix). That solution consists of the optimal housing-to-wealth ratio αh,i, the optimal

risky assets ratio αθ,i and the optimal numeraire consumption ratio αc,i, for i = 1, ..., n. The first

set of iterations uses a fixed portfolio policy. For initial values of Mi and z∗i , we use Mi = αv,i and

z∗i = 1/αh,i, where i = 1, ..., n. However, there is little to guide the initial estimations about zi and

zi, except to require zi < z∗i and zi > z∗i . After the iterative procedure has converged, the solution

is used to construct an approximation to the policy function θ̂∗(z, i) and ĉ∗(z, i). Then, we adopt

a value iteration procedure to obtain (zi, zi,Mi, z
∗
i ) for i = 1, ..., n.

C Additional Information About the Data

In this appendix we provide further information on some of the variables we use in the empirical

specification, including the computation of the human capital measure. The PSID regularly collects

information about home values and mortgage debt; occasionally, the PSID also collects information

about behavior on savings and wealth. The SIPP has a detailed inventory of annual real and

financial assets and liabilities, containing more frequent measures of assets that are relevant for

assistance measures since its main purpose is to evaluate the effectiveness of government transfer

programs. The PSID is a nationally representative longitudinal sample of approximately 9, 000

households. At each moment, the SIPP tracks approximately 30, 000 households. During the

period considered, information was collected from three consecutive groups of households that were

interviewed during the years 1996− 2000 (four times), 2001− 2003 (three times), and 2004− 2006

(two times), respectively. During its active period, each panel is interviewed every year, while

panels of households do not overlap across periods. The SIPP over-samples from areas with high

poverty concentrations, which should be taken into account when interpreting the results. Its
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longitudinal features enable the analysis of dynamic characteristics, such as changes in income and

in household and family composition, or housing dynamics. Both surveys allow us to study the

empirical implications of the model outlined above.

The methodology to impute human capital at the household level is based on Heaton and

Lucas (2000) and Eberly (1994). The stream of labor income cash flows is discounted at a real

interest rate of five percent per year, R = 5%. We use the current annual total household earned

income as the cash flow for the annuity CFt. We also assume that households earn income until

age 65. Therefore, households older than 65 do not accumulate any human capital. Under these

assumptions, the human capital of each household i of age n can be computed as:

Li,t =
CFt
R

[
1−

[
1

1 +R

](65−n)
]
. (C-11)

In addition to human capital, we also control for changes in family composition, employment

status, and marital status. ∆ Family size indicates changes in family size. In some cases, a change

in family size, like having a children, does depend on financial wealth. Nonetheless, the goal is to

control for exogenous changes in family size and identify those moves that are a result of a financial

wealth change. Changes in family size are caused by deaths, emancipation of children, addition of

family members to the household, and also by births. ∆ Married is a dummy variable which takes

a value of one if the individual gets married. ∆ Employment is a dummy variable which takes a

value of one if the household head changes her employment status.

During the sample period considered, the size of the household (in number of members) de-

creased by −0.044 in the PSID. The family size increased for movers to a more valuable house,

0.071, whereas it decreased for movers to a less valuable house, −0.235. Marriages also increase,

by almost 1.6%. This figure is substantially higher for movers. The average age of the household

head is 49.09 years. The age distribution of movers is shifted towards a younger population: 40.38

years is the average age of household heads moving to a more valuable house and 46.07 years for

household heads moving to a less valuable house. There are some differences in age composition of

the surveys as the youngest group is more represented in the PSID. In terms of moving, the group

of movers to a more and less valuable house is lower in the SIPP than in the PSID in percentage

terms, although we have more observations for this group in the SIPP.
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D Heterogeneous Agents Economy Simulation

This appendix describes the simulation methodology we use to explore the implications of the

model. The methodology is based on several steps.

First, we limit our exercise to simulate the choices of households from the five U.S. states for

which we present the house price parameters in Section 2. For each U.S. state, we calibrate the

model using different sets of parameters to generate heterogeneity across households. First, we

divide the households into two groups, urban and non-urban. The only difference between an

urban and a non-urban household in U.S. state j is the set of parameters that defines their house

price processes and the optimal policies calibrated on the same set of parameters. For a non-urban

household the set of parameters is the one reported in Table 1 of Section 2. Instead, for an urban

household the set of parameters is reported in Table 5 of the online appendix. We average the

real house price indexes of the largest MSAs of the state j (i.e., Los Angeles and San Francisco

for California) creating an index of state j and we estimate the three regime Markov switching

model using real housing returns of the same index. Second, we assume five levels of transaction

costs ranging from 5% to 25% of the value of their house with a marginal increase of 5%. Then,

we calibrate the model, computing the lower bound, zk, the upper bound, zk, the optimal return

point, z∗k, the optimal numeraire consumption, ĉ∗(z, k), and the optimal portfolio holdings θ̂∗(z, k)

and b̂∗(z, k) for a fine grid of z for each combination of parameters. Overall, we have 50 optimal

policies: 25 (5 U.S. states × 5 transaction cost levels) for non-urban households and 25 (5 U.S.

states × 5 transaction cost levels) for urban households. Table 6 of the online appendix reports

the numerical results based on the parameters of Table 5 of the same document for a transaction

cost level of 10%.45

Second, to generate model-simulated data, we consider the empirical distribution of the cross-

section of wealth-to-housing ratios, z, observable in the SIPP in the first wave of 1996. Overall,

we have data for 2, 721 households. We follow Eberly (1994) and Bertola, Guiso, and Pistaferri

(2005) to obtain the unconditional distribution of z. We filter the data regressing z on the same set

of demographic characteristics we use in the paper which may absorb determinants of the wealth-

to-housing ratio other than the dynamic variation of the type featured by our problem. For each
45All the optimal policies are available on request.
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household, we, then, keep the current wage, the housing value, the household head’s age, the year

of housing purchase and the MSA residence. The wealth of each household also accounts for the

human capital using equation (C-11). Each household i living in the U.S. state j is defined as an

urban or a non-urban household based on the MSA residence. 53% of the 2, 721 households are

classified as urban households. Then, each household i is matched with a transaction cost level

according to the following rule. A 5% transaction cost level is assigned to a household that has lived

in the same house for less than five years, a 10% transaction cost level is assigned to a household

that has lived in the same house for more than five years but less than ten years and so on. The

highest transaction cost level of 25% is assigned to a household that has lived in the same house

for more than twenty years.

Third, we generate 50 years of quarterly data for each household. We repeatedly simulate panel

data for 5, 000 times. The dynamics of stock, house price index and single house returns are

dSt = St αSdt+ St σSdZ1,t,

dP̃j,t = P̃j,t µj,kdt+ P̃j,t σ1,j,PdZ1,t,

dPi,j,t = Pi,j,t µj,ldt+ Pi,j,t σ1,j,PdZ1,t + σ2,j,PdZ2,i,j,t, (D-12)

where i indicates a specific household living in the U.S. state j, whose housing return is in the

regime l at time t. We assume that the idiosyncratic house price shock dZ2,i,j,t is specific to each

household. For each simulation path, we use the optimal consumption and portfolio rules to trace

the evolution of the optimal wealth-to-housing ratio given

dz∗i,j,t =
(

(z∗i,j,,t − 1)(r + δ − µj,k + σ2
j,P ) + θ̂∗i,j,k,t(αS − r − ρPSσj,PσS)− ĉ∗i,j,k,t

)
dt

−
(

(z∗i,j,t − 1)σ1,j,P + θ̂∗i,j,k,tσS

)
dZ1,t − (z∗i,j,t − 1)σ2,j,PdZ2,i,j,t. (D-13)

We approximate continuous time by evaluating numeraire consumption and portfolio rules at dis-

crete time intervals ∆t (i.e., quarterly) given realizations of zi,j,t. We, then, simulate the moving

shock for each household i living in the U.S. state j. The only approximation in moving from

continuous to discrete time is that agents are allowed to adjust their housing consumption only at

discrete time. This occurs when (i) zi,j,t reaches the upper bound zj,k,ε or lower bound zj,k,ε and
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it readjusts to the optimal return point z∗j,k,ε; (ii) a housing regime change occurs and zi,j,t is out

of the inaction region; (iii) a moving shock occurs and the household has to relocate. We calculate

the house values of each household i living in the U.S. state j, Hi,j,t × Pi,j,t, and we keep track of

agents moving in more or less valuable house calculating the new housing stock, Hi,j,t. For each

household, we calculate the home equity Ei,j,t according to

Ei,j,t = Hi,j,t × Pi,j,t −Bi,j,t = Hi,j,t × Pi,j,t(1− b̃i,j,k,t), (D-14)

where

b̃i,j,k,t = min(zi,j,t − 1− θi,j,k,t, 1), (D-15)

and b̃i,j,k,t is the risk-free holdings-to-housing ratio. Then, we keep the observations at end of each

quarter, keeping track of agents moving in more or less valuable house in an year interval. Finally,

we have a panel data over 45 years for each simulation path, because we discharge the first 5 years

of observations.

Fourth, in our empirical Section 6, we use an indicator to capture periods of high expected

growth in house price at the U.S. state level. In the simulation, we create an indicator similar to

the one we describe in the Appendix E. For each scenario, we know whether the U.S. state j is in

a high-growth regime at time t. Therefore, we only need to verify whether the housing return of

the simulated index of state j in a high-growth regime is higher than the mean growth rate in the

high-growth regime of the U.S. aggregate for four consecutive quarters.

Finally, we estimate the reduced form models used to test Hypothesis 1, 2, 3.1 and 3.2 on the

PSID and SIPP data. We repeatedly estimate the models for 5, 000 times to produce a sampling

distribution for the statistics of interest. Specifically, we estimate the following specification for

Hypothesis 1

zi,j,t =γ0 + γ11
µh
j,t + γ2mBIGi,j,t + γ3mSMALLi,j,t

+ γ4mBIGi,j,t × 1
µh
j,t + γ5mSMALLi,j,t × 1

µh
j,t + ui,j,t, (D-16)
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Second, we estimate the following specification for Hypothesis 2 in the first stage

Prob(D = move bigi,j,t/t+1) = γ0 + γ11
µh
j,t + γ2zi,j,t + ui,j,t. (D-17)

In the second stage, we regress the size of adjustment on the high expected growth rate indicator,

1
µh
j,t

ln(zi,j,t − z∗i,j,t+1) = β0 + β11
µh
j,t + λi,j,t + εi,j,t, (D-18)

where λi,j,t is the correction term calculated in the first stage.

Third, we run the following regression for Hypothesis 3.1

Θi,j,t

Wi,j,t
=γ0 + γ1Hi,j,t × Pi,j,t + γ2Ei,j,t

+ γ31
µh
j,t + γ4Hi,j,t × Pi,j,t × 1µhj,t + γ5Ei,j,t × 1µhj,t + ui,j,t, (D-19)

where Ei,j,t is the home equity.

Finally, we run the following regression for Hypothesis 3.2

∆
(

Θi,j,t

Wi,j,t

)
= γ0 + γ1 · 1µhkt + γ2 ·∆Hi,j,t × Pi,j,t + ui,j,t. (D-20)

E Indicator of High-Growth in Housing Prices

To capture periods of persistent high appreciation in house prices at U.S. state level, we construct

a binary variable that is calculated using the estimated smoothed probabilities from the Markov-

switching model on real housing returns using the quarterly house price indexes for each state and

the U.S. aggregate.

We estimate the Markov switching model on the house price indexes published by the FHFA

at U.S. state level. The index is a weighted repeat sales index that measures average price changes

in repeat sales or refinancing on the same properties and weights them. The price information

is obtained from repeat mortgage transactions on single-family properties whose mortgages have

been purchased or securitized by Fannie Mae or Freddie Mac since the first quarter of 1975. While

the house price data has been criticized for its construction, to our knowledge it is the best data
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available to the public at the state level. Subsequently, we work with the growth rates of the

housing price data, so issues related to bias in the level estimates are not relevant. The house price

indexes data are nominal. We deflate the data using core PCE inflation, which measures inflation

in the personal consumption expenditure basket less food and energy.

The house price indexes are available from 1975, but in our estimation we use only data be-

ginning in the first quarter of 1986 for some U.S. states. FHFA data at state level are extremely

noisy for a number of states before the mid-eighties as documented by Del Negro and Otrok (2007).

From the perspective of the Markov switching model, the noise in the series is not necessarily a

problem in terms of estimation, but makes the regime classification uninformative when the time

variation is very large, as is the case for the FHFA data. The noise abates considerably for most

states after the mid-eighties. Therefore, we estimate the Markov switching model on the subsample

1986(1)− 2010(4) for some U.S. states using a volatility threshold criteria. If the house price index

volatility of a U.S. state in the subsample 1975(1)−1985(4) is double the house price index volatility

of the same U.S. state in the subsample 1986(1)−2010(4), we estimate the Markov switching model

on the subsample 1986(1)− 2010(4) for that U.S. state. We checked our results for robustness by

(i) changing the volatility threshold; and (ii) moving the start date to the first quarter of 1985, and

we found that the results are robust.

An important issue in estimating regime switching models is specifying the number of regimes.

Because we aim to infer periods where house prices grew markedly at U.S. state level and house

price indexes have recently experienced a sharp appreciation immediately followed by a sharp

depreciation, we estimate a three regime Markov switching specification. In this case, the growth

of house prices in each regime i is denoted by µi and i can be either i = l (low-growth regime),

i = m (medium-growth regime) or i = h (high-growth regime).

Table A-I reports the parameter estimates for the U.S. states. Overall, our analysis suggests

that U.S. states differ markedly in the level of and spread between the high and low-growth regime

rates. Using a likelihood ratio test, we test the null hypothesis that housing prices follow a mar-

tingale against the alternative of a regime switching mechanism. Then, we provide the Regime

Classification Measure (RCM) which captures the quality of a model’s regime qualification per-

formance developed by Ang and Bekaert (2002). They argue that a good regime-switching model

should be able to classify regimes sharply. This is the case when the smoothed (ex-post) regime
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probabilities pi are close to either one or zero. Inferior models, however, will exhibit pi values closer

to 1/k, where k is the number of regimes. A perfect model will be associated with a RCM close

to zero, while a model that cannot distinguish between regimes at all will produce a RCM close

to 100. Ang and Bekaert (2002)’s generalization of this formula to the multiple regimes case has

many undesirable features.46 We therefore adopt the measure adapted by Baele (2005):

RCM = 100×

(
1− k

k − 1
1
T

T∑
t=1

k∑
i=1

(
pi,t −

1
k

)2
)

(E-21)

lies between 0 and 100, where the latter means that the model cannot distinguish between the

regimes. Therefore, lower RCM values denote better regime classification. Overall, a three regime

Markov switching specification allows a clear regime-classification of the FHFA data.

According to the second condition of the index definition, the real housing return of the state

k has to be higher than the mean real housing return in the high-growth regime of U.S. aggregate

for four quarters in a row. Based on the smoothed probabilities for U.S. aggregate, we identify

the period 2000 − 2006 as a high-growth period and we calculate a mean annual real growth rate

of 6.37%. Accordingly, we use this as our threshold for condition (ii). In the online appendix, we

check our results for robustness by lowering the threshold to 5%. We find that are empirical results

are not significantly affected by the second condition of our indicator. Alternatively, we constructed

our indicator using the filtered probabilities instead of the smoothed probabilities. Our empirical

results are not affected by this modification.

46More specifically, their measure produces small RCMs as soon as one regime has a very low probability, even if
the model cannot distinguish between the other regimes.
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Figures and Tables of the Appendix

1930 1940 1950 1960 1970 1980 1990 2000 2010

0.05
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1

Figure A-I: Probability of being in a high-growth regime of housing returns vs. rent-
price ratio. The bold line represents the smoothed probability of being in a high regime, on the
right axis. The dashed line represents the rent-price ratio, on the left axis.
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Table A-II: Predictability of excess returns and dividend growth with rent-price ratios
- U.S. Predictability of excess returns and dividends growth with rents-to-price ratios, using 4-
lags Newey-West corrected standard errors. Data source: Panel A uses annualized price-rent data
annualized quarterly data on house prices from the Federal Housing Finance Agency (FHFA) and
rents from the Bureau of Labor Statistics (BLS) from 1978 to 2002. Panel B shows the same
housing predictability regressions with rent data from NIPA and value data from Flow of Funds
from 1960 to 2008. Panel C shows stock return predictability, with stock returns data from CRSP
NYSE/Amex/Nasdaq/Arca value-weighted market index from 1926 to 2008.

Panel A - Housing Predictability FHFA
Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

k=1 -1.43 -0.31 0.01 2.15 0.62 0.05
k=3 23.02 2.04 0.26 8.96 1.83 0.14
k=5 47.71 5.69 0.57 5.60 1.53 0.03

Panel B - Housing Predictability NIPA
Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

k=1 1.70 3.51 0.30 0.10 0.86 0.01
k=3 8.58 6.69 0.53 -0.07 -0.25 0.00
k=5 22.01 8.00 0.62 -0.84 -1.63 0.08

Panel C - Stock Return Predictability
Excess Returns Dividend growth

Horizon β t-stat R2 β t-stat R2

k=1 3.63 3.18 0.07 -3.45 -2.19 0.05
k=3 10.95 3.58 0.18 -2.17 -0.97 0.01
k=5 18.85 3.76 0.24 -2.69 -1.16 0.01
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