Model	Data	Prior to Crisis	ZLB

The Effectiveness of Alternative Monetary Policy Tools in a Zero Lower Bound Environment

James D. Hamilton Jing (Cynthia) Wu

Department of Economics UC San Diego

Introduction	Model	Data	Prior to Crisis	ZLB
000				

What more can monetary policy do when:

- the fed funds rate is 0.18%
- reserves are over a trillion dollars?

3 K K 3 K

		000000000	00000
Policy opti	ions		

 Communicate expansionary intentions after escape from the zero lower bound

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 0.00	000	000000000	00000
000	000	000000000	00000

- Communicate expansionary intentions after escape from the zero lower bound
- Purchase assets other than T-bills
 - a. foreign assets
 - b. risky assets
 - c. long-term assets

4 3 > 4 3 >

Introduction	Model	Data	Prior to Crisis	ZLB
000	000		000000000	00000
Preferred ha	abitat model	of Vayanos	and Vila	

Preferred habitat model of Vayanos and Vila

- preference of some borrowers or lenders for certain maturities
- arbitrageurs ensure that each risk factor is priced the same across assets

通 ト イヨト イヨト

Introduction	Model	Data	Prior to Crisis	ZLB
000	000		000000000	00000
Preferred ha	abitat model	of Vayanos	and Vila	

Preferred habitat model of Vayanos and Vila

- preference of some borrowers or lenders for certain maturities
- arbitrageurs ensure that each risk factor is priced the same across assets
- decreased preference of Treasury to borrow long-term
 - \Rightarrow reduced exposure of arbitrageurs to long-term risk factors
 - \Rightarrow reduced price of this risk (flatter yield curve)

• • = • • = •

Introduction	Model	Data	Prior to Crisis	ZLB
○○●	000		0000000000	00000
Outline				

- Empirical results prior to crisis
- Model and empirical results at the ZLB

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Model Data Prior to Crisis ZLB 000 00 000 00000000 00000

Discrete-time version of Vayanos and Vila (2009)

Arbitrageurs' objective:

$$\max E_t(r_{t,t+1}) - (\gamma/2) Var_t(r_{t,t+1})$$

• first-order condition:

$$y_{1t} = E_t(r_{n,t,t+1}) - \gamma \vartheta_{nt}$$

where $y_{1t} =$ return on riskless asset $\vartheta_{nt} = (1/2)$ change in variance from one more unit of asset n

イロト イポト イヨト イヨト

Introduction Model Data Prior to Crisis ZLB 000 000 00000000 00000

Discrete-time version of Vayanos and Vila (2009)

Arbitrageurs' objective:

$$\max E_t(r_{t,t+1}) - (\gamma/2) Var_t(r_{t,t+1})$$

• first-order condition:

$$y_{1t} = E_t(r_{n,t,t+1}) - \gamma \vartheta_{nt}$$

where y_{1t} = return on riskless asset

 $\vartheta_{nt} = (1/2)$ change in variance from one more unit of asset nRate of return

$$r_{n,t,t+1} = \frac{P_{n-1,t+1}}{P_{nt}} - 1$$

$$r_{t,t+1} = \sum_{n=1}^{N} z_{nt} r_{n,t,t+1}$$

 Introduction
 Model
 Data
 Prior to Crisis
 ZLB

 000
 0●0
 0000000000
 00000

Discrete-time version of Vayanos and Vila (2009)

Suppose that log of bond price is affine function of macro factors f_t ,

$$\log P_{nt} = \overline{a}_n + \overline{b}'_n f_t$$

and factors follow Gaussian VAR(1):

$$f_{t+1} = c + \rho f_t + \Sigma u_{t+1}$$

< □ > < □ > < □ > < □ > < □ > .

 Introduction
 Model
 Data
 Prior to Crisis
 ZLB

 000
 0●0
 000000000
 00000
 00000

Discrete-time version of Vayanos and Vila (2009)

Suppose that log of bond price is affine function of macro factors f_t ,

$$\log P_{nt} = \overline{a}_n + \overline{b}_n' f_t$$

and factors follow Gaussian VAR(1):

$$f_{t+1} = c + \rho f_t + \Sigma u_{t+1}$$

Then variance of return on portfolio is approximately

$$d_t' \Sigma \Sigma' d_t$$
 $d_t = \sum_{n=2}^N z_{nt} \overline{b}_{n-1}$

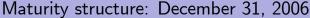
and (1/2) derivative of variance with respect to asset *n* is

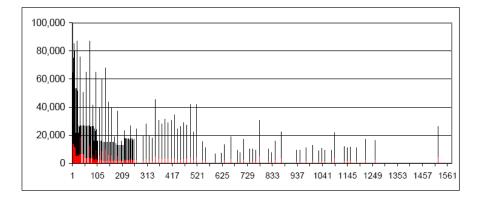
$$\vartheta_{nt} = \overline{b}_{n-1}' \Sigma \Sigma' d_t$$

ヘロト 人間ト 人造ト 人造トー

Discrete-time version of Vayanos and Vila (2009)

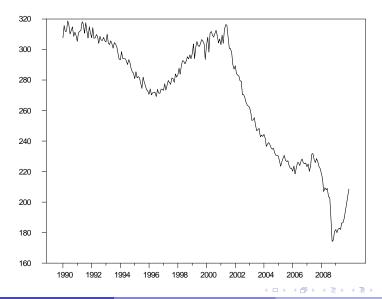
If preferred-habitat borrowing is also an affine function of f_t , then in equilibrium, prices of risk are an affine function of factors as well, and framework implies a standard affine-term-structure model.


イロト イヨト イヨト


Introduction	Model	Data	Prior to Crisis	ZLB
000	000		000000000	00000
Data				

- Treasury yields (weekly and end-of-month, Jan 1990 Aug 2010)
- Face value of outstanding Treasury debt (1990.M1-2009.M12)
- Separate estimates of Fed holdings

.


N.4		1 21 000	6	
000	000		000000000	00000
Introduction Model		Data	Prior to Crisis	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Average m				
Introduction	Model	Data	Prior to Crisis	ZLB
000	000		000000000	00000

æ

Model	Data	Prior to Crisis	ZLB

Prior to Crisis

æ

<ロ> (日) (日) (日) (日) (日)

Introduction	Model	Data	Prior to Crisis	ZLB
000	000		●○○○○○○○○	00000
Setup				

- 3-factor model, estimated weekly Jan 1990 July 2007, assuming only that prices of risk are affine in the factors
- Factors f_t : level, slope and curvature

- Yields measured with error: 3m, 1y, 5y and 30y
- generates estimates of factor dynamic parameters (c, ρ, Σ) , risk-pricing parameters (λ, Λ) , and how each maturity loads on factors \overline{b}_n .

Results				
Introduction	Model	Data	Prior to Crisis	ZLB
000	000		○●○○○○○○○	00000

c	-0.0034 (0.0089)	-0.0003	0.0006						
ρ	0.9895	0.0042	-0.0244						
	0.0083	0.9826	0.0478						
	-0.0013 (0.0041)	0.0055 (0.0058)	0.9755 (0.0132)						
$a_1 imes 5200$	4.1158 (0.0074)			λ	-0.1378 (0.0717)	0.1604 (0.0727)	-0.0564 (0.0687)		
$b_1 \times 5200$	1.0345 (0.0058)	-0.6830 (0.0081)	0.6311 (0.0189)	Λ	-0.0867 (0.0468)	-0.0480	-0.0948 (0.1203)		
Σ	0.1094 (0.0236)	0	0			-0.0266	0.1773 (0.1200)		
	0.0360 (0.0100)	0.1027 (0.0045)	0		-0.0567 (0.0436)	(0.0531)	-0.1862 (0.1594)		
	-0.0670 (0.0188)	0.0025 (0.0130)	0.0968 (0.0149)		(0.0400)	(-incer)	(0.1054)		
$\Sigma_e \times 5200$	0.0978 (0.0023)	0	0	0					
	0	0.0674 (0.0016)	0	0					
	0	0	0.0531 (0.0013)	0					
	0	0	0	0.1171 (0.0028)					
					< □ ▶	< ⊡ > < 3	言▶ ★ 吾 ▶ .	- E	୬୯୯

Preferred	habitat			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

$$\Sigma \lambda_t = \gamma \Sigma \Sigma' \sum_{n=2}^N z_{nt} \overline{b}_{n-1}$$

3

イロト イヨト イヨト イヨト

Preferred	habitat			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

$$\Sigma\lambda_t = \gamma\Sigma\Sigma'\sum_{n=2}^N z_{nt}\overline{b}_{n-1}$$

Suppose that:

- arbitrageurs correspond to entire private sector
- U.S. Treasury debt is sole asset held by arbitrageurs

< 3 > < 3 >

Preferred	habitat			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

$$\Sigma\lambda_t = \gamma\Sigma\Sigma'\sum_{n=2}^N z_{nt}\overline{b}_{n-1}$$

Suppose that:

- arbitrageurs correspond to entire private sector
- U.S. Treasury debt is sole asset held by arbitrageurs

Then:

 z_{nt} = share of publicly-held debt represented by maturity n

A B F A B F

Preferred	habitat			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

$$\Sigma\lambda_t = \gamma\Sigma\Sigma'\sum_{n=2}^N z_{nt}\overline{b}_{n-1}$$

Suppose that:

- arbitrageurs correspond to entire private sector
- U.S. Treasury debt is sole asset held by arbitrageurs

Then:

 z_{nt} = share of publicly-held debt represented by maturity n

$$q_t = 100\Sigma\Sigma'\sum_{n=2}^N z_{nt}\overline{b}_{n-1}$$

A B A A B A

Excess hole	ding returns			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

• Excess holding return e.g. hold 5 year bond over 1 year

$$h_{5,1,t} = \log \frac{P_{4,t+1}}{P_{5,t}} - y_{1,t}$$

э

(日) (同) (三) (三)

Excess hold	ding returns			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

• Excess holding return e.g. hold 5 year bond over 1 year

$$h_{5,1,t} = \log \frac{P_{4,t+1}}{P_{5,t}} - y_{1,t}$$

Regression

$$h_{nkt} = c_{nk} + \beta'_{nk}f_t + \gamma'_{nk}x_t + u_{nkt}.$$

э

- 4 週 ト - 4 三 ト - 4 三 ト

Excess hold	ing returns			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

Excess holding return
 e.g. hold 5 year bond over 1 year

$$h_{5,1,t} = \log \frac{P_{4,t+1}}{P_{5,t}} - y_{1,t}$$

.

$$h_{nkt} = c_{nk} + \beta'_{nk}f_t + \gamma'_{nk}x_t + u_{nkt}.$$

- Expectation hypothesis: excess holding returns are unpredictable
- ATSM: f_t contains all the information at t

Model	Data	Prior to Crisis	ZLB
		000000000	

Regressors	6m over 3m	1yr over 6m	2y over 1y	5y over 1y	10y over 1y
f_t^*	0.357	0.356	0.331	0.295	0.331
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
f_t , z_t^{Ast}	0.410	0.420	0.373	0.300	0.336
	(0.020)	(0.119)	(0.311)	(0.728)	(0.665)
f_t, z_t^{L*}	0.428	0.501	0.524	0.398	0.357
	(0.003)	(0.008)	(0.006)	(0.035)	(0.196)
f_t , q_t^*	0.444	0.568	0.714	0.617	0.549
	(0.002)	(0.000)	(0.000)	(0.000)	(0.001)
f_t, z_t^A, z_t^L, q_t^*	0.476	0.597	0.741	0.670	0.634
	(0.000)	(0.001)	(0.000)	(0.002)	(0.054)

 f_t : term structure factors

 z_t^A : average maturity

 z_t^L : fraction of outstanding debt over 10 years

 q_t : Treasury factors

3

(日) (周) (三) (三)

Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000
Endogeneity				

Goal: if maturities of outstanding debt change, how would yields change?

(日) (同) (三) (三)

Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000
Endogeneity				

Goal: if maturities of outstanding debt change, how would yields change? Conventional regression

$$f_t = c + \beta q_t + \varepsilon_t$$

- 4 @ > - 4 @ > - 4 @ >

Endogeneity				
Introduction 000	Model	Data	Prior to Crisis ○○○○○○○○○○	ZLB

Goal: if maturities of outstanding debt change, how would yields change? Conventional regression

$$f_t = c + \beta q_t + \varepsilon_t$$

Concerns:

• Is f_t responding to q_t , or is q_t responding to f_t ?

- 4 3 6 4 3 6

Endogeneity				
Introduction 000	Model	Data	Prior to Crisis ○○○○○○○○○○	ZLB

Goal: if maturities of outstanding debt change, how would yields change? Conventional regression

$$f_t = c + \beta q_t + \varepsilon_t$$

Concerns:

- Is f_t responding to q_t , or is q_t responding to f_t ?
- Spurious regression

.

Vield facto	r forecasting	regressions		
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

◆□> ◆圖> ◆国> ◆国> 三国

	c			
000	000		0000000000	00000
	Model	Data	Prior to Crisis	ZLB

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

• answers forecasting question of independent interest

3

	C C					
000	00	00		0000000000	00000	
	Model		Data Prior to Crisis	Prior to Crisis	ZLB	

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

- answers forecasting question of independent interest
- avoids spurious regression problem

	C C					
000	00	00		0000000000	00000	
	Model		Data Prior to Crisis	Prior to Crisis	ZLB	

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

- answers forecasting question of independent interest
- avoids spurious regression problem
- nonzero ϕ does not reflect response of q_t to f_t

- E - - E -

	C C					
000	00	00		0000000000	00000	
	Model		Data Prior to Crisis	Prior to Crisis	ZLB	

Our approach:

$$f_{t+1} = c + \rho f_t + \phi q_t + \varepsilon_{t+1}$$

Advantages:

- answers forecasting question of independent interest
- avoids spurious regression problem
- nonzero ϕ does not reflect response of q_t to f_t
- estimate incremental forecasting contribution of q_t beyond that in f_t

Introduction	Model	Data	Prior to Crisis	ZLB
000	000		○○○○○○○●○○	00000
Significanc	e of Treasury	' factors		

		F test
	level	3.256
${\sf F}$ test that $\phi=0$		(0.023)
1	slope	4.415
$f_{t+1} = c + ho f_t + \phi q_t + arepsilon_{t+1}$		(0.005)
	curvature	2.672
	level slope curvature	(0.049)

・ロト・(四ト・(日下・(日下))の(の)

Quantitati	ve illustration			
Introduction 000	Model ooo	Data	Prior to Crisis ○○○○○○○●○	ZLB 00000
	A.4. 1.1			71 0

• Fed sells all Treasury securities < 1 year, and uses proceeds to buy up long-term debt

IIIUJLI

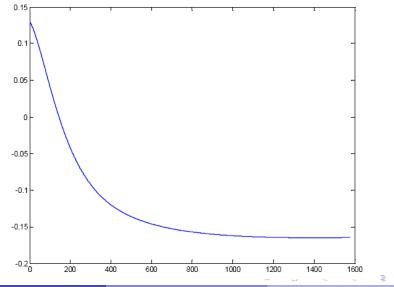
 E.g. in Dec. 2006, the effect would be to sell \$400B short-term securities and buy all bonds > 10 year

3

< 3 > < 3 >

Quantitati	ve illustration			
Introduction 000	Model 000	Data	Prior to Crisis	ZLB 00000

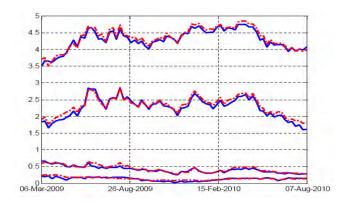
- Fed sells all Treasury securities < 1 year, and uses proceeds to buy up long-term debt
- E.g. in Dec. 2006, the effect would be to sell \$400B short-term securities and buy all bonds > 10 year


	$\phi'_i \Delta$
level	0.005
	(0.112)
slope	-0.250
	(0.116)
curvature	-0.073
	(0.116)

• Δ : average change in q_t

.

Introduction 000	Model 000	Data	Prior to Crisis ○○○○○○○●	ZLB 00000


Impact on yield curve 1-month ahead

Model	Data	Prior to Crisis	ZLB

Financial Crisis and Zero Lower Bound

Zero Lowe	r Rond			
000	000		000000000	00000
	Model	Data	Prior to Crisis	ZLB

- Short term yields near zero
- Longer term yields considerable fluctuation.
- Explanation: when escape from ZLB (with a probability), interest rates will respond to f_t as before

Parsimonia	ous Model of	71 R		
000	000		000000000	•0000
	Model	Data	Prior to Crisis	ZLB

• Same underlying factors f_t

$$f_{t+1} = c + \rho f_t + \Sigma u_{t+1}$$

same (c, ρ, Σ)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Darcimonio	ue Madal of	71 D		
000	000		000000000	••••
Introduction	Model	Data	Prior to Crisis	ZLB

Parsimonious Model of ZLB

• Same underlying factors f_t

$$f_{t+1} = c + \rho f_t + \Sigma u_{t+1}$$

same (c, ρ, Σ)

• Once escape from ZLB

$$ilde{y}_{1t} = extbf{a}_1 + b_1' extbf{f}_t$$
 $ilde{p}_{nt} = \overline{ extbf{a}}_n + \overline{ extbf{b}}_n' extbf{f}_t$

 \overline{a}_n and \overline{b}_n calculated from the same difference equations

3

(日) (同) (三) (三) (三)

<u> </u>				
Introduction 000	Model 000	Data	Prior to Crisis 000000000	ZLB 00000

Parsimonious Model of ZLB

At ZLB

$$y_{1t}^* = a_1^*$$
 $p_{nt}^* = \overline{a}_n^* + \overline{b}_n^{*\prime} f_t.$

 π^Q : probability still at ZLB next period No-arbitrage:

Can calculate \overline{b}_n^* (how bond prices load on factors at ZLB) as functions of \overline{b}_n (how they'd load away from the ZLB) along with π^Q (probability of remaining at ZLB), ρ (factor dynamics), and Λ (risk parameters).

Parsimonious Model of 71 B						
000	000		000000000	00000		
	Model	Data	Prior to Crisis	ZLB		

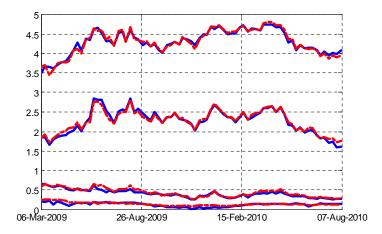
Assume: $(c^{Q}, \rho^{Q}, a_{1}, b_{1}, \Sigma)$ as estimated pre-crisis $\Rightarrow (\overline{a}_{n}, \overline{b}_{n})$ same as before Estimate two new parameters (a_{1}^{*}, π^{Q}) to describe 2009:M3-2010:M7 data from

$$Y_{2t} = A_2^{\dagger} + B_2^{\dagger} Y_{1t} + \varepsilon_t^e$$

•
$$Y_{2t} = 3$$
-month, 1-year, 5-year, 30-year

- $A_2^{\dagger}, B_2^{\dagger}$ functions of $(c^Q, \rho^Q, a_1, b_1, \Sigma)$ and (a_1^*, π^Q)
- Estimation method: minimum chi square (Hamilton and Wu, 2010)

<ロト <回ト < 回ト < 回ト < 回ト = 三日


Devenuetav	antine ta fa			
000	000		000000000	00000
	Model	Data	Prior to Crisis	ZLB

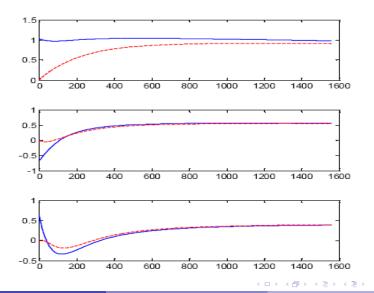
Parameter estimates for ZLB

Slightly better fit if allow new value for a_1 after escape from ZLB $5200a_1^* = 0.068$ (ZLB = 0.07% interest rate) $\pi^Q = 0.9907$ (ZLB may last 108 weeks) $5200a_1 = 2.19$ (compares with $5200a_1 = 4.12$ pre-crisismarket expects lower post-ZLB rates than seen pre-crisis)

A . .				
000	000		000000000	00000
	Model	Data	Prior to Crisis	ZLB

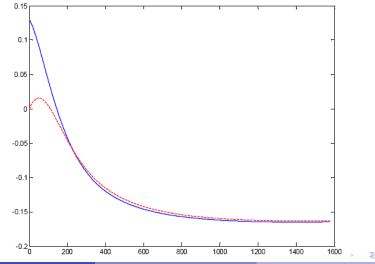
Actual and fitted values

3

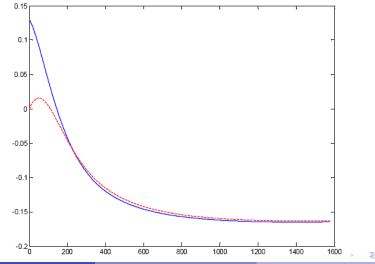

イロン イヨン イヨン イヨン

Model Fit				
Introduction	Model	Data	Prior to Crisis	ZLB
000	000		000000000	00000

	Contemp	oraneous <i>R</i> ²	Fore	cast R^2
	restricted	unrestricted	restricted	unrestricted
3m	0.625	0.668	0.522	0.602
1y	0.891	0.924	0.652	0.767
5у	0.961	0.975	0.753	0.753
30y	0.965	0.972	0.735	0.787


◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Factor Loa	dings			
Introduction	Model	Data	Prior to Crisis	ZLB
000	000		0000000000	00000



Ξ.

Introduction Model Data Prior to Crisis ZLB 000 000 000 0000</td

Introduction Model Data Prior to Crisis ZLB 000 000 000 0000</td

Introduction	Model	Data	Prior to Crisis	ZLB

		Original es	stimates	Hamilton-W	u estimates
Study	Measure	Pre-crisis	ZLB	Pre-crisis	ZLB
Gagnon, et. al.	10 yr yield	20		14	13
Greenwood-Vayanos	5yr-1yr spread	39		17	9
	20yr-1yr spread	74		25	18
D'Amico-King	10yr yield		67	14	13
Deutsche Bank	10yr yield		20	14	13

Table 5: Comparison of different estimates of the effect of replacing \$400 billion in long-term debt with short-term debt.

ZLB

Caveats

• The effects come in the model from investors' assumption that the changes are permanent

3

(日) (周) (三) (三)

ZLB

Caveats

- The effects come in the model from investors' assumption that the changes are permanent
- The Treasury is better suited to implement than Fed

• • = • • = •

ZLB

Caveats

- The effects come in the model from investors' assumption that the changes are permanent
- The Treasury is better suited to implement than Fed
- Operation works by transferring risk from government's creditors to the Treasury-Fed

A B A A B A