Merchants of death: The effect of credit supply shocks on hospital outcomes

Cyrus Aghamolla¹, Pinar Karaca-Mandic², Xuelin Li³, and Richard T. Thakor⁴

¹University of Minnesota
 ²University of Minnesota, and NBER
 ³University of South Carolina
 ⁴University of Minnesota, and MIT LFE

October 8, 2021

Table of Contents

1. Introduction

2. Empirical Design

3. Results

MOTIVATION

- We study how credit market shocks transmit to hospitals and affect real health outcomes.
 - $\bullet\,$ U.S. healthcare spending: $\sim\!\!18\%$ of GDP (1/3 by hospitals)
- Dual goals of hospitals:
 - 1. Community benefit: provide critical care to the public
 - 2. Maintain good financial conditions for operation

MOTIVATION

The COVID-19 effects hospitals didn't foresee: Financial distress

U.S. hospitals with at least 100 beds are losing billions of dollars.

By Dr. Nancy A. Anoruo
May 7, 2020, 1:35 PM + 7 min read

CREDIT SUPPLY

- ▶ We focus on a negative credit supply shock (before Covid-19).
 - Hospital external financing: 70% debt, almost no equity (Wilson et al., 1982)
- ▶ Utilize the staggered pattern of stress tests on U.S. banks:
 - DID specification: hospitals with stress-tested relationship lenders v.s. others
 - Hospital-level data: financial and operation, various measures of care quality

SUMMARY

- ▶ Main results: with endangered credit supply, hospitals become financially more efficient at the cost of worse care for patients.
- In particular, following the negative shock
 - 1. Cost of borrowing: loan spread \uparrow , loan amount \downarrow , new lenders \uparrow
 - 2. Revenue and profitability \(\frac{1}{2} \), by accommodating more patients and particularly less severe and privately-insured ones
 - Negative externality: healthcare quality ↓, across both objective and subjective measures

Table of Contents

1. Introduction

2. Empirical Design

3. Results

Stress Test

- ► Stress tests introduced through Dodd-Frank Act of 2010 (DFAST).
 - Large banks required to undergo annual evaluation of capital adequacy through different scenarios
 - Deadline for banks with assets ≥\$50 billion: September 30, 2012
 - Deadline for banks with assets ≥\$10 billion: over next two years
- Incentives for risk management:
 - Stress-tested banks increased loan spreads and reduced loan supply for *risky borrowers* (Acharya et al., 2018; Cortés et al., 2020)
 - Borrowers may directly face higher rates, or have to look for new lenders that they
 do not have a relationship with (Boot, 2000)

Hospital Financing

- ► Hospitals are risky borrowers.
 - Average profit margin is 3.2%, one-third have negative margins
 - Waves of bankruptcies even before Covid
 - Healthcare bonds accounted for 20% of all municipal bond defaults from 1999 to 2010 (Gao et al., 2019)
- Loans are important for hospitals.
 - Average facility size is \$78 million/hospital. Yearly aggregated at \$144.3 million
 - Average loan size over borrower's total assets is 33.7%

DATA

- ► Hospital loans from Dealscan.
 - Term loan and revolver lending facilities started from 2007 and onwards
 - Focus on lead banks
- ► Hospital financial and operation: CMS Healthcare Provider Cost Reporting Information System (HCRIS).
 - Like 10K but more detailed operational information (bed utilization, patient discharge, employment etc)
 - Data over 2010-2016, includes 3,658 (short-term acute care) hospitals

DATA

- Quality of care: CMS Hospital Compare program.
 - Timely and effective care: examines if patients receive the standard procedure in time/properly after admittance/discharge
 - 30-day readmission and mortality
- Quality of care: Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) data.
 - Patient satisfaction survey by CMS about experience at hospital

SPECIFICATION

► Staggered difference-in-differences (DID):

$$Y_{i,t} = \alpha + \beta STExposed_{i,t-1} + \gamma' Controls_{i,t-1} + \eta_t + \mu_i + \varepsilon_{i,t}.$$

- ▶ $STExposed_{i,t-1}$: one if hospital i's relationship banks experienced a stress test by year t-1 or earlier
- \triangleright β measures the relationship bank stress test effect
- ► Variation comes from (1) whether having a stress-tested relationship lender and (2) staggered implementation of stress tests

Table of Contents

1. Introduction

2. Empirical Design

3. Results

CREDIT SUPPLY SHOCK

Conditional on borrowing, loan characteristics before and after stress-test exposure:

	(1) Spread&Fee	(2) Spread&Fee	(3) LogAmt	(4) LogMaturity	(5) NewLender
$STExposed_{i,t-1}$	74.764*** (2.968)	63.166** (2.020)	-0.362*** (-2.842)	-0.084* (-1.718)	0.132* (1.834)
Controls	Υ	Υ	Υ	Υ	Υ
Year FE	Υ	Υ	Υ	Υ	Υ
Bank FE	Υ	Υ	Υ	Υ	Υ
Loan Type FE	N	Υ	Υ	Υ	Y
Loan Purpose FE	N	Υ	Υ	Υ	Υ
N	1,052	717	810	801	810
Adj R^2	0.21	0.39	0.60	0.43	0.34

► Column 1 implies \$1.08 million higher interest costs every year.

PROFITABILITY

► Increase internal operational efficiency in response:

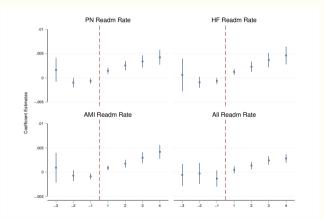
	(1) Margin	(2) <i>Liab/TA</i>	(3) Cash/TA	(4) LogPatRev	(5) LogInPatRev	(6) LogOutPatRev	(7) AvgPay
$STExposed_{i,t-1}$	0.012** (2.077)	-0.052*** (-4.275)	-0.006*** (-2.583)	0.057* (1.903)	0.086*** (2.845)	0.068* (1.851)	1701.316*** (3.172)
Controls	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Year FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Hospital FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ
N	23,780	23,223	23,119	23,793	23,793	23,793	23,248
Adj R^2	0.22	0.81	0.76	0.93	0.95	0.81	0.87

► Columns 1 and 4 imply \$1.39 million increased profits.

QUANTITY EFFECTS

► Hospitals appear to increase services:

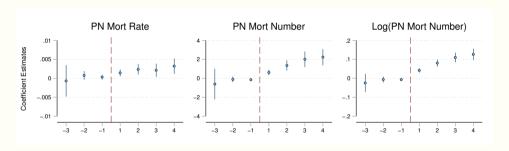
	(1)	(2)	(3)	(4)
	Occupancy	Discharge Rate	Salary	AvgHour
$STExposed_{i,t-1}$	0.022***	2.350***	1750.260***	22.607**
	(5.973)	(5.752)	(5.017)	(2.222)
Controls	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Hospital FE	Y	Y	Y	Y
N	23,245	23,243	23,148	18,350
Adj \mathbb{R}^2	0.94	0.80	0.93	0.65


▶ Additional results: admit healthier, more privately-insured, and younger patients.

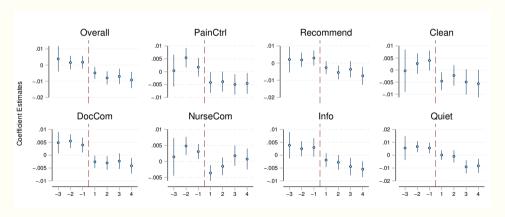
Negative Externality

► More crowded hospitals delay timely standard procedures:

	(1)	(2)	(3)	(4)	(5)	(6)
	Aspirin	PCI	Statin Rx	LVS	ACE/ARB	Antibiotic
$STExposed_{i,t-1}$	-0.001 (-1.155)	-0.014*** (-3.112)	-0.005** (-2.390)	-0.008*** (-5.712)	-0.008*** (-3.512)	-0.008*** (-3.388)
Controls	Y	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y	Y
Hospital FE	Y	Y	Y	Y	Y	Y
N	9,199	6,325	6,933	14,372	11,189	14,644
Adj \mathbb{R}^2	0.43	0.51	0.60	0.78	0.49	0.58


▶ Objective measure: higher probability of readmission.

	(1) LogPNReadm	(2) LogHFReadm	(3) LogAMIReadm	(4) PNReadmRate	(5) HFReadmRate	(6) AMIReadmRate	(7) AllReadmRate	(8) AllReadmWorst
$STExposed_{i,t-1}$	0.101***	0.027**	0.026**	0.003***	0.003***	0.003***	0.002***	0.046***
	(8.678)	(2.475)	(1.972)	(5.763)	(4.898)	(5.070)	(5.103)	(3.500)
Controls	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
Year FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Hospital FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
N	21,588	20,062	12,668	23,408	22,165	14,341	17,678	19,336
Adj R ²	0.96	0.98	0.97	0.72	0.77	0.82	0.67	0.48


► Columns (1) - (3): 1,589 more patients readmitted per year across affected hospitals.

Objective measure: higher mortality rate for pneumonia patients.

Number of pneumonia death is 9.6% higher.

► Subjective measure: perceived quality of care.

Robustness

- ► Results are stronger if
 - lender's capital adequacy is close to the regulatory minimum (Cortés et al., 2020)
 - borrower is more reliant on loan financing
 - borrower has more affected lenders
- Results are robust to
 - propensity score matching
 - controlling for regional differences
 - controlling for hospital system differences

Conclusion

- This paper explores the effect of credit supply shocks on hospitals.
- In response to a negative credit shock, we find evidence that hospitals trade off profitability and care: increase revenues, but deliver worse care to patients.
- ► Results provide novel evidence of an important connection between credit markets and public health.