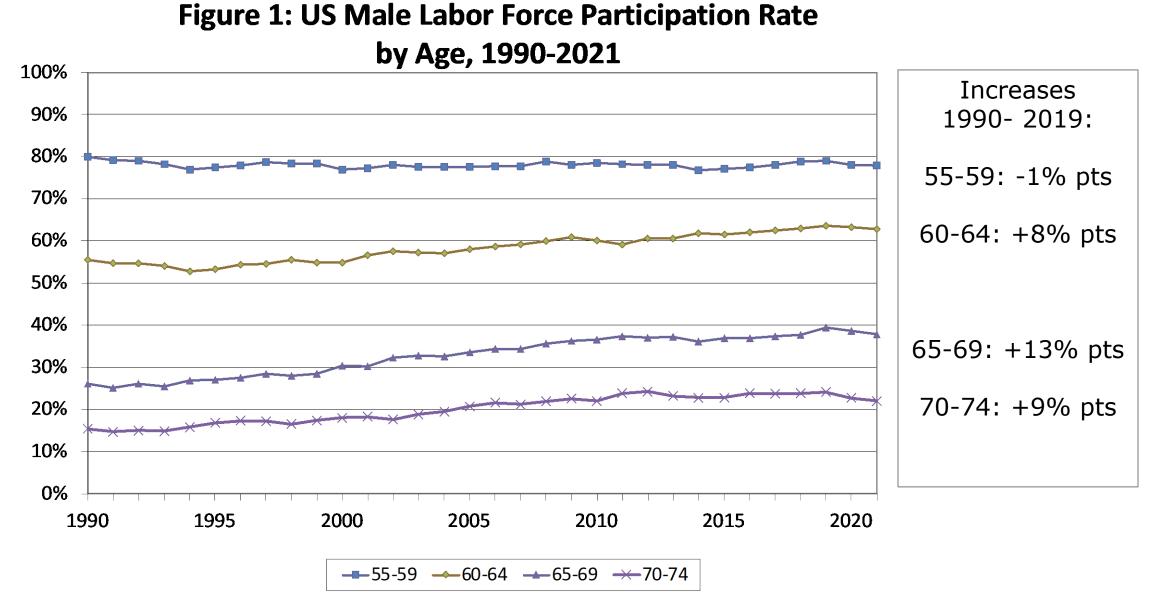

# Retirement During the COVID-19 Pandemic

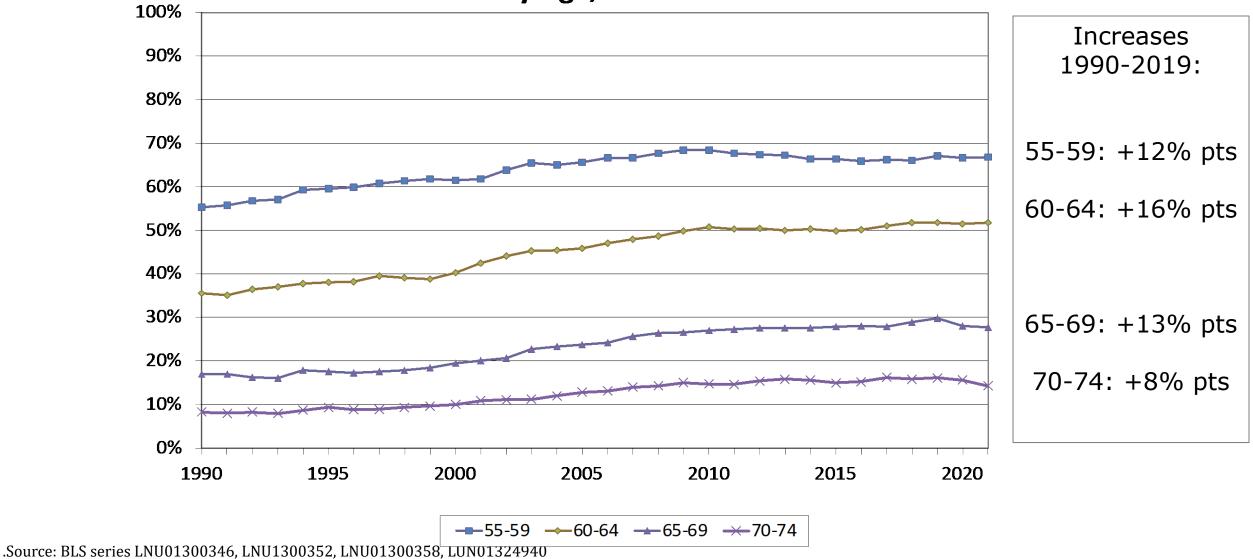
# Courtney Coile, Wellesley College and NBER


Federal Reserve Bank of Boston 66<sup>th</sup> Economic Conference November 18, 2022

## Older Workers are a Large and Growing Share of US Labor Force



.Source: National Academies of Sciences, Engineering, and Medicine, 2022. *Understanding the Aging Workforce: Defining a Research Agenda*, Figure 2.1


## **Rising Participation Rates at Older Ages**



.Source: BLS series LNU01300189, LNU1300197, LNU01300203, LUN01324939

## Rising Participation Rates at Older Ages

Figure 2: US Female Labor Force Participation Rate by Age, 1990-2021



# Working Longer

- Many factors at play
  - Increases in longevity and health (Bloom et al., 2014)
  - Increases in education and shift towards "age-friendly" jobs (Rutledge, 2018; Acemoglu et al., 2022)
  - Shift from DB to DC pensions and decline in retiree health insurance (Friedberg and Webb, 2005)
  - Changes to Social Security (Coile, 2019)
- The promise and pitfalls of working longer
  - The best way to promote retirement security given a changing retirement landscape (Bronshtein et al., 2019)
  - Not as feasible for some groups due to health/labor inequalities (Berkman and Truesdale, 2022)

Highly Unusual Pandemic Labor Market

- Record job loss
  - Civilian employment fell by 21 million, UE rate rose from 3.6 to 13.0 percent from 2019Q4 to 2020Q2
- Dramatic changes in the workplace
  - More than 1/3 of all employees shifted to telework
  - New health risks for workers in non-telework jobs
- Unprecedented government assistance
  - Largest expansion of federal UI: weekly supplements, coverage for independent workers, duration extended by 53 weeks
  - Stimulus payments (\$6,400 for a married couple or \$11,400 with two kids)
  - PPP and other programs for businesses
- Volatile stock market, surging housing market
- Some of these factors *could* be more salient for older workers

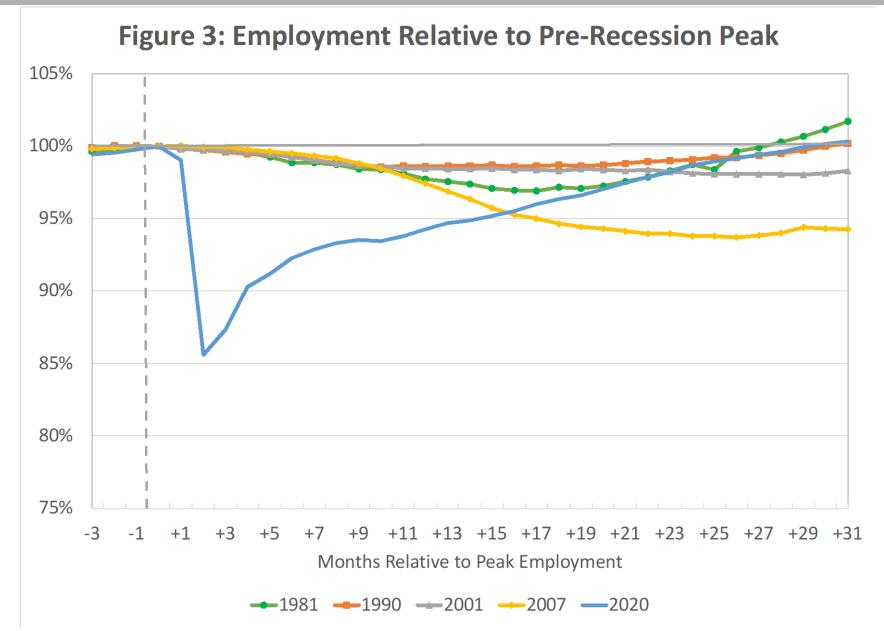
## This Study

# Goal: explore how the COVID-19 pandemic has affected employment at older ages and retirement

# Roadmap:

- 1) How have labor, stock, and housing market fluctuations affected retirement in the past?
- 2) Was there an increase in retirement during the Great Recession?
- 3) What has happened to employment at older ages during the pandemic?
- 4) What factors influenced retirement decisions during the pandemic?

- Job loss is a serious risk for older workers
  - Older workers face growing risk of job loss, lower probability of reemployment, and larger wage declines than younger workers (Farber, 2017)
  - Age discrimination *increases* and effectiveness of AD protections *decreases* during recessions (Dahl and Knepper, 2020; Neumark and Button, 2014)
- A rising unemployment rate leads to more retirements
  - This effect is stronger for those age 62+ (Coile and Levine, 2007; Gorodnichenko et al., 2013; Marmora and Ritter, 2015)
- Long-term effects on well-being
  - Experiencing a weak labor market in one's early 60s is associated with earlier SS claiming and lower retirement income (Coile and Levine, 2011a)
  - Lower survival due to loss of income, health insurance (Coile et al., 2014)


## Stock market fluctuations

- Recessions usually accompanied by declining stock prices (Kroencke, 2022), which are expected to lead workers to *delay* retirement
- Evidence from "dot-com" boom-bust is not supportive (Coile and Levine, 2006; Hurd et al., 2009); other studies find higher returns raise retirements for college grads (Bosworth and Burtless, 2010; Coile and Levine, 2011b)
- Limited stockholdings among older households nearly half (42%) have no stock assets and 70% have <\$80K in 2016 (Parker and Fry, 2020)</li>

# Housing market fluctuations

- Recessions can be coincident with home price declines (Terrones et al., 2008), similarly expected to lead workers to *delay* retirement
- 75% of older HH own homes and median assets are substantial (\$115K in 2016; JCHS, 2018), little evidence that house price fluctuations affect retirement may be because house equity spent late in life (Mayer, 2017)

### Job Losses in Recent Recessions




.Source: BLS series CES000000001

# • Key features of GR

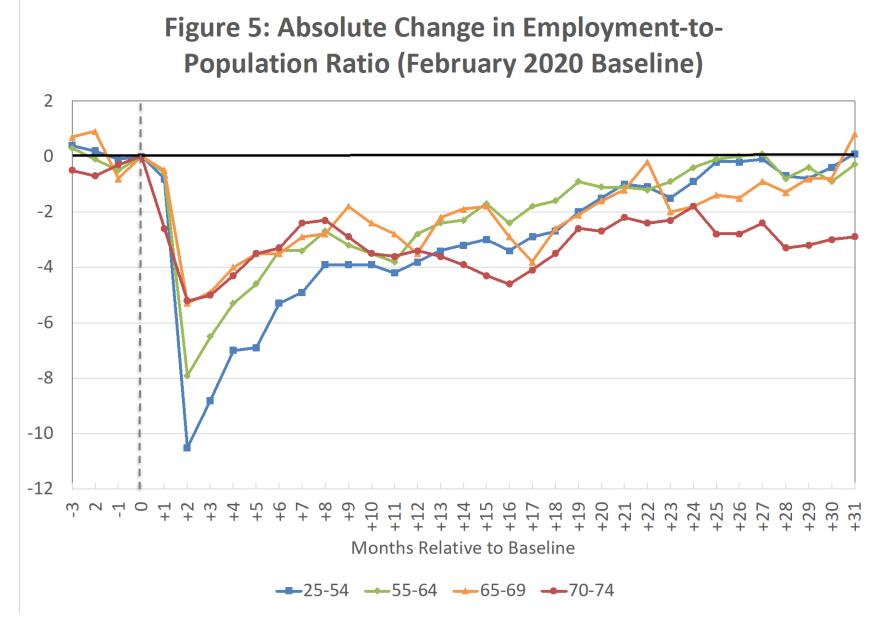
- Large job losses (8.6 million jobs, increase in unemployment rate from 5% to 10%) and slow recovery
- Large stock market losses (>50% drop in S&P 500 Index) and home price declines (average US home prices fell by over 20%; Weinberg, 2013)
- Potential effect of GR on retirement
  - Increase in retirement due to higher unemployment or decrease in retirement due to stock and housing market losses?

## Changes in Employment during Great Recession



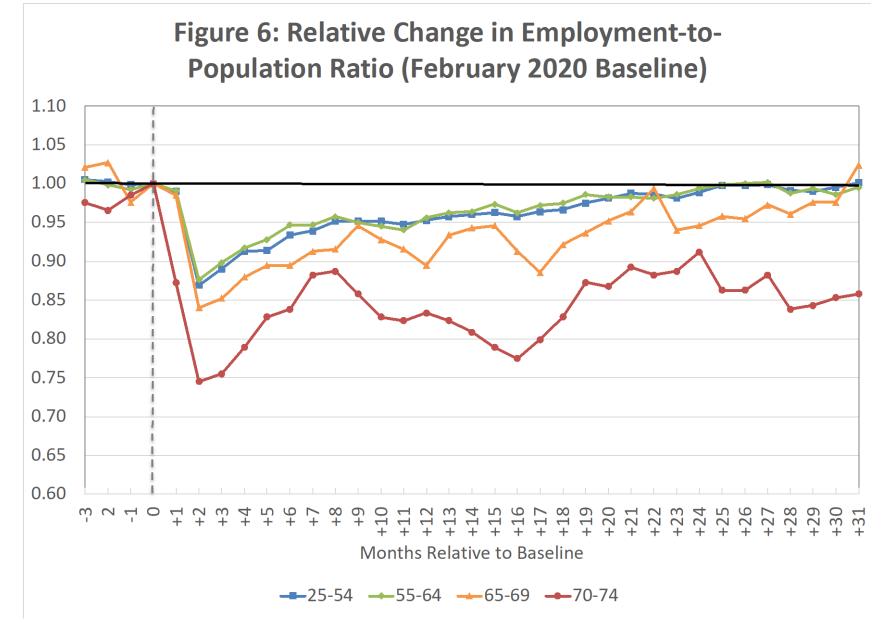
.Source: BLS series LNu02300060, LNU02300095, LNU02324938, LNU02324941

# • GR led to a small increase in retirements


- This is suggested by changes in employment-to-pop ratio
- One projection: 380,000 workers retire early due to layoffs & 260,000 retire later due to stock losses, net increase of ~120,000 retirements over 5 years (relative to 2 million retirements/year; Coile and Levine, 2011b)
- Another author concludes that "retirement decisions were influenced both by variations in household wealth and labor market conditions, but that the labor market was the more important determinant" (Bosworth, 2012)

# Welfare effects of losses vs. layoffs

- Rising employment during GR reflect continued decline in *voluntary exit* rates among employed & worsening reemployment rates among unemployed – more laid off workers who found it harder to find a job (Burtless, 2016).
- 380,000 who retired early ( $\sim$ 4% of all retirees during this period) face risk of permanently lower retirement income and higher mortality


- Expect bigger retirements than in GR
  - Stock and housing market surges rather than declines working in tandem with labor market
  - Unprecedented government assistance
  - Health concerns
  - BUT: shift to telework could make it easier to work longer evidence of increase in disability employment (Ne'eman and Maestas, 2022)

## **Changes in Employment during Pandemic**



.Source: BLS series LNu02300060, LNU02300095, LNU02324938, LNU02324941

## **Changes in Employment during Pandemic**



.Source: BLS series LNu02300060, LNU02300095, LNU02324938, LNU02324941

How Has the Pandemic Affected Labor Force and Retirement?

- Employment-to-population ratio back to pre-pandemic levels for all but age 70-74 group
- Decline in oldest group has consequences for labor force
  - Workers 70+ are ~3% of US workforce (National Academies, 2022), so losing ~15% of these workers is a loss of around 0.45% of US labor force
- Increase in retirements?
  - Back-of-envelope calculation suggests *could* be around 400,000, based on ~10% increase in average probability of retirement during vs. pre-pandemic

- Data from Current Population Survey (CPS)
  - Short panel: households interviewed for 4 months, out for 8 months, then interviewed for 4 more months
  - Select individuals working at 1<sup>st</sup> interview, examine transition to retirement over 15 months; retirement = first report of being out of the labor force
  - Using Jan 2017-Sept 2022 data, sample of ~600,000 person-month obs
- Other data sources (mostly state-level)
  - Monthly UE rates (BLS); S&P 500 Index values; quarterly housing index (Federal Housing Finance Agency)
  - Monthly COVID cases (NYT); Oxford COVID-19 government response index; UI maximum benefits/weeks
  - Occupation-level data on telework (Dingel and Neiman, 2020)

- In the empirical model, transition to retirement depends on:
  - Economic fluctuations: 1) unemployment rate; 2) 12-month change in housing index; 3) 12-month change in S&P 500 index interacted with indicator for being college graduate
  - COVID variables: COVID cases; COVID policy response; UI policies (UI bonus, maximum benefit/weeks), teleworkable job
  - Allow different effect of economic Xs/telework pre vs. pandemic ("after")
  - Individual characteristics (gender, race/ethnicity, education)
  - Age, state, year-month; interview occurring after gap

$$\begin{split} Retire_{iast} &= \beta_{0} + \beta_{1}UnemploymentRate_{st} + \beta_{2}After_{t} \times UnemploymentRate_{st} \\ &+ \beta_{3}FHFAChg_{st} + \beta_{4}After_{t} \times FHFAChg_{st} + \beta_{5}SP500Chg_{t} \times College_{i} \\ &+ \beta_{6}SP500Chg_{t} \times College_{i} \times After_{t} + \beta_{5}COVIDPer100_{st} \\ &+ \beta_{6}Teleworkable_{i} + \beta_{7}After_{t} \times Teleworkable_{i} + \beta_{8}COVIDPolicies_{st} \\ &+ \beta_{9}X_{i} + Interview4_{5}i + \gamma_{a} + \gamma_{s} + \gamma_{t} + \epsilon_{iast} \end{split}$$

| ns        |                                                                                                                                                                               |                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| (1)       | (2)                                                                                                                                                                           | (3)                                                   |
| 0.0012*   | 0.00114*                                                                                                                                                                      | 0.0008                                                |
|           |                                                                                                                                                                               | 0.0008                                                |
| · · · ·   | · · ·                                                                                                                                                                         | (0.0007)                                              |
|           |                                                                                                                                                                               | -0.0007                                               |
| · · ·     | · · · ·                                                                                                                                                                       | (0.0007)                                              |
| 0.0186*** | 0.0149**                                                                                                                                                                      | 0.0146**                                              |
| (0.0070)  | (0.0070)                                                                                                                                                                      | (0.0073)                                              |
| -0.0156** | -0.0098                                                                                                                                                                       | -0.0089                                               |
| (0.0063)  | (0.0065)                                                                                                                                                                      | (0.0066)                                              |
| -0.0310   | -0.0310                                                                                                                                                                       | -0.0230                                               |
| (0.0266)  | (0.0266)                                                                                                                                                                      | (0.0276)                                              |
| 0.0139    | 0.0134                                                                                                                                                                        | -0.0017                                               |
| (0.0236)  | (0.0236)                                                                                                                                                                      | (0.0252)                                              |
| 0.037     | 0.037                                                                                                                                                                         | 0.037                                                 |
| 577,724   | 577,724                                                                                                                                                                       | 550,991                                               |
| 0.021     | 0.022                                                                                                                                                                         | 0.022                                                 |
| YES       | YES                                                                                                                                                                           | YES                                                   |
|           | (1)<br>0.0012*<br>(0.0007)<br>-0.0011<br>(0.0006)<br>0.0186***<br>(0.0070)<br>-0.0156**<br>(0.0063)<br>-0.0310<br>(0.0266)<br>0.0139<br>(0.0236)<br>0.037<br>577,724<br>0.021 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Table 1 : Retirement Regression | ons       |          |          |
|---------------------------------|-----------|----------|----------|
|                                 | (1)       | (2)      | (3)      |
|                                 |           |          |          |
| Unemployment Rate               | 0.0012*   | 0.00114* | 0.0008   |
|                                 | (0.0007)  | (0.0007) | (0.0007) |
| After X Unem Rate               | -0.0011   | -0.0010  | -0.0007  |
|                                 | (0.0006)  | (0.0006) | (0.0007) |
| College X S&P500 Change         | 0.0186*** | 0.0149** | 0.0146** |
|                                 | (0.0070)  | (0.0070) | (0.0073) |
| After X College X S&P500Chg     | -0.0156** | -0.0098  | -0.0089  |
|                                 | (0.0063)  | (0.0065) | (0.0066) |
| FHFA Change                     | -0.0310   | -0.0310  | -0.0230  |
|                                 | (0.0266)  | (0.0266) | (0.0276) |
| After X FHFA Change             | 0.0139    | 0.0134   | -0.0017  |
|                                 | (0.0236)  | (0.0236) | (0.0252) |
| Mean of Dependent Variable      | 0.037     | 0.037    | 0.037    |
| Observations                    | 577,724   | 577,724  | 550,991  |
| R-squared                       | 0.021     | 0.022    | 0.022    |
| Age/State/Year-Month            | YES       | YES      | YES      |

#### Table 1 : Retirement Regressions

|                            | (1)     | (2)        | (3)        |
|----------------------------|---------|------------|------------|
| COVID Cases per 100 Pop    |         | -8.69e-05  | -4.84e-05  |
|                            |         | (6.78e-05) | (7.03e-05) |
| Government Response Index  |         |            | -0.0002*** |
|                            |         |            | (7.13e-05) |
| Teleworkable               |         | -0.0046*** | -0.0046*** |
|                            |         | (0.0007)   | (0.0007)   |
| After X Teleworkable       |         | -0.0040*** | -0.0045*** |
|                            |         | (0.0011)   | (0.0012)   |
| Mean of Dependent Variable | 0.037   | 0.037      | 0.037      |
| Observations               | 577,724 | 577,724    | 550,991    |
| R-squared                  | 0.021   | 0.022      | 0.022      |
| Age/State/Year-Month       | YES     | YES        | YES        |

#### Table 1 : Retirement Regressions

|                            | (1)     | (2)                                   | (3)         |
|----------------------------|---------|---------------------------------------|-------------|
| UI Max Benefit             |         | · · · · · · · · · · · · · · · · · · · | 2.51e-06    |
|                            |         |                                       | (1.61e-05)  |
| After X UI Max Benefit     |         |                                       | 5.54e-06    |
|                            |         |                                       | (3.91e-06)  |
| UI Max Weeks               |         |                                       | 0.0002      |
|                            |         |                                       | (0.0002)    |
| After X UI Max Weeks       |         |                                       | -0.0001     |
|                            |         |                                       | (0.0002)    |
| UI Bonus                   |         |                                       | 1.72e-05*** |
|                            |         |                                       | (5.88e-06)  |
| Mean of Dependent Variable | 0.037   | 0.037                                 | 0.037       |
| Observations               | 577,724 | 577,724                               | 550,991     |
| R-squared                  | 0.021   | 0.022                                 | 0.022       |
| Age/State/Year-Month       | YES     | YES                                   | YES         |

#### Table 2: Retirement Regressions, by Age and Gender

|                            | (1)                    | (2)                                                  | (3)         | (4)        |
|----------------------------|------------------------|------------------------------------------------------|-------------|------------|
| VARIABLES                  | Age 62+                | <age 62<="" td=""><td>Female</td><td>Male</td></age> | Female      | Male       |
|                            | ·                      |                                                      | ·           |            |
| Unemployment Rate (x10)    | 0.0023*                | -9.64e-05                                            | 0.0023**    | -0.0002    |
|                            | (0.0013)               | (0.0008)                                             | (0.0011)    | (0.0010)   |
| After X Unem Rate          | -0.0024*               | 0.0004                                               | -0.0021**   | 0.00026    |
|                            | (0.0012)               | (0.0007)                                             | (0.0010)    | (0.0009)   |
| Government Response Index  | -0.0002*               | -0.0002**                                            | -0.0002**   | -0.0002*   |
|                            | (0.0001)               | (7.84e-05)                                           | (0.0001)    | (9.51e-05) |
| Teleworkable               | -0.0062***             | -0.0037***                                           | -0.0031***  | -0.0064*** |
|                            | (0.0014)               | (0.0008)                                             | (0.0011)    | (0.0010)   |
| After X Teleworkable       | -0.0065***             | -0.0029**                                            | -0.0055***  | -0.0044*** |
|                            | (0.0021)               | (0.0012)                                             | (0.0018)    | (0.0016)   |
| UI Bonus                   | 2.17e-05**             | 1.24e-05*                                            | 3.25e-05*** | 1.13e-06   |
|                            | (1.04e-05)             | (6.49e-06)                                           | (8.96e-06)  | (7.82e-06) |
| Mean of Dependent Variable | 0.055                  | 0.023                                                | 0.041       | 0.034      |
| Observations               | 236 <mark>,</mark> 644 | 314,347                                              | 258,023     | 292,968    |
| R-squared                  | 0.017                  | 0.008                                                | 0.013       | 0.011      |
| Age/State/Year-Month       | YES                    | YES                                                  | YES         | YES        |

# Discussion of Empirical Findings

## Economic fluctuations

- Higher UE rate is associated with higher prob of retirement *before* the pandemic (consistent with past lit), but there is no such association *during* the pandemic
- Effect of UE on retirement is *only* for workers 62+ (consistent) and for women
- Higher stock market returns are associated with higher prob of retirement *before* but not *during* pandemic, but interpret with caution (imperfect strategy)
- No effect of house price fluctuations (consistent)

# COVID factors

- Local COVID cases do not affect retirement, but stronger local government response to pandemic is associated with *lower* probability of retirement
- UI bonus payments are associated with *higher* retirement, but caution warranted
- Workers who can telework are *less likely* to retire & this effect is *stronger* during the pandemic

## Conclusions

- Return of emp-to-pop ratio to pre-pandemic level suggests effects of pandemic on retirement are now mostly in the past
- People *did* retire at a higher rate during vs. pre-pandemic, but why?
  - Were not more likely to do so in areas with more UE or COVID
  - Telework became more important could be health concerns or that more widespread use (Bloom et al., 2021) makes this attribute more valuable
  - Factors that are harder to test empirically could still play a role generalized fear of COVID, universal policies like stimulus payments, change in preferences
- Effects on well-being different this time?
  - Tight labor market means displaced workers should not be having as much difficulty finding new work as during Great Recession
  - Participation effects are concentrated among those age 70-74 they are already receiving Social Security and more often in part-time work
- Will working longer trend resume? Only time will tell!

Thank you!

Thanks also to Haiyi Zhang for collaboration on an earlier, related project and Emma Rutkowski for excellent research assistance.