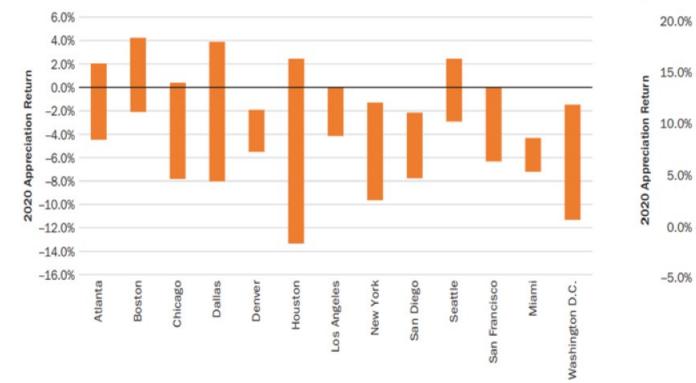

"Collateral Reallocation in Commercial Real Estate in the Shadow of COVID-19"

by

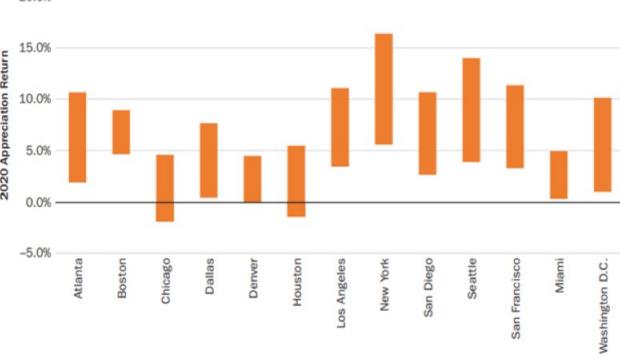
Lara Loewenstein, Cleveland Fed Timothy Riddiough, UW – Madison Paul Willen, Boston Fed and NBER


Prepared for the Federal Reserve Bank of Boston's 65th Economic Conference, "The Implications of High Leverage" November 8-10, 2021.

The Disparate Impact of COVID-19 on CRE

NOTE: Based on unlevered appreciation returns to properties held in the MSCI/PREA US Property Fund Index.

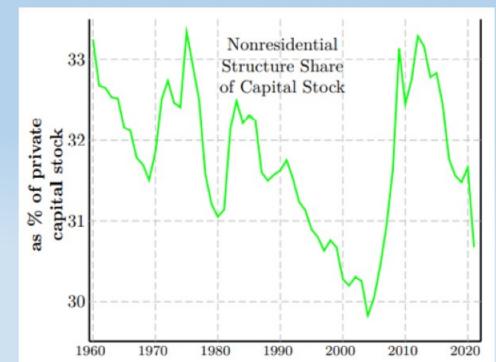
The Disparate Impact of COVID-19 on CRE

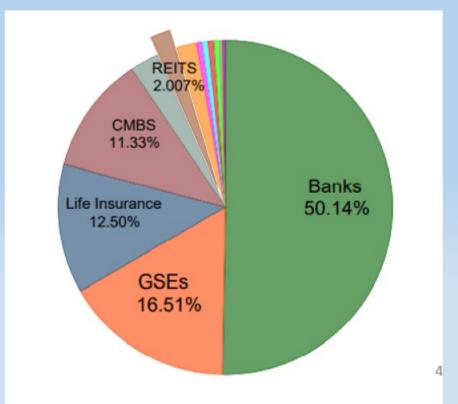


Interquartile Range of 2020 Appreciation Returns for Office Properties, by City

NOTE: Based on unlevered appreciation returns to properties held in the MSCI/PREA US Property Fund Index.

20.0%

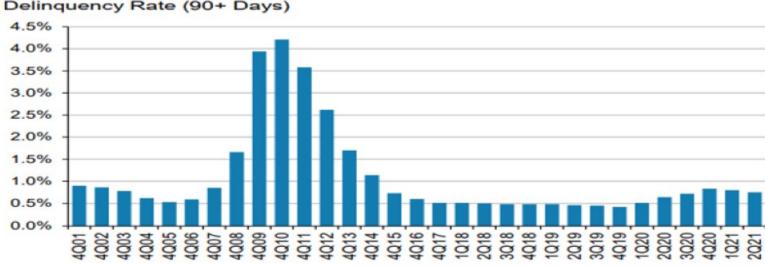

Interquartile Range of 2020 Appreciation Returns for Industrial Properties, by City



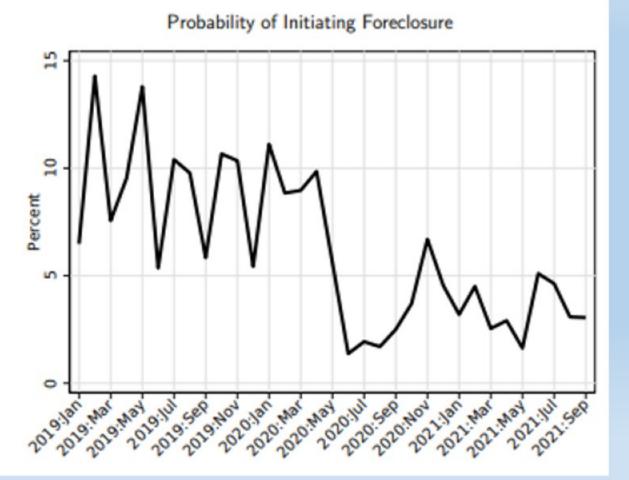
NOTE: Based on unlevered appreciation returns to properties held in the MSCI/PREA US Property Fund Index.

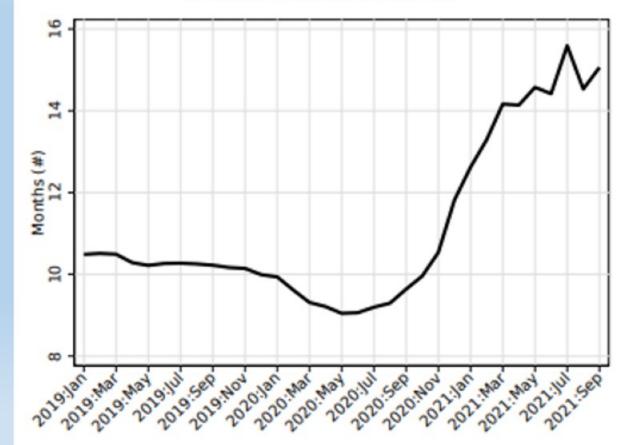
CRE Prominent in Bank Asset Portfolios

- CRE loans constitute more than 40% of banks assets outside 30 largest banks
- Over 500 banks failed during and shortly after GFC
 - Most failures caused by poor CRE loan performance, not residential loan or MBS losses
- Banks an important source of debt funding for CRE
 - Smaller loans, re/development loans



Bank v. CMBS Delinguency Rates


CMBS Delinquency Rate (30+ Days & REO) 12.0% 10.0% 8.0% 6.0% 4.0% 2.0% 0.0%


Banks & Thrifts

Delinquency Rate (90+ Days)

Foreclosure Has Stalled Even with CMBS

Months to Foreclosure Initiation

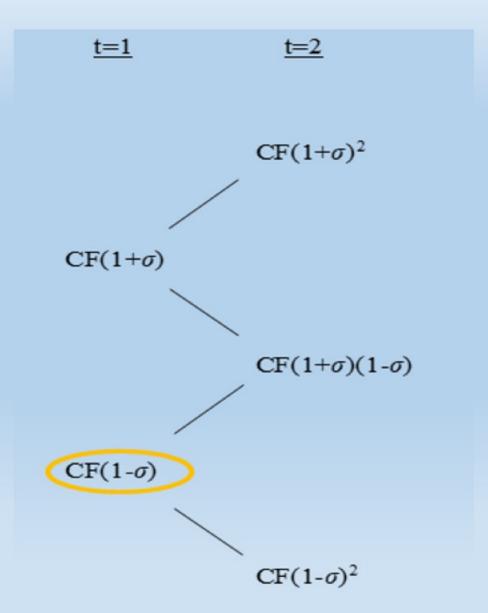
Argument – Things are Somewhat Different This Time

- Last Time (GFC): Playing for time (forbearance) was generally a good policy
 - A common financial-systemic shock that equally affected all property types in all locations
 - Wait for financial system to stabilize before taking action
 - Concerns over negative foreclosure externalities
 - CRE located in urban areas recovered relatively quickly, and without long-term distress
- This time: COVID-19 morphed into a technology shock with disparate impacts
 - People-oriented activities in dense urban areas negatively impacted (hotel, retail, office)
 - Technology-oriented activities positively impacted (logistical warehouse, data centers, cell towers)
- Argues for Resource Reallocation through Redeployment
 - Especially for vulnerable assets: older capital in denser urban areas
 - But there are several currents that run against redeployment: Unmotivated property owners, unmotivated lenders, COVID-based uncertainty
 - A fair amount of distressed debt, with more coming in retail and especially office
 - Negative forbearance externalities in the form of lost agglomeration economies and increased urban blight

Redeployment is More Common Than You Might Think

					rces of flows						
	Parcels in 2020 (#,000)	Gross Outflow (%)	Gross Inflow (%)	Rede- ployment (%)	New Deve- lopment (%)	Net Inflow (%)	Avg. Value of Unchanged (\$,000)	Avg. Value of Outflows (\$,000)			
Major Commercial Property Types											
Multifamily	50	9	16	15	0.7	7	1,279	1,470			
Industrial	26	15	15	12	2.7	0	1,494	1,086			
Office	20	20	38	38	0.8	19	2,268	1,193			
Retail	34	17	24	23	1.2	7	1,205	1,037			
Lodging	2	19	37	37	0.8	19	4,873	2,536			
Overall	132	14	22	20	1.2	8	1,241	1,463			
Other Property Types											
Single Family	2,435	1	1	1	0.7	0	380	552			
Other Residential	3	39	44	39	4.9	5	1,288	1,309			
Parking	7	16	19	11	7.8	3	198	467			
Religious	10	21	27	24	3.4	6	1,257	1,272			
Government	33	23	16	11	5.1	-7	1,965	2,034			
Education	4	28	32	28	4.7	4	6,714	4,067			
Mixed	37	31	25	21	3.7	-6	713	974			
Land	80	32	14	14		-18	99	198			
Other	53	39	35	29	6.4	-4	1,121	1,179			

8


Determinants of CRE Redeployment

	Income Producing Commercial					Residential			Land
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Age of Building	$\begin{array}{c} 0.0822^{***} \\ (0.00475) \end{array}$	0.0845^{***} (0.00478)	$\begin{array}{c} 0.0835^{***} \\ (0.00482) \end{array}$	0.0835*** (0.00482)	$\begin{array}{c} 0.00959^{***} \\ (0.000254) \end{array}$	$\begin{array}{c} 0.0113^{***} \\ (0.000259) \end{array}$	$\begin{array}{c} 0.0112^{***} \\ (0.000260) \end{array}$	$\begin{array}{c} 0.0112^{***} \\ (0.000260) \end{array}$	
Population Density (Normalized)	1.276^{***} (0.153)	$\frac{1.519^{***}}{(0.159)}$	1.512^{***} (0.159)	$\frac{1.513^{***}}{(0.159)}$	0.203^{***} (0.0140)	0.542^{***} (0.0155)	0.549^{***} (0.0160)	$\begin{array}{c} 0.549^{***} \\ (0.0160) \end{array}$	-4.454^{***} (0.162)
Mortgaged Property	-0.731** (0.311)	-0.718** (0.311)	-0.687** (0.312)	-0.686** (0.312)	-0.762^{***} (0.0175)	-0.756*** (0.0174)	-0.752*** (0.0174)	-0.749*** (0.0174)	
Sale Occurred Between, 2012–2020	6.759^{***} (0.374)	6.740^{***} (0.374)	6.745^{***} (0.374)	6.743^{***} (0.374)	$\begin{array}{c} 0.217^{***} \\ (0.0148) \end{array}$	$\frac{0.246^{***}}{(0.0148)}$	0.246^{***} (0.0148)	0.244^{***} (0.0148)	
ln(Value Per Square Foot of Lot Size)		-0.748^{***} (0.141)	-0.704^{***} (0.142)	-0.703^{***} (0.142)		-0.691*** (0.0132)	-0.694*** (0.0136)	-0.693*** (0.0136)	3.542^{***} (0.0692)
Land Share of Assessed Value			1.476^{*} (0.833)	1.477^{*} (0.833)			0.148 ^{**} (0.0590)	0.150** (0.0590)	
Foreclosure Sale				$\begin{array}{c} 0.144 \\ (0.961) \end{array}$				0.301*** (0.0681)	
N	55,850	55,850	55,850	55,850	2,316,962	2,316,962	2,316,962	2,316,962	93,006
R2	0.07	0.07	0.07	0.07	0.03	0.03	0.03	0.03	0.03
State FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Initial Prop Type FE	Y	Y	Y	Y	Y	Y	Y	Y	-
Mean(Y) (%)	17.46	17.46	17.46	17.46	1.03	1.03	1.03	1.03	26.75

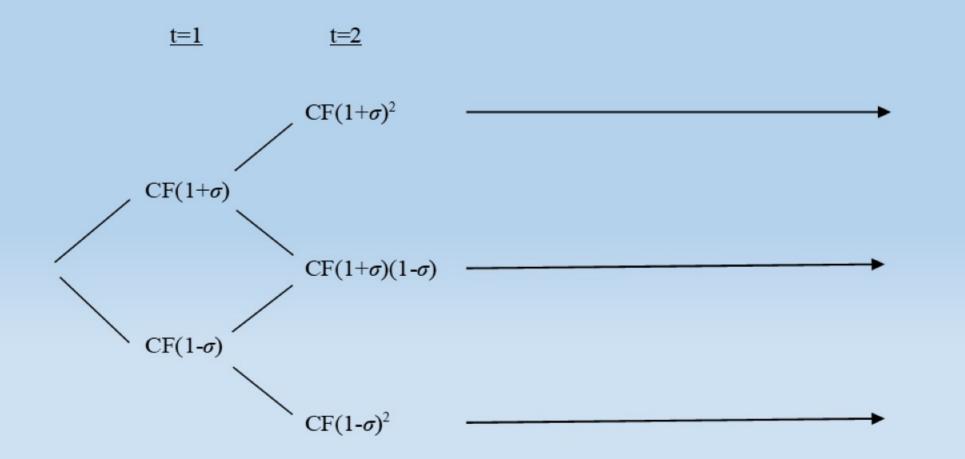
The Delay Channels: Evergreening v. Uncertainty

- Bank incentives to evergreen perpetuates zombie real estate collateral
 - Property owners that specialize by property type and age of capital willing to play along
 - Collectively, a source of inefficiency for cities that need to transform themselves (e.g., zombie downtowns)
- Macro and CRE market uncertainty associated with consequences of COVID starting to clear up
 - Many properties on the road to zombiness due to negative technology shock that also increased rate of obsolescence
 - More "normal" sources of value uncertainty are re-emerging
- Redeploying CRE is an irreversible decision, where uncertainty and timing flexibility can cause a more efficient form of delay (Bernanke's Bad News Principle)
 - But "normalized" value uncertainty may actually be a friend when it comes to redeployment
 - Given disparate impact of COVID shock, greater uncertainty can actually increase the immediate benefits of changing from zombie to viable use-type
- Incentives to evergreen combined with incentives to delay to resolve uncertainty have significantly slowed the collateral reallocation process

The Hedging Correlation Effect with Redeployment

Partial Policy Solution: Lenders Facilitate Redeployment

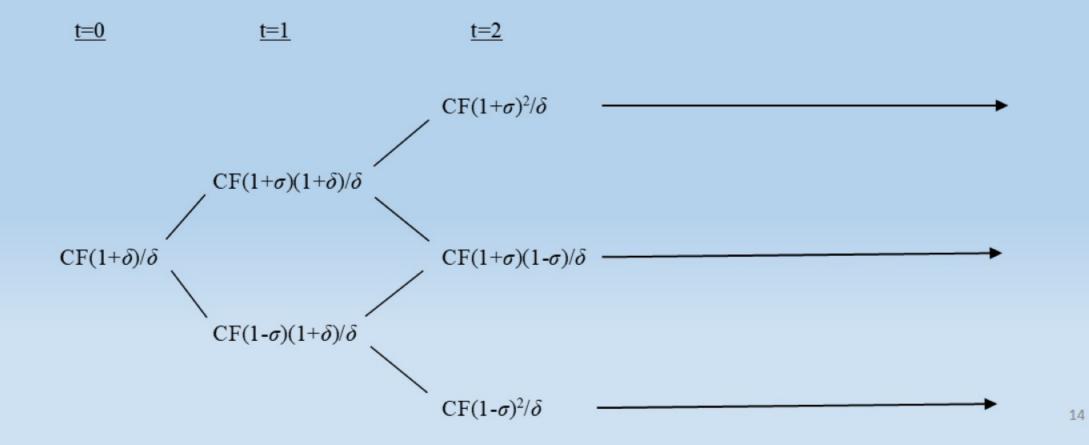
- Key Observation: Incentives to evergreen combined with incentives to delay to resolve uncertainty have significantly slowed the collateral reallocation process when reallocation rates should probably be higher
- Regulation: Consider implementing a more discriminating capital cost policy that varies by property type, location, age of capital
- Require lenders to engage in a HAMP-like cost-benefit analysis of forbearance v. foreclosure
 - Extend analysis to consider alternative uses
 - Incorporate agglomeration effects as well as uncertainty into analysis


• Work aggressively to facilitate transition to new ownership if conditions dictate

• Foreclosure can possibly inhibit the local politics of redeployment (e.g., retail malls)

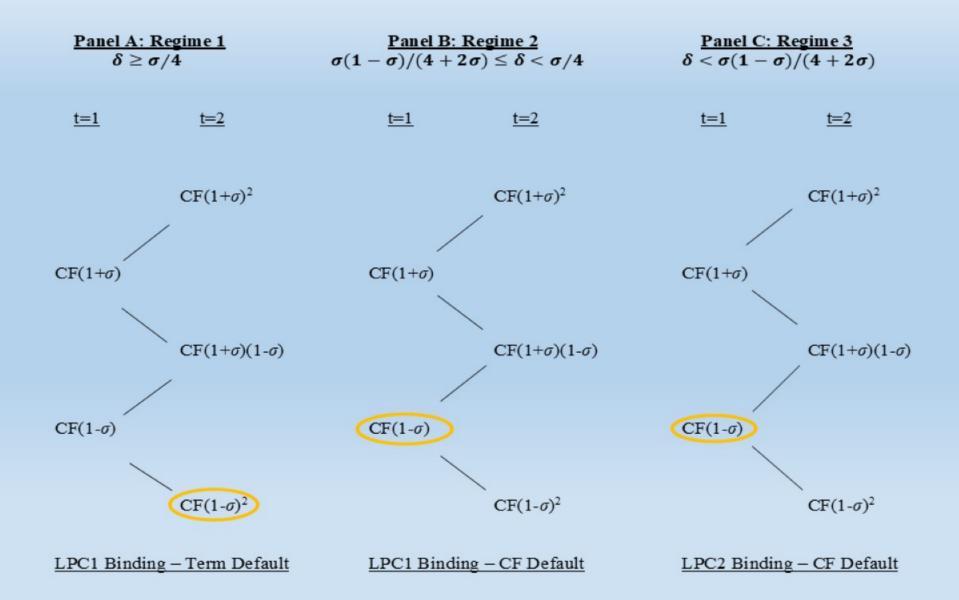
Model

Figure 1


Evolution of Cash Flows Over Time

Model

Figure 2


Evolution of Asset Values Over Time

Model

- 2-period loan
- Interest only
- Property owner cash constrained
 Wants to max out debt, even if it means possible default and loss of control
- Lender has two underwriting constraints
 - LPC1: $\iota L + L \leq \frac{CF(1+\sigma)(1-\sigma)}{\delta}$ (LTV constraint)
 - LPC2: $\iota L \leq CF(1 + \sigma)$ (DCR constraint)
- Interest rate and loan amount endogenously determined based on anticipated state outcomes and anticipated equilibrium responses
- Everything boils down to analyzing the effects of σ and δ $^{\scriptscriptstyle 15}$

Model

COVID Shock

- It's now t=1
- Negative shock to collateral asset (office, retail or hotel)
 - This is a negative outcome, but not unanticipated
- Increase in rate of obsolescence from δ to δ^{Z}
 - This is an unanticipated negative outcome
- Asset now on "zombie real estate" path
- To make more interesting, assume CF default at t=1 (although not necessary if there is an LTV maintenance provision in the loan contract)
 - Implies δ < σ/4
- Bank regulators are concerned about foreclosure externalities
 - During crisis period (t=1), impose a transitory capital charge that incentivizes forbearance instead of foreclosure
 - Myopic, in that it does not consider the possibility of redevelopment or redeployment
 - Without considering re-use options, lender always forbears, with certain distress
 outcomes in the next period (i.e., an example of evergreening and zombie lending)

Redevelopment Option

- Can do nothing and stay on path to zombiness
- Or can consider the option to maintain the same use, replacing older capital with newer capital
- Two steps to the analysis
 - Assess NPV $_{\nu}$, which is net value to redeveloping right away at t=1

$$NPV_1^{RDV} = PS - \kappa + \frac{\eta^{RDV}CF(1-\sigma)}{\delta^Z} - K^{RDV} - \frac{CF(1-\sigma)}{\delta^Z}$$

- If NPV₁<0, forbear and hope for the best at t=2
- If NPV₁>0, determine whether to wait to redevelop or not

Redevelopment Option

Payoffs to waiting to redevelop

$$NPV_2^U = (\eta^{RDV} - 1)CF(1 + \sigma)(1 - \sigma)\left(\frac{1 - \delta^Z}{\delta^Z}\right) - K^{RDV}$$
$$NPV_2^D = (\eta^{RDV} - 1)CF(1 - \sigma)^2\left(\frac{1 - \delta^Z}{\delta^Z}\right) - K^{RDV}$$

- Notice if wait, anticipate avoiding capital charge cost at t=2
- Implies waiting (if optimal) results in forbearance (as opposed to foreclosure, which is more costly), with the costs of forbearance already accounted for in NPV₁
- Given NPV₁>0, but waiting is optimal, lender has latent value that increases loan MV above loan BV
- Option value to waiting:

$$NPV_{2}^{RDV} = \frac{1}{2}Max\{0, NPV_{2}^{D}\} + \frac{1}{2}NPV_{2}^{U}$$

• Finally, if NPV₁ > NPV₂, optimal to foreclose at t=1 and sell asset at $\frac{\eta^{RDV}CF(1-\sigma)}{\delta^{Z}} - K^{RDV}$

- Here the alternative is starkly different from redevelopment
- Now, the alternative use has experienced a positive COVID shock and remains at the stated rate of obsolescence, δ
- Will again examine the case in which payment default occurs at t=1
- Post-redeployed asset value is $\frac{\eta^{RDP}CF(1+\sigma)}{\delta}$, as compared to the post-redeveloped asset value of $\frac{\eta^{RDV}CF(1-\sigma)}{\delta^Z}$
- Would generally expect $\eta^{RDP} > \eta^{RDV}$, but not assured

$$NPV_1^{RDP} = PS - \kappa + \frac{\eta^{RDP}CF(1+\sigma)}{\delta} - K^{RDP} - \frac{CF(1-\sigma)}{\delta^Z}$$

• If NPV₁ < 0, forbear and hope for the best at t=2

- Valuing the option to wait given that NPV₁ > 0 is complicated by the fact that there are four possible outcomes at t=2, depending on state outcomes to the alternative use versus the current use
 - Outcomes are: U-D, U-U, D-D, D-U (with the alternative use realization stated first and the current use realization stated second)

$$\begin{split} NPV_2^{U-D} &= \eta^{RDP} CF(1+\sigma)^2 \Big(\frac{1-\delta}{\delta}\Big) - CF(1-\sigma)^2 \left(\frac{1-\delta^2}{\delta^2}\right) - K^{RDP} \\ NPV_2^{U-U} &= \eta^{RDP} CF(1+\sigma)^2 \Big(\frac{1-\delta}{\delta}\Big) - CF(1+\sigma)(1-\sigma) \left(\frac{1-\delta^2}{\delta^2}\right) - K^{RDP} \\ NPV_2^{D-D} &= \eta^{RDP} CF(1+\sigma)(1-\sigma) \left(\frac{1-\delta}{\delta}\right) - CF(1-\sigma)^2 \left(\frac{1-\delta^2}{\delta^2}\right) - K^{RDP} \\ NPV_2^{D-U} &= \eta^{RDP} CF(1+\sigma)(1-\sigma) \left(\frac{1-\delta}{\delta}\right) - CF(1-\sigma) \left(\frac{1-\delta^2}{\delta^2}\right) - K^{RDP} \\ CF(1+\sigma)(1-\sigma) \left(\frac{1-\delta^2}{\delta^2}\right) - K^{RDP} \end{split}$$

 $NPV_{2}^{U-D} > NPV_{2}^{U-U} > NPV_{2}^{D-D} > NPV_{2}^{D-U}$

- To calculate NPV₂, the expected value of waiting, need to know correlation structure between alternative v. current use. Let the correlation coefficient equal ρ
- It can be shown that probability of U-U and D-D is $\frac{1+\rho}{4}$ and that the probability of U-D and D-U is $\frac{1-\rho}{4}$
- With this,

$$NPV_2^{RDP} =$$

$$\frac{1+\rho}{4}[Max\{0, NPV_2^{D-D}\} + NPV_2^{U-U}] + \frac{1-\rho}{4}[Max\{0, NPV_2^{D-U}\} + NPV_2^{U-D}]$$

- If $NPV_1 > 0$ and $NPV_2 > NPV_1$, wait
 - Implies forbearance, but where there is latent loan value
- If NPV₁ > NPV₂, foreclose and sell for immediate redeployment
 Sales price is ^{η^{RDP}CF(1+σ)}/_δ K^{RDP}
- Some of the comparative statics are contrary to standard predictions
 - Increases in K^{RDP} , κ , δ^{Z} cause further delay (not surprising)
 - Increase in ρ favors immediate redeployment (perhaps surprising at first, since intuition is that lower ρ results in better diversification to decrease incentive to wait)
 - Increase in σ when ρ is in a "normal range" of say [0,1] favors immediate redeployment (this is also surprising relative to conventional wisdom)
 - Happens because larger ρ puts less weight on D-U term, which moves negatively with increases in σ. D-D term moves positively, but weakly so